The Taxonomy of the Procellariiformes Has Been Proposed from Various Approaches

Total Page:16

File Type:pdf, Size:1020Kb

The Taxonomy of the Procellariiformes Has Been Proposed from Various Approaches 山 階 鳥 研 報(J. Yamashina Inst. Ornithol.),22:114-23,1990 Genetic Divergence and Relationships in Fifteen Species of Procellariiformes Nagahisa Kuroda*, Ryozo Kakizawa* and Masayoshi Watada** Abstract The genetic analysis of 23 protein loci in 15 species of Procellariiformes was made The genetic distancesbetween the specieswas calculatedand a dendrogram was formulated of the group. The separation of Hydrobatidae from all other taxa including Diomedeidae agrees with other precedent works. The resultsof the present study support the basic Procellariidclassification system. However, two points stillneed further study. The firstpoint is that Fulmarus diverged earlier from the Procellariidsthan did the Diomedeidae. The second point is the position of Puffinuspacificus which appears more closely related to the Pterodroma petrels than to other Puffinus species. These points are discussed. Introduction The taxonomy of the Procellariiformes has been proposed from various approaches. The earliest study by Forbes (1882) was made by appendicular myology. Godman (1906) and Loomis (1918) studied this group from a morphological point of view. The taxonomy of the Procellariiformes by functional osteology and appendicular myology was studied by Kuroda (1954, 1983) and Klemm (1969), The results of the various studies agreed in proposing four families of Procellariiformes: Diomedeidae, Procellariidae, Hydrobatidae, and Pelecanoididae. They also pointed out that the Procellariidae was a heterogenous group among them. Timmermann (1958) found the parallel evolution of mallophaga and their hosts in Procellariiformes. Recently, electrophoretical studies have been made on the Procellariiformes. Harper (1978) found different patterns of the electromorph among the families. Bar- rowclough et al. (1981) studied genetic differentiation among 12 species of Procellari- iformes at 16 loci, and discussed the genetic distances among the taxa but with no consideration of their phylogenetic relationships. In the present study, we report on genetic differentiation and phylogenetic rela- tionships of Procellariiformes by means of electrophoresis of 23 loci, dealing with 15 Procellariid species, and similarities with the work of Barrowclough et al. (1981). Materials and Methods The sample of Procellariiformes used in the present study included 52 individuals of 15 species from three families. The species were as follows: 1) Diomedea nigripes, Received 15 December 1989, accepted 17 May 1990 * Yamashina Institute for Ornithology , Konoyama, Abiko, Chiba 270-11, Japan ** Department of Biology , Faculty of General Education, Ehime University, Matsuyama, Ehime 790, Japan 114 Genetic Divergence and Relationships in Fifteen Species of Procellariiformes 115 116 N. Kuroda, R. Kakizawa & M. Watada 2) D. immutabilis, 3) Fulmarus glacialis, 4) Pagodroma nivea, 5) Pterodroma externa, 6) P. hypoleuca, 7) Bulweria bulwerii, 8) Calonectris leucomelas, 9) Puffinus pacificus, 10) P. griseus, 11) P. tenuirostris, 12) P. lherminieri, 13) Oceanodroma castro, 14) O. leucorhoa and 15) O. tristrami. Diomedea and Oceanodroma belong to the Diomedeidae and Hy- drobatidae, respectively. All the other genera in this study were included in the Procel- lariidae. The sample size for each species is shown in Table 1. Genetic variations of the following enzymes and proteins were surveyed: creatine kinase (CK), diaphorase (DIA), esterase (EST), glucose oxzaloacetate transisomerase (GOT), a-glycerophosphate dehydrogenase (aGPD), glucose phosphate isomerase (GPI), isocitrate dehydrogenase (IDH), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), peptidase (PEP), 6-phosphate dehydrogenase (6PGD), phosphoglucomutase (PGM), general protein (PT), superoxide dismutase (SOD), and xylulose reductase (XR). Diomedea immutabilis was accidentally obtained as alive bird from which only a blood sample was available, and 12 protein loci were examined for the species. In the case of other species, 23 loci were studied using blood, liver and muscle. The treatment of samples and the methods of electrophoresis have already been described in Kakizawa & Watada (1985). The calculation of the genetic distances followed Nei (1972) and the phylogenetic dendrogram was made by UPGMA after Sneath and Socal (1973). Results Out of 23 protein loci examined, all taxa were fixed for common alleles at the fol- lowing eight loci: CK-1, DIA, GOT-1, GOT-2, IDH-1, MDH-1, MDH-2, and PT-2. These were excluded from Table 1, in which the alleles and the frequencies of the other 15 loci were shown for all 15 species of Procellariiformes. Most of the alleles given in Table 1 are common among species and/or genera, and only a few were species specific. Although the number of individuals examined was small within a range from 1 to 12, 23 protein loci were studied in the present study. There was no intraspecific genetic variation except at 6PGD locus where three species, Fulmarus glacialis, Oceanodroma castro and O. leucorhoa were highly polymorphic. Bulweria bulwerii was also polymor- phic at the locus with a low level of heterozygosity. The observed heterozygosities for the above four species were also low: 0.029 in Fulmarus glacialis, 0.004 in Bulweria bulwerii, and 0.043 in the two Oceanodroma species. The average observed heterozygosi- ty was 0.008 for Procellariiformes. In Diomedeidae, two species, D. nigripes and D. immutabilis, shared the same alleles in all loci except two, LDH-1 and 6PGD, which were highly variable, though electropho- retic data were lacking from 11 protein loci of D. immutabilis. Out of 23 loci examined, Diomedea had common alleles to other groups at 17 loci, but had its own peculiar alleles at 6. They were Pgm-1b common to the two Diomedea species, a-Gpdb, Ldh-1a, 6Pgdk, Pgm-2d and Xrb of D. nigripes, and Ldh-1b of D. immutabilis. At 6PGD locus, 6Pgd1 was observed in only D. immutabilis and four Puffinus species. Also Gpic, Ldh-2a and Pt-3b were common alleles to the Diomedeidae and most of the Procellariidae, but were not found in any Hydrobatidae. No similar alleles were observed only in Diomedeidae and Hydrobatidae. Genetic Divergence and Relationships in Fifteen Species of Procellariiformes 117 The Procellariidae is a large heterogenous group comprising Fulmarine (Fulmarus and Pagodroma), Petrodromine (Pterodroma and Bulweria) and Puffinine (Calonectris and Puffinus) species. Only Pgm-2a was common and restricted to this group. How- ever, Ldh-1d and Xrc were also observed to be restricted to the Procellariidae with a few exceptions. Ldh-1e was found only in Fulmarines, and Xre and Xrd were species specific alleles for Bulweria bulwerii and Calonectris leucomelas, respectively. The highly variable locus, 6PGD showed different alleles by in each species and genera . The other loci in Table 1 showed intermediate variation with species and genus specific alleles. aGpdd and Ldh-1e were restricted to Fulmarine, suggesting the peculiarity of this group amongst the Procellariidae. Puffinines also had aGpde as a specific allele of this sub- family. In SOD locus, Pterodromines and Fulmarines were connected by Sodc, but Puffinines had Soda and thus differed from the above two subfamilies. These results give genetical support to the heterogenous grouping of this family. In the Hydrobatidae, alleles specific for this family were Ldh-1c Ldh-2c, Sodb and Xra. Oceanodroma castro and O. leucorhoa had aGpda, but O. tristrami shared aGpdc with Pterodroma externa and P. hypoleuca. Similarly, O. castro and O. tristrami had a common allele, Gpib with Calonectris leucomelas. Idh-2a suggested a relationship between the Fulmarines and the Hydrobatidae. At the 6PGD loci, O . castro and O. leucorhoa were highly polymorphic, and had species specific alleles, 6Pgdd and 6Pgdb, respectively. In addition, Pgm-2c and Pt-3a were found only in O. castro. Genetic differentiation and phylogenetic relationships Based on the electrophoretic data of 23 loci shown in Table 1, genetic identities and genetic distances were calculated according to Nei's (1972) fomula. Among the 15 species examined, no genetic difference was observed between Puffinus griseus and P. tenuirostris and between Pterodroma externa and P. hypoleuca. The average genetic distance within genus was 0.137 which was larger than that of the Anatidae, and was close to 0.151 in the Alcidae (Numachi et al. 1983, Watada et al. 1987). The mean intergeneric and inter- familial genetic distances of the Procellariiformes were 0.350 and 0.554, respectively. These were somewhat lower than the values (0.435 for intergeneric and 0.683 for inter- familial) reported by Barrowclough et al. (1981). The largest genetic distance, 0.833, was found between Puffinus griseus (Procellariidae) and Oceanodroma tristrami (Hy- drobatidae). Based on the genetic distances in Table 2, a dendrogram was made for these 15 species of Procellariiformes using UPGMA (Fig. 1). Most congeneric species were clustered together by genera such as Diomedea, Pterodroma and Oceanodroma. In Puffinus, P. pacificus was grouped with Pterodroma apart from the three other congeneric species. Grouping within the Procellariidae was complicated , but the following are suggested: 1) Fulmarus and Pagodoroma (Fulmarini), 2) the puffinus group without P . pacificus and 3) a heterogenous group of Pterodroma, Bulweria, Calonectris and Puffinus pacificus. It is important to point out that two species of Diomedeidae were included in the large group of Procellariidae in Fig. 1, although their phylogenetic relationships were not close to each
Recommended publications
  • Plumage Variation and Hybridization in Black-Footed and Laysan Albatrosses
    PlumaDevariation and hybridizationin Black-footedand LaysanAlbatrosses Tristan McKee P.O. Box631 Ferndale,California 95536 (eraall:bertmckee•yahoo.com) PeterPyle 4990Shoreline Highway SUnsonBeach, California 94970 (email:[email protected]) INTRODUCTION Black-footed(Phoebastria nigripes) and Laysan (P. immutabilis) Albatrosses nest sideby sidein denseisland colonies. Their breeding populations center in the northwesternHawaiian Islands, with smaller colonies scattered across the subtrop- icalNorth Pacific. Both species visit nutrient-rich waters off the west coast of North Americathroughout the year to forage. Black-footeds concentrate in coastal waters fromnorthern California tosouthern Alaska, while Laysans frequent more offshore andnortherly waters in thisregion. Bkders on pelagic trips off the West Coast often encountersignificant numbers of oneor bothof thesespecies, and searching for other,rarer albatrosses among them has proven to be a worthwhile pursuit in recen! years(Stallcup and Terrill 1996, Cole 2000). Albatrossesidentified as Black-looted x Laysan hybrids have been seen and studiedon MidwayAtoll and other northwestern Hawaiian Islands since the late 1800s(Rothschild 1900, Fisher 1948, 1972). In addition,considerable variation in appearanceis found within both species, indMduals with strikinglyaberrant plumageand soft part colors occasionally being encountered (Fisher 1972, Whittow 1993a).Midway Atoll hosts approximately two-thirds of the world'sbreeding A presumedhybrid Laysan x Black-lootedAlbatross tends a chickat Midway LaysanAlbatrosses
    [Show full text]
  • PDF/36 2/36 2 175-181.Pdf Stenhouse
    VOLUME 15, ISSUE 1, ARTICLE 11 D'Entremont, K. J. N., L. Minich Zitske, A. J. Gladwell, N. K. Elliott, R. A. Mauck, and R. A. Ronconi. 2020. Breeding population decline and associations with nest site use of Leach’s Storm-Petrels on Kent Island, New Brunswick from 2001 to 2018. Avian Conservation and Ecology 15(1):11. https://doi.org/10.5751/ACE-01526-150111 Copyright © 2020 by the author(s). Published here under license by the Resilience Alliance. Research Paper Breeding population decline and associations with nest site use of Leach’s Storm-Petrels on Kent Island, New Brunswick from 2001 to 2018 Kyle J. N. d'Entremont 1,2, Laura Minich Zitske 3,4, Alison J. Gladwell 1, Nathan K. Elliott 3,5, Robert A. Mauck 6 and Robert A. Ronconi 7,8 1Dalhousie University, Canada, 2Memorial University of Newfoundland, Canada, 3Bowdoin College, USA, 4Maine Audubon, USA, 5Point Blue Conservation Science, USA, 6Kenyon College, USA, 7Canadian Wildlife Service, Environment and Climate Change Canada, Dartmouth, NS, Canada, 8Department of Biology, Dalhousie University, Halifax, NS, Canada ABSTRACT. Leach’s Storm-Petrels (Hydrobates leucorhous) are burrow-nesting seabirds that breed on coastal islands throughout much of the North Atlantic, with most of the world’s population breeding in Atlantic Canada. Population declines in the past 20–30 years have resulted in the species being uplisted to “Vulnerable” on the International Union for the Conservation of Nature Red List of Threatened Species. One of the species’ most well-studied colonies is on Kent Island, New Brunswick in the Bay of Fundy.
    [Show full text]
  • Puffinus Gravis (Great Shearwater)
    Maine 2015 Wildlife Action Plan Revision Report Date: January 13, 2016 Puffinus gravis (Great Shearwater) Priority 3 Species of Greatest Conservation Need (SGCN) Class: Aves (Birds) Order: Procellariiformes (Tubenoses) Family: Procellariidae (Fulmers, Petrels, And Shearwaters) General comments: Status seems secure though limited data Species Conservation Range Maps for Great Shearwater: Town Map: Puffinus gravis_Towns.pdf Subwatershed Map: Puffinus gravis_HUC12.pdf SGCN Priority Ranking - Designation Criteria: Risk of Extirpation: NA State Special Concern or NMFS Species of Concern: NA Recent Significant Declines: NA Regional Endemic: NA High Regional Conservation Priority: North American Waterbird Conservation Plan: High Concern United States Birds of Conservation Concern: Bird of Conservation Concern in Bird Conservation Regions 14 and/or 30: Yes High Climate Change Vulnerability: NA Understudied rare taxa: NA Historical: NA Culturally Significant: NA Habitats Assigned to Great Shearwater: Formation Name Cliff & Rock Macrogroup Name Rocky Coast Formation Name Subtidal Macrogroup Name Subtidal Pelagic (Water Column) Habitat System Name: Offshore **Primary Habitat** Stressors Assigned to Great Shearwater: No Stressors Currently Assigned to Great Shearwater or other Priority 3 SGCN. Species Level Conservation Actions Assigned to Great Shearwater: No Species Specific Conservation Actions Currently Assigned to Great Shearwater or other Priority 3 SGCN. Guild Level Conservation Actions: This Species is currently not attributed to a guild.
    [Show full text]
  • Behavior and Attendance Patterns of the Fork-Tailed Storm-Petrel
    BEHAVIOR AND ATTENDANCE PATTERNS OF THE FORK-TAILED STORM-PETREL THEODORE R. SIMONS Wildlife Science Group, Collegeof Forest Resources, University of Washington, Seattle, Washington 98195 USA ABSTRACT.--Behavior and attendance patterns of breeding Fork-tailed Storm-Petrels (Ocea- nodromafurcata) were monitored over two nesting seasonson the Barren Islands, Alaska. The asynchrony of egg laying and hatching shown by these birds apparently reflects the influence of severalfactors, including snow conditionson the breedinggrounds, egg neglectduring incubation, and food availability. Communication between breeding birds was characterized by auditory and tactile signals.Two distinct vocalizationswere identified, one of which appearsto be a sex-specific call given by males during pair formation. Generally, both adults were present in the burrow on the night of egg laying, and the male took the first incubation shift. Incubation shiftsranged from 1 to 5 days, with 2- and 3-day shifts being the most common. Growth parameters of the chicks, reproductive success, and breeding chronology varied considerably between years; this pre- sumably relates to a difference in conditions affecting the availability of food. Adults apparently responded to changes in food availability during incubation by altering their attendance patterns. When conditionswere good, incubation shifts were shorter, egg neglectwas reduced, and chicks were brooded longer and were fed more frequently. Adults assistedthe chick in emerging from the shell. Chicks became active late in the nestling stage and began to venture from the burrow severaldays prior to fledging. Adults continuedto visit the chick during that time but may have reducedthe amountof fooddelivered. Chicks exhibiteda distinctprefledging weight loss.Received 18 September1979, accepted26 July 1980.
    [Show full text]
  • Copulation and Mate Guarding in the Northern Fulmar
    COPULATION AND MATE GUARDING IN THE NORTHERN FULMAR SCOTT A. HATCH Museumof VertebrateZoology, University of California,Berkeley, California 94720 USA and AlaskaFish and WildlifeResearch Center, U.S. Fish and WildlifeService, 1011 East Tudor Road, Anchorage,Alaska 99503 USA• ABSTRACT.--Istudied the timing and frequency of copulation in mated pairs and the occurrenceof extra-paircopulation (EPC) among Northern Fulmars (Fulmarus glacialis) for 2 yr. Copulationpeaked 24 days before laying, a few daysbefore females departed on a prelaying exodus of about 3 weeks. I estimated that females were inseminated at least 34 times each season.A total of 44 EPC attemptswas seen,9 (20%)of which apparentlyresulted in insem- ination.Five successful EPCs were solicitated by femalesvisiting neighboring males. Multiple copulationsduring a singlemounting were rare within pairsbut occurredin nearly half of the successfulEPCs. Both sexesvisited neighborsduring the prelayingperiod, and males employed a specialbehavioral display to gain acceptanceby unattended females.Males investedtime in nest-siteattendance during the prelaying period to guard their matesand pursueEPC. However, the occurrenceof EPC in fulmars waslargely a matter of female choice. Received29 September1986, accepted 16 February1987. THEoccurrence and significanceof extra-pair Bjorkland and Westman 1983; Buitron 1983; copulation (EPC) in monogamousbirds has Birkhead et al. 1985). generated much interest and discussion(Glad- I attemptedto documentthe occurrenceand stone 1979; Oring 1982; Ford 1983; McKinney behavioral contextof extra-pair copulationand et al. 1983, 1984). Becausethe males of monog- mate guarding in a colonial seabird,the North- amous species typically make a large invest- ern Fulmar (Fulmarus glacialis). Fulmars are ment in the careof eggsand young, the costof among the longest-lived birds known, and fi- being cuckolded is high, as are the benefits to delity to the same mate and nest site between the successfulcuckolder.
    [Show full text]
  • Pterodromarefs V1-5.Pdf
    Index The general order of species follows the International Ornithological Congress’ World Bird List. A few differences occur with regard to the number and treatment of subspecies where some are treated as full species. Version Version 1.5 (5 May 2011). Cover With thanks to Kieran Fahy and Dick Coombes for the cover images. Species Page No. Atlantic Petrel [Pterodroma incerta] 5 Barau's Petrel [Pterodroma baraui] 17 Bermuda Petrel [Pterodroma cahow] 11 Black-capped Petrel [Pterodroma hasitata] 12 Black-winged Petrel [Pterodroma nigripennis] 18 Bonin Petrel [Pterodroma hypoleuca] 19 Chatham Islands Petrel [Pterodroma axillaris] 19 Collared Petrel [Pterodroma brevipes] 20 Cook's Petrel [Pterodroma cookii] 20 De Filippi's Petrel [Pterodroma defilippiana] 20 Desertas Petrel [Pterodroma deserta] 11 Fea's Petrel [Pterodroma feae] 8 Galapágos Petrel [Pterodroma phaeopygia] 17 Gould's Petrel [Pterodroma leucoptera] 19 Great-winged Petrel [Pterodroma macroptera] 3 Grey-faced Petrel [Pterodroma gouldi] 4 Hawaiian Petrel [Pterodroma sandwichensis] 17 Henderson Petrel [Pterodroma atrata] 16 Herald Petrel [Pterodroma heraldica] 14 Jamaica Petrel [Pterodroma caribbaea] 13 Juan Fernandez Petrel [Pterodroma externa] 13 Kermadec Petrel [Pterodroma neglecta] 14 Magenta Petrel [Pterodroma magentae] 6 Mottled Petrel [Pterodroma inexpectata] 18 Murphy's Petrel [Pterodroma ultima] 6 Phoenix Petrel [Pterodroma alba] 16 Providence Petrel [Pterodroma solandri] 5 Pycroft's Petrel [Pterodroma pycrofti] 21 Soft-plumaged Petrel [Pterodroma mollis] 7 Stejneger's Petrel [Pterodroma longirostris] 21 Trindade Petrel [Pterodroma arminjoniana] 15 Vanuatu Petrel [Pterodroma occulta] 13 White-headed Petrel [Pterodroma lessonii] 4 White-necked Petrel [Pterodroma cervicalis] 18 Zino's Petrel [Pterodroma madeira] 9 1 General Bailey, S.F. et al 1989. Dark Pterodroma petrels in the North Pacific: identification, status, and North American occurrence.
    [Show full text]
  • BARC SUBMISSION Cory's Shearwater Calonectris Borealis
    BARC SUBMISSION Cory’s Shearwater Calonectris borealis – Bremer Canyon ‘hotspot’, Western Australia, 5th January 2020 Machi Yoshida (prepared by Daniel Mantle & Plaxy Barratt) Submission note: we believe this sighting constitutes the 3rd time that one or more Cory’s Shearwater have been sighted in Australia (after a bird seen off Bremer Bay on the 19th January 2019 and up to four birds off Denmark, Western Australia six days prior to this record). Taxonomic notes: Cory’s Shearwater Calonectris borealis is a relatively recent split from Scopoli’s Shearwater Calonectris diomedea as accepted by the IOC (version 9.2; following Robb & Mullarney 2008, Howell 2012, and Sangster et al. 2012) and the HBW-Birdlife list of birds (version 3.0). However, other taxonomies such as Clements (2019) still consider these two taxa as subspecies (C. d. borealis and C. d. diomedea, respectively). All three of these major taxonomies accept Cape Verde Shearwater Calonectris edwardsii as a distinct species. Circumstances of sighting: a single Cory’s Shearwater was observed and photographed by Machi Yoshida at the Orca ‘hotspot’ at the head of the Bremer Canyon (near the shelf edge), Western Australia on the 5th January, 2020. This sighting was considerably more distant than the birds seen off Denmark six days previously by Machi and Billy Thom. Description (from photo): • A large shearwater with a thick, yellow bill, pale whitish underparts and dull beige to brown upperparts. • The yellow bill is notably robust, bright yellow, and with a darker tip (the fine detail is not apparent, but presumed to be a dark subterminal band rather than full dark tip).
    [Show full text]
  • Sooty Shearwater Puffinus Griseus Few Changes in Bird Distribution
    110 Petrels and Shearwaters — Family Procellariidae Sooty Shearwater Puffinus griseus birds are picked up regularly on the county’s beaches. Few changes in bird distribution have been as sud- Winter: From December to March the Sooty Shearwater den and dramatic as the Sooty Shearwater’s deser- is rare—currently much scarcer than the Short-tailed tion of the ocean off southern California. Before the Shearwater. Before 1982, winter counts ranged up to 20 1980s, this visitor from the southern hemisphere off San Diego 18 January 1969 (AFN 23:519, 1969). Since was the most abundant seabird on the ocean off San 1987, the highest winter count has been of three between San Diego and Los Coronados Islands 6 January 1995 (G. Diego in summer. After El Niño hit in 1982–83 and McCaskie). the ocean remained at an elevated temperature for the next 20 years, the shearwater’s numbers dropped Conservation: The decline of the Sooty Shearwater by 90% (Veit et al. 1996). A comparison confined followed quickly on the heels of the decline in ocean to the ocean near San Diego County’s coast would productivity off southern California that began in the likely show a decline even steeper. late 1970s: a decrease in zooplankton of 80% from 1951 to 1993 (Roemich and McGowan 1995, McGowan et al. Migration: The Sooty Shearwater begins arriving in April, 1998). The shearwater’s declines were especially steep in peaks in May (Briggs et al. 1987), remains (or remained) years of El Niño, and from 1990 on there was no recov- common through September, and then decreases in ery even when the oceanographic pendulum swung the number through December.
    [Show full text]
  • Bugoni 2008 Phd Thesis
    ECOLOGY AND CONSERVATION OF ALBATROSSES AND PETRELS AT SEA OFF BRAZIL Leandro Bugoni Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy, at the Institute of Biomedical and Life Sciences, University of Glasgow. July 2008 DECLARATION I declare that the work described in this thesis has been conducted independently by myself under he supervision of Professor Robert W. Furness, except where specifically acknowledged, and has not been submitted for any other degree. This study was carried out according to permits No. 0128931BR, No. 203/2006, No. 02001.005981/2005, No. 023/2006, No. 040/2006 and No. 1282/1, all granted by the Brazilian Environmental Agency (IBAMA), and International Animal Health Certificate No. 0975-06, issued by the Brazilian Government. The Scottish Executive - Rural Affairs Directorate provided the permit POAO 2007/91 to import samples into Scotland. 2 ACKNOWLEDGEMENTS I was very lucky in having Prof. Bob Furness as my supervisor. He has been very supportive since before I had arrived in Glasgow, greatly encouraged me in new initiatives I constantly brought him (and still bring), gave me the freedom I needed and reviewed chapters astonishingly fast. It was a very productive professional relationship for which I express my gratitude. Thanks are also due to Rona McGill who did a great job in analyzing stable isotopes and teaching me about mass spectrometry and isotopes. Kate Griffiths was superb in sexing birds and explaining molecular methods again and again. Many people contributed to the original project with comments, suggestions for the chapters, providing samples or unpublished information, identifyiyng fish and squids, reviewing parts of the thesis or helping in analysing samples or data.
    [Show full text]
  • Report on Biodiversity and Tropical Forests in Indonesia
    Report on Biodiversity and Tropical Forests in Indonesia Submitted in accordance with Foreign Assistance Act Sections 118/119 February 20, 2004 Prepared for USAID/Indonesia Jl. Medan Merdeka Selatan No. 3-5 Jakarta 10110 Indonesia Prepared by Steve Rhee, M.E.Sc. Darrell Kitchener, Ph.D. Tim Brown, Ph.D. Reed Merrill, M.Sc. Russ Dilts, Ph.D. Stacey Tighe, Ph.D. Table of Contents Table of Contents............................................................................................................................. i List of Tables .................................................................................................................................. v List of Figures............................................................................................................................... vii Acronyms....................................................................................................................................... ix Executive Summary.................................................................................................................... xvii 1. Introduction............................................................................................................................1- 1 2. Legislative and Institutional Structure Affecting Biological Resources...............................2 - 1 2.1 Government of Indonesia................................................................................................2 - 2 2.1.1 Legislative Basis for Protection and Management of Biodiversity and
    [Show full text]
  • The Rise and Fall of Bulwer's Petrel
    A paper from the British Ornithologists’ Union Records Committee The rise and fall of Bulwer’s Petrel Andrew H. J. Harrop ABSTRACT This short paper examines two recent reviews of records of Bulwer’s Petrel Bulweria bulwerii in Britain by BOURC. Four records were assessed, including three specimen records from the nineteenth and early twentieth centuries and a modern-day sighting from Cumbria. None was found acceptable, and the reasons are discussed here. ulwer’s Petrel Bulweria bulwerii was By the time The Handbook was published, seven named after Rev. James Bulwer, an records were listed for Britain, all in England Bamateur Norfolk collector, naturalist and (Witherby et al. 1940), and these were repeated conchologist, who first collected it in Madeira, in Bannerman’s The Birds of the British Isles probably in 1825 during a short expedition to (1959). Of these seven, four (all from Sussex, Deserta Grande (Mearns & Mearns 1988). It between 1904 and 1914) were subsequently was first described by Sir William Jardine and rejected as ‘Hastings Rarities’ (Nicholson & Fer- Prideaux John Selby, in Illustrations of guson-Lees 1962; see plate 380) and a fifth, said Ornithology in 1828 (Jardine & Selby 1828). The to have been picked up at Beachy Head, Sussex, species has had a turbulent history as a British by an unnamed person on 3rd February 1903, bird. This paper provides a brief summary of escaped this fate only because it occurred records in the British ornithological literature, outside the area used to define ‘Hastings’ presents the results of two BOURC reviews, and records (Bourne 1967).
    [Show full text]
  • Notes on the Osteology and Phylogenetic Affinities of the Oligocene Diomedeoididae (Aves, Procellariiformes)
    Fossil Record 12 (2) 2009, 133–140 / DOI 10.1002/mmng.200900003 Notes on the osteology and phylogenetic affinities of the Oligocene Diomedeoididae (Aves, Procellariiformes) Gerald Mayr Forschungsinstitut Senckenberg, Sektion Ornithologie, Senckenberganlage 25, 60325 Frankfurt am Main, Germany. E-mail: [email protected] Abstract Received 16 September 2008 New specimens of the procellariiform taxon Diomedeoididae are reported from the Accepted 10 October 2008 early Oligocene (Rupelian) deposits of Wiesloch-Frauenweiler in southern Germany. Published 3 August 2009 Two skeletons belong to Diomedeoides brodkorbi, whereas isolated legs of larger indi- viduals are tentatively assigned to D. lipsiensis, a species which has not yet been re- ported from the locality. The fossils allow the recognition of some previously unknown osteological features of the Diomedeoididae, including the presence of a vestige of the hallux. Diomedeoidids are characterized by extremely wide phalanges of the third and fourth toes, which also occur in some species of the extant procellariiform Oceanitinae Key Words (southern storm-petrels). The poorly developed processus supracondylaris dorsalis of the humerus supports a position of these Oligocene tubenoses outside a clade including Fossil birds the Diomedeidae (albatrosses), Procellariidae (shearwaters and allies), and Pelecanoidi- evolution dae (diving-petrels). It is hypothesized that like modern Oceanitinae, which have an Diomedeoides brodkorbi equally short supracondylar process, diomedeoidids probably employed flap-gliding Diomedeoides lipsiensis and used their immersed feet to remain stationary. Introduction Diomedeoidids are well characterized by their pecu- liar feet, whose phalanges, in particular those of the The Diomedeoididae are an extinct group of the Pro- fourth toe, are greatly widened and flattened.
    [Show full text]