On the Planar Split Thickness of Graphs∗ David Eppstein1, Philipp Kindermann2, Stephen Kobourov3, Giuseppe Liotta4, Anna Lubiw5, Aude Maignan6, Debajyoti Mondal5, Hamideh Vosoughpour5, Sue Whitesides7, and Stephen Wismath8 1University of California, Irvine, USA
[email protected] 2FernUniversit¨atin Hagen, Germany.
[email protected] 3University of Arizona, USA.
[email protected] 4Universit`adegli Studi di Perugia, Italy.
[email protected] 5University of Waterloo, Canada. alubiw | dmondal | hvosough @uwaterloo.ca 6Universit. Grenoblef Alpes, France.
[email protected] 7University of Victoria, Canada.
[email protected] 8University of Lethbridge, Canada.
[email protected] Abstract Motivated by applications in graph drawing and information visualization, we ex- amine the planar split thickness of a graph, that is, the smallest k such that the graph is k-splittable into a planar graph. A k-split operation substitutes a vertex v by at most k new vertices such that each neighbor of v is connected to at least one of the new vertices. We first examine the planar split thickness of complete graphs, complete bipartite graphs, multipartite graphs, bounded degree graphs, and genus-1 graphs. We then prove that it is NP-hard to recognize graphs that are 2-splittable into a planar graph, and show that one can approximate the planar split thickness of a graph within a constant factor. If the treewidth is bounded, then we can even verify k-splittability in linear time, for a constant k. 1 Introduction arXiv:1512.04839v4 [math.CO] 6 Jun 2017 Transforming one graph into another by repeatedly applying an operation such as ver- tex/edge deletion, edge flip or vertex split is a classic problem in graph theory [24].