Distributed Algorithms

Total Page:16

File Type:pdf, Size:1020Kb

Distributed Algorithms Distributed Algorithms Jukka Suomela Aalto University, Finland 2 January 2021 https://jukkasuomela.fi/da/ An extended and revised version of this book is now available online: https://jukkasuomela.fi/da2020/ Contents Foreword vi About the Course............................... vi Acknowledgements.............................. vi License..................................... vii Mathematical Preliminaries viii Power Tower.................................. viii Iterated Logarithm............................... viii Part I Informal Introduction 1 Warm-Up — Positive Results 2 1.1 Running Example: Colouring Paths...................2 1.2 Challenges of Distributed Algorithm..................2 1.3 Colouring with Unique Identifiers...................3 1.4 Faster Colouring with Unique Identifiers................5 1.4.1 Algorithm Overview.......................6 1.4.2 Algorithm for One Step.....................6 1.4.3 An Example...........................7 1.4.4 Correctness...........................7 1.4.5 Iteration.............................8 1.5 Colouring with Randomised Algorithms................8 1.5.1 Algorithm............................8 1.5.2 Analysis.............................8 1.5.3 With High Probability......................9 1.6 Summary................................9 1.7 Exercises.................................9 1.8 Bibliographic Notes........................... 10 2 Warm-Up — Negative Results 11 2.1 Locality................................. 11 2.2 Locality and 2-Colouring........................ 12 2.2.1 Algorithm for 2-Colouring Paths................ 12 2.2.2 Lower Bound for 2-Colouring.................. 13 2.3 Locality and 3-Colouring........................ 14 2.3.1 Proof Overview......................... 14 2.3.2 Colouring Functions....................... 15 2.3.3 Algorithms vs. Colouring Functions.............. 15 2.3.4 Observations........................... 16 i 2.3.5 Simple Base Case........................ 16 2.3.6 Recursive Step.......................... 17 2.3.7 Completing the Proof...................... 17 2.4 Exercises................................. 18 2.5 Bibliographic Notes........................... 19 Part II Graphs 3 Graph-Theoretic Foundations 21 3.1 Terminology............................... 21 3.1.1 Adjacency............................ 21 3.1.2 Subgraphs............................ 21 3.1.3 Walks.............................. 22 3.1.4 Connectivity and Distances................... 23 3.1.5 Isomorphism........................... 24 3.2 Packing and Covering.......................... 24 3.3 Labellings and Partitions........................ 25 3.4 Factors and Factorisations........................ 27 3.5 Approximations............................. 28 3.6 Directed Graphs and Orientations................... 28 3.7 Exercises................................. 29 3.8 Bibliographic Notes........................... 30 Part III Models of Computing 4 PN Model: Port Numbering 32 4.1 Introduction............................... 32 4.2 Port-Numbered Network........................ 33 4.2.1 Terminology........................... 34 4.2.2 Underlying Graph........................ 34 4.2.3 Encoding Input and Output................... 34 4.2.4 Distributed Graph Problems.................. 35 4.3 Distributed Algorithms in the PN model................ 35 4.3.1 State Machine.......................... 36 4.3.2 Execution............................ 36 4.3.3 Solving Graph Problems.................... 37 4.4 Example: Colouring Paths........................ 37 4.5 Example: Bipartite Maximal Matching................. 39 4.5.1 Algorithm............................ 39 4.5.2 Analysis............................. 39 4.6 Example: Vertex Covers......................... 42 4.6.1 Virtual 2-Coloured Network.................. 42 4.6.2 Simulation of the Virtual Network............... 42 4.6.3 Algorithm............................ 44 4.6.4 Analysis............................. 44 4.7 Exercises................................. 46 4.8 Bibliographic Notes........................... 47 ii 5 LOCAL Model: Unique Identifiers 48 5.1 Definitions................................ 48 5.2 Gathering Everything.......................... 48 5.3 Solving Everything........................... 50 5.4 Focus on Computational Complexity.................. 51 5.5 Algorithm BDGreedy ........................... 51 5.5.1 Algorithm............................ 51 5.5.2 Analysis............................. 52 5.5.3 Remarks............................. 53 5.6 Directed Pseudoforests......................... 53 5.7 Algorithm DPGreedy ........................... 53 5.7.1 Overview............................ 54 5.7.2 Algorithm............................ 54 5.7.3 Analysis............................. 54 5.8 Algorithm DPBit ............................. 56 5.8.1 Algorithm............................ 56 5.8.2 Analysis............................. 57 5.9 Algorithm DP3C ............................. 57 5.10 Algorithm BDColour ........................... 58 5.10.1 Preliminaries.......................... 58 5.10.2 Orientation........................... 58 5.10.3 Partition in Pseudoforests.................... 58 5.10.4 Parallel Colouring of Pseudoforests............... 58 5.10.5 Merging Colourings....................... 60 5.10.6 Summary............................ 61 5.11 Exercises................................. 61 5.12 Bibliographic Notes........................... 63 6 CONGEST Model: Bandwidth Limitations 64 6.1 Definitions................................ 64 6.2 Examples................................. 64 6.3 All-Pairs Shortest Path Problem..................... 65 6.4 Algorithm Wave ............................. 65 6.5 Algorithm BFS .............................. 66 6.6 Algorithm Leader ............................ 68 6.7 Algorithm APSP ............................. 69 6.8 Exercises................................. 71 6.9 Bibliographic Notes........................... 71 7 Randomised Algorithms 72 7.1 Definitions................................ 72 7.2 Probabilistic Analysis.......................... 72 7.3 With High Probability.......................... 73 7.4 Algorithm BDRand ............................ 74 7.4.1 Algorithm Idea......................... 74 7.4.2 Algorithm............................ 74 7.4.3 Analysis............................. 75 iii 7.5 Exercises................................. 77 7.6 Bibliographic Notes........................... 78 Part IV Proving Impossibility Results 8 Covering Maps 80 8.1 Definition................................ 80 8.2 Covers and Executions......................... 80 8.3 Examples................................. 82 8.4 Exercises................................. 85 8.5 Bibliographic Notes........................... 88 9 Local Neighbourhoods 89 9.1 Definitions................................ 89 9.2 Local Neighbourhoods and Executions................. 89 9.3 Exercises................................. 91 9.4 Bibliographic Notes........................... 92 10 Ramsey Theory 93 10.1 Monochromatic Subsets......................... 93 10.2 Ramsey Numbers............................ 93 10.3 An Application.............................. 94 10.4 Proof................................... 94 10.5 Exercises................................. 97 10.6 Bibliographic Notes........................... 98 11 Applications of Ramsey’s Theorem 99 11.1 Claim................................... 99 11.2 Preliminaries............................... 99 11.3 Subsets and Cycles........................... 99 11.4 Labelling................................. 100 11.5 Monochromatic Subsets......................... 100 11.6 Exercises................................. 102 11.7 Bibliographic Notes........................... 102 Part V Conclusions 12 Conclusions 104 12.1 What Have We Learned?........................ 104 12.2 What Else Exists?............................ 107 12.3 Research in Distributed Algorithms................... 108 12.4 Exercises................................. 108 12.5 Bibliographic Notes........................... 109 iv Index 110 Notation.................................... 110 Symbols.................................... 110 Models of Computing............................. 111 Algorithms................................... 111 Hints 112 Bibliography 117 v Foreword This book is an introduction to the theory of distributed algorithms. The topics covered include: • Models of computing: precisely what is a distributed algorithm, and what do we mean when we say that a distributed algorithm solves a certain computa- tional problem? • Algorithm design and analysis: which computational problems can be solved with distributed algorithms, which problems can be solved efficiently, and how to do it? • Computability and computational complexity: which computational prob- lems cannot be solved at all with distributed algorithms, which problems cannot be solved efficiently, and why is this the case? No prior knowledge of distributed systems is needed. A basic knowledge of discrete mathematics and graph theory is assumed, as well as familiarity with the basic concepts from undergraduate-level courses on models on computation, computational complexity, and algorithms and data structures. About the Course This textbook was written to support the lecture course CS-E4510 Distributed Al- gorithms at Aalto University. The course is worth 5 ETCS credits. There are 12 weeks of lectures: each week there is one 2-hour lecture and one 2-hour exercise session. Each week we will cover one chapter of this book. In each chapter there are at least 5 exercises, and the students are expected
Recommended publications
  • On Treewidth and Graph Minors
    On Treewidth and Graph Minors Daniel John Harvey Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy February 2014 Department of Mathematics and Statistics The University of Melbourne Produced on archival quality paper ii Abstract Both treewidth and the Hadwiger number are key graph parameters in structural and al- gorithmic graph theory, especially in the theory of graph minors. For example, treewidth demarcates the two major cases of the Robertson and Seymour proof of Wagner's Con- jecture. Also, the Hadwiger number is the key measure of the structural complexity of a graph. In this thesis, we shall investigate these parameters on some interesting classes of graphs. The treewidth of a graph defines, in some sense, how \tree-like" the graph is. Treewidth is a key parameter in the algorithmic field of fixed-parameter tractability. In particular, on classes of bounded treewidth, certain NP-Hard problems can be solved in polynomial time. In structural graph theory, treewidth is of key interest due to its part in the stronger form of Robertson and Seymour's Graph Minor Structure Theorem. A key fact is that the treewidth of a graph is tied to the size of its largest grid minor. In fact, treewidth is tied to a large number of other graph structural parameters, which this thesis thoroughly investigates. In doing so, some of the tying functions between these results are improved. This thesis also determines exactly the treewidth of the line graph of a complete graph. This is a critical example in a recent paper of Marx, and improves on a recent result by Grohe and Marx.
    [Show full text]
  • Graph Varieties Axiomatized by Semimedial, Medial, and Some Other Groupoid Identities
    Discussiones Mathematicae General Algebra and Applications 40 (2020) 143–157 doi:10.7151/dmgaa.1344 GRAPH VARIETIES AXIOMATIZED BY SEMIMEDIAL, MEDIAL, AND SOME OTHER GROUPOID IDENTITIES Erkko Lehtonen Technische Universit¨at Dresden Institut f¨ur Algebra 01062 Dresden, Germany e-mail: [email protected] and Chaowat Manyuen Department of Mathematics, Faculty of Science Khon Kaen University Khon Kaen 40002, Thailand e-mail: [email protected] Abstract Directed graphs without multiple edges can be represented as algebras of type (2, 0), so-called graph algebras. A graph is said to satisfy an identity if the corresponding graph algebra does, and the set of all graphs satisfying a set of identities is called a graph variety. We describe the graph varieties axiomatized by certain groupoid identities (medial, semimedial, autodis- tributive, commutative, idempotent, unipotent, zeropotent, alternative). Keywords: graph algebra, groupoid, identities, semimediality, mediality. 2010 Mathematics Subject Classification: 05C25, 03C05. 1. Introduction Graph algebras were introduced by Shallon [10] in 1979 with the purpose of providing examples of nonfinitely based finite algebras. Let us briefly recall this concept. Given a directed graph G = (V, E) without multiple edges, the graph algebra associated with G is the algebra A(G) = (V ∪ {∞}, ◦, ∞) of type (2, 0), 144 E. Lehtonen and C. Manyuen where ∞ is an element not belonging to V and the binary operation ◦ is defined by the rule u, if (u, v) ∈ E, u ◦ v := (∞, otherwise, for all u, v ∈ V ∪ {∞}. We will denote the product u ◦ v simply by juxtaposition uv. Using this representation, we may view any algebraic property of a graph algebra as a property of the graph with which it is associated.
    [Show full text]
  • Network Analysis of the Multimodal Freight Transportation System in New York City
    Network Analysis of the Multimodal Freight Transportation System in New York City Project Number: 15 – 2.1b Year: 2015 FINAL REPORT June 2018 Principal Investigator Qian Wang Researcher Shuai Tang MetroFreight Center of Excellence University at Buffalo Buffalo, NY 14260-4300 Network Analysis of the Multimodal Freight Transportation System in New York City ABSTRACT The research is aimed at examining the multimodal freight transportation network in the New York metropolitan region to identify critical links, nodes and terminals that affect last-mile deliveries. Two types of analysis were conducted to gain a big picture of the region’s freight transportation network. First, three categories of network measures were generated for the highway network that carries the majority of last-mile deliveries. They are the descriptive measures that demonstrate the basic characteristics of the highway network, the network structure measures that quantify the connectivity of nodes and links, and the accessibility indices that measure the ease to access freight demand, services and activities. Second, 71 multimodal freight terminals were selected and evaluated in terms of their accessibility to major multimodal freight demand generators such as warehousing establishments. As found, the most important highways nodes that are critical in terms of connectivity and accessibility are those in and around Manhattan, particularly the bridges and tunnels connecting Manhattan to neighboring areas. Major multimodal freight demand generators, such as warehousing establishments, have better accessibility to railroad and marine port terminals than air and truck terminals in general. The network measures and findings in the research can be used to understand the inventory of the freight network in the system and to conduct freight travel demand forecasting analysis.
    [Show full text]
  • Arxiv:2006.06067V2 [Math.CO] 4 Jul 2021
    Treewidth versus clique number. I. Graph classes with a forbidden structure∗† Cl´ement Dallard1 Martin Milaniˇc1 Kenny Storgelˇ 2 1 FAMNIT and IAM, University of Primorska, Koper, Slovenia 2 Faculty of Information Studies, Novo mesto, Slovenia [email protected] [email protected] [email protected] Treewidth is an important graph invariant, relevant for both structural and algo- rithmic reasons. A necessary condition for a graph class to have bounded treewidth is the absence of large cliques. We study graph classes closed under taking induced subgraphs in which this condition is also sufficient, which we call (tw,ω)-bounded. Such graph classes are known to have useful algorithmic applications related to variants of the clique and k-coloring problems. We consider six well-known graph containment relations: the minor, topological minor, subgraph, induced minor, in- duced topological minor, and induced subgraph relations. For each of them, we give a complete characterization of the graphs H for which the class of graphs excluding H is (tw,ω)-bounded. Our results yield an infinite family of χ-bounded induced-minor-closed graph classes and imply that the class of 1-perfectly orientable graphs is (tw,ω)-bounded, leading to linear-time algorithms for k-coloring 1-perfectly orientable graphs for every fixed k. This answers a question of Breˇsar, Hartinger, Kos, and Milaniˇc from 2018, and one of Beisegel, Chudnovsky, Gurvich, Milaniˇc, and Servatius from 2019, respectively. We also reveal some further algorithmic implications of (tw,ω)- boundedness related to list k-coloring and clique problems. In addition, we propose a question about the complexity of the Maximum Weight Independent Set prob- lem in (tw,ω)-bounded graph classes and prove that the problem is polynomial-time solvable in every class of graphs excluding a fixed star as an induced minor.
    [Show full text]
  • Maximum and Minimum Degree in Iterated Line Graphs by Manu
    Maximum and minimum degree in iterated line graphs by Manu Aggarwal A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama August 3, 2013 Keywords: iterated line graphs, maximum degree, minimum degree Approved by Dean Hoffman, Professor of Mathematics Chris Rodger, Professor of Mathematics Andras Bezdek, Professor of Mathematics Narendra Govil, Professor of Mathematics Abstract In this thesis we analyze two papers, both by Dr.Stephen G. Hartke and Dr.Aparna W. Higginson, on maximum [2] and minimum [3] degrees of a graph G under iterated line graph operations. Let ∆k and δk denote the minimum and the maximum degrees, respectively, of the kth iterated line graph Lk(G). It is shown that if G is not a path, then, there exist integers A and B such that for all k > A, ∆k+1 = 2∆k − 2 and for all k > B, δk+1 = 2δk − 2. ii Table of Contents Abstract . ii List of Figures . iv 1 Introduction . .1 2 An elementary result . .3 3 Maximum degree growth in iterated line graphs . 10 4 Minimum degree growth in iterated line graphs . 26 5 A puzzle . 45 Bibliography . 46 iii List of Figures 1.1 ............................................1 2.1 ............................................4 2.2 : Disappearing vertex of degree two . .5 2.3 : Disappearing leaf . .7 3.1 ............................................ 11 3.2 ............................................ 12 3.3 ............................................ 13 3.4 ............................................ 14 3.5 ............................................ 15 3.6 : When CD is not a single vertex . 17 3.7 : When CD is a single vertex . 18 4.1 ...........................................
    [Show full text]
  • Degrees & Isomorphism: Chapter 11.1 – 11.4
    “mcs” — 2015/5/18 — 1:43 — page 393 — #401 11 Simple Graphs Simple graphs model relationships that are symmetric, meaning that the relationship is mutual. Examples of such mutual relationships are being married, speaking the same language, not speaking the same language, occurring during overlapping time intervals, or being connected by a conducting wire. They come up in all sorts of applications, including scheduling, constraint satisfaction, computer graphics, and communications, but we’ll start with an application designed to get your attention: we are going to make a professional inquiry into sexual behavior. Specifically, we’ll look at some data about who, on average, has more opposite-gender partners: men or women. Sexual demographics have been the subject of many studies. In one of the largest, researchers from the University of Chicago interviewed a random sample of 2500 people over several years to try to get an answer to this question. Their study, published in 1994 and entitled The Social Organization of Sexuality, found that men have on average 74% more opposite-gender partners than women. Other studies have found that the disparity is even larger. In particular, ABC News claimed that the average man has 20 partners over his lifetime, and the av- erage woman has 6, for a percentage disparity of 233%. The ABC News study, aired on Primetime Live in 2004, purported to be one of the most scientific ever done, with only a 2.5% margin of error. It was called “American Sex Survey: A peek between the sheets”—raising some questions about the seriousness of their reporting.
    [Show full text]
  • Arxiv:1906.05510V2 [Math.AC]
    BINOMIAL EDGE IDEALS OF COGRAPHS THOMAS KAHLE AND JONAS KRUSEMANN¨ Abstract. We determine the Castelnuovo–Mumford regularity of binomial edge ideals of complement reducible graphs (cographs). For cographs with n vertices the maximum regularity grows as 2n/3. We also bound the regularity by graph theoretic invariants and construct a family of counterexamples to a conjecture of Hibi and Matsuda. 1. Introduction Let G = ([n], E) be a simple undirected graph on the vertex set [n]= {1,...,n}. x1 ··· xn x1 ··· xn Let X = ( y1 ··· yn ) be a generic 2 × n matrix and S = k[ y1 ··· yn ] the polynomial ring whose indeterminates are the entries of X and with coefficients in a field k. The binomial edge ideal of G is JG = hxiyj −yixj : {i, j} ∈ Ei⊆ S, the ideal of 2×2 mi- nors indexed by the edges of the graph. Since their inception in [5, 15], connecting combinatorial properties of G with algebraic properties of JG or S/ JG has been a popular activity. Particular attention has been paid to the minimal free resolution of S/ JG as a standard N-graded S-module [3, 11]. The data of a minimal free res- olution is encoded in its graded Betti numbers βi,j (S/ JG) = dimk Tori(S/ JG, k)j . An interesting invariant is the highest degree appearing in the resolution, the Castelnuovo–Mumford regularity reg(S/ JG) = max{j − i : βij (S/ JG) 6= 0}. It is a complexity measure as low regularity implies favorable properties like vanish- ing of local cohomology. Binomial edge ideals have square-free initial ideals by arXiv:1906.05510v2 [math.AC] 10 Mar 2021 [5, Theorem 2.1] and, using [1], this implies that the extremal Betti numbers and regularity can also be derived from those initial ideals.
    [Show full text]
  • Assortativity and Mixing
    Assortativity and Assortativity and Mixing General mixing between node categories Mixing Assortativity and Mixing Definition Definition I Assume types of nodes are countable, and are Complex Networks General mixing General mixing Assortativity by assigned numbers 1, 2, 3, . Assortativity by CSYS/MATH 303, Spring, 2011 degree degree I Consider networks with directed edges. Contagion Contagion References an edge connects a node of type µ References e = Pr Prof. Peter Dodds µν to a node of type ν Department of Mathematics & Statistics Center for Complex Systems aµ = Pr(an edge comes from a node of type µ) Vermont Advanced Computing Center University of Vermont bν = Pr(an edge leads to a node of type ν) ~ I Write E = [eµν], ~a = [aµ], and b = [bν]. I Requirements: X X X eµν = 1, eµν = aµ, and eµν = bν. µ ν ν µ Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. 1 of 26 4 of 26 Assortativity and Assortativity and Outline Mixing Notes: Mixing Definition Definition General mixing General mixing Assortativity by I Varying eµν allows us to move between the following: Assortativity by degree degree Definition Contagion 1. Perfectly assortative networks where nodes only Contagion References connect to like nodes, and the network breaks into References subnetworks. General mixing P Requires eµν = 0 if µ 6= ν and µ eµµ = 1. 2. Uncorrelated networks (as we have studied so far) Assortativity by degree For these we must have independence: eµν = aµbν . 3. Disassortative networks where nodes connect to nodes distinct from themselves. Contagion I Disassortative networks can be hard to build and may require constraints on the eµν.
    [Show full text]
  • A Faster Parameterized Algorithm for PSEUDOFOREST DELETION
    A faster parameterized algorithm for PSEUDOFOREST DELETION Citation for published version (APA): Bodlaender, H. L., Ono, H., & Otachi, Y. (2018). A faster parameterized algorithm for PSEUDOFOREST DELETION. Discrete Applied Mathematics, 236, 42-56. https://doi.org/10.1016/j.dam.2017.10.018 Document license: Unspecified DOI: 10.1016/j.dam.2017.10.018 Document status and date: Published: 19/02/2018 Document Version: Accepted manuscript including changes made at the peer-review stage Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Sphere-Cut Decompositions and Dominating Sets in Planar Graphs
    Sphere-cut Decompositions and Dominating Sets in Planar Graphs Michalis Samaris R.N. 201314 Scientific committee: Dimitrios M. Thilikos, Professor, Dep. of Mathematics, National and Kapodistrian University of Athens. Supervisor: Stavros G. Kolliopoulos, Dimitrios M. Thilikos, Associate Professor, Professor, Dep. of Informatics and Dep. of Mathematics, National and Telecommunications, National and Kapodistrian University of Athens. Kapodistrian University of Athens. white Lefteris M. Kirousis, Professor, Dep. of Mathematics, National and Kapodistrian University of Athens. Aposunjèseic sfairik¸n tom¸n kai σύνοla kuriarqÐac se epÐpeda γραφήματa Miχάλης Σάμαρης A.M. 201314 Τριμελής Epiτροπή: Δημήτρioc M. Jhlυκός, Epiblèpwn: Kajhγητής, Tm. Majhmatik¸n, E.K.P.A. Δημήτρioc M. Jhlυκός, Staύρoc G. Kolliόποuloc, Kajhγητής tou Τμήμatoc Anaπληρωτής Kajhγητής, Tm. Plhroforiκής Majhmatik¸n tou PanepisthmÐou kai Thl/ni¸n, E.K.P.A. Ajhn¸n Leutèrhc M. Kuroύσης, white Kajhγητής, Tm. Majhmatik¸n, E.K.P.A. PerÐlhyh 'Ena σημαντικό apotèlesma sth JewrÐa Γραφημάτwn apoteleÐ h apόdeixh thc eikasÐac tou Wagner από touc Neil Robertson kai Paul D. Seymour. sth σειρά ergasi¸n ‘Ελλάσσοna Γραφήματα’ apo to 1983 e¸c to 2011. H eikasÐa αυτή lèei όti sthn κλάση twn γραφημάtwn den υπάρχει άπειρη antialusÐda ¸c proc th sqèsh twn ελλασόnwn γραφημάτwn. H JewrÐa pou αναπτύχθηκε gia thn απόδειξη αυτής thc eikasÐac eÐqe kai èqei ακόμα σημαντικό antÐktupo tόσο sthn δομική όσο kai sthn algoriθμική JewrÐa Γραφημάτwn, άλλα kai se άλλα pedÐa όπως h Παραμετρική Poλυπλοκόthta. Sta πλάιsia thc απόδειξης oi suggrafeÐc eiσήγαγαν kai nèec paramètrouc πλά- touc. Se autèc ήτan h κλαδοαποσύνθεση kai to κλαδοπλάτoc ενός γραφήματoc. H παράμετρος αυτή χρησιμοποιήθηκε idiaÐtera sto σχεδιασμό algorÐjmwn kai sthn χρήση thc τεχνικής ‘διαίρει kai basÐleue’.
    [Show full text]
  • Treewidth-Erickson.Pdf
    Computational Topology (Jeff Erickson) Treewidth Or il y avait des graines terribles sur la planète du petit prince . c’étaient les graines de baobabs. Le sol de la planète en était infesté. Or un baobab, si l’on s’y prend trop tard, on ne peut jamais plus s’en débarrasser. Il encombre toute la planète. Il la perfore de ses racines. Et si la planète est trop petite, et si les baobabs sont trop nombreux, ils la font éclater. [Now there were some terrible seeds on the planet that was the home of the little prince; and these were the seeds of the baobab. The soil of that planet was infested with them. A baobab is something you will never, never be able to get rid of if you attend to it too late. It spreads over the entire planet. It bores clear through it with its roots. And if the planet is too small, and the baobabs are too many, they split it in pieces.] — Antoine de Saint-Exupéry (translated by Katherine Woods) Le Petit Prince [The Little Prince] (1943) 11 Treewidth In this lecture, I will introduce a graph parameter called treewidth, that generalizes the property of having small separators. Intuitively, a graph has small treewidth if it can be recursively decomposed into small subgraphs that have small overlap, or even more intuitively, if the graph resembles a ‘fat tree’. Many problems that are NP-hard for general graphs can be solved in polynomial time for graphs with small treewidth. Graphs embedded on surfaces of small genus do not necessarily have small treewidth, but they can be covered by a small number of subgraphs, each with small treewidth.
    [Show full text]
  • Subgraph Isomorphism in Graph Classes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 312 (2012) 3164–3173 Contents lists available at SciVerse ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Subgraph isomorphism in graph classes Shuji Kijima a, Yota Otachi b, Toshiki Saitoh c,∗, Takeaki Uno d a Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, 819-0395, Japan b School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa, 923-1292, Japan c Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan d National Institute of Informatics, Tokyo, 101-8430, Japan article info a b s t r a c t Article history: We investigate the computational complexity of the following restricted variant of Received 17 September 2011 Subgraph Isomorphism: given a pair of connected graphs G D .VG; EG/ and H D .VH ; EH /, Received in revised form 6 July 2012 determine if H is isomorphic to a spanning subgraph of G. The problem is NP-complete in Accepted 9 July 2012 general, and thus we consider cases where G and H belong to the same graph class such as Available online 28 July 2012 the class of proper interval graphs, of trivially perfect graphs, and of bipartite permutation graphs. For these graph classes, several restricted versions of Subgraph Isomorphism Keywords: such as , , , and can be solved Subgraph isomorphism Hamiltonian Path Clique Bandwidth Graph Isomorphism Graph class in polynomial time, while these problems are hard in general. NP-completeness ' 2012 Elsevier B.V.
    [Show full text]