The Perceived Assortativity of Social Networks: Methodological Problems and Solutions

Total Page:16

File Type:pdf, Size:1020Kb

The Perceived Assortativity of Social Networks: Methodological Problems and Solutions The perceived assortativity of social networks: Methodological problems and solutions David N. Fisher1, Matthew J. Silk2 and Daniel W. Franks3 Abstract Networks describe a range of social, biological and technical phenomena. An important property of a network is its degree correlation or assortativity, describing how nodes in the network associate based on their number of connections. Social networks are typically thought to be distinct from other networks in being assortative (possessing positive degree correlations); well-connected individuals associate with other well-connected individuals, and poorly-connected individuals associate with each other. We review the evidence for this in the literature and find that, while social networks are more assortative than non-social networks, only when they are built using group-based methods do they tend to be positively assortative. Non-social networks tend to be disassortative. We go on to show that connecting individuals due to shared membership of a group, a commonly used method, biases towards assortativity unless a large enough number of censuses of the network are taken. We present a number of solutions to overcoming this bias by drawing on advances in sociological and biological fields. Adoption of these methods across all fields can greatly enhance our understanding of social networks and networks in general. 1 1. Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada. Email: [email protected] (primary corresponding author) 2. Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK Email: [email protected] 3. Department of Biology & Department of Computer Science, University of York, York, YO10 5DD, UK Email: [email protected] Keywords: Assortativity; Degree assortativity; Degree correlation; Null models; Social networks Introduction Network theory is a useful tool that can help us explain a range of social, biological and technical phenomena (Pastor-Satorras et al 2001; Girvan and Newman 2002; Krause et al 2007). For instance, network approaches have been used to investigate diverse topics such as the global political and social system (Snyder and Kick 1979; Nemeth and Smith 2010) to the formation of coalitions among-individuals (Kapferer 1969; Zachary 1977; Thurman 1979; Voelkl and Kasper 2009). Networks can be described using a number of local (related to the individual) and global (related to the whole network) measures. One important global measure is degree correlation or assortativity (we use the latter term for brevity), which was formally defined by Newman (2002), although Pastor-Satorras et al. (2001) had calculated an analogous measure previously. The assortativity of a network measures how the probability of a connection between two nodes (individuals) in a network depends on the degrees of those two nodes (the degree being the number of connections each node possesses). The measure quantifies whether those with many connections associate with others with many connections (assortative networks or networks with assortativity), or if “hubs” form where well connected individuals are connected to many individuals with few other connections (disassortative networks or networks with dissassortativity). If the tendency for nodes to be connected is independent of each other’s degrees a network has neutral assortativity. Assortativity is calculated as the Pearson’s correlation coefficient between the degrees of all pairs of connected nodes, and ranges from -1 to 1 (Newman 2002). The Pastor-Satorras method involves plotting the degree of each node against the mean degree of its neighbours, and judging the network assortatative if the slope is positive and disassortatative if the slope is negative (Pastor-Satorras et al 2001). In this article we will focus on the Newman measure, as it has been more commonly used by the scientific community, gives a coefficient bounded between -1 and 1 rather than a slope, and typically is supported by a statistical test, something general absent from the reporting of the Pastor-Satorras method. Assortativity is a key property to consider when understanding how networks function, especially when considering social networks. A network’s robustness to attacks is increased if it is assortative (Jing et al 2007; Hasegawa et al 2012). However, the speed of information transfer and ability to act in synchrony is increased in disassortative networks (Di Bernado et al 2007; Gallos et al 2008). Thus the assortativity of a social network in which an individual is embedded can have a substantial impact on that individual. Networks are typically found to be neutrally or negatively assortative (Newman 2002; Newman and Park 2003; Whitney and Alderson 2008). When considering all networks comprised of eight nodes, Estrada (2011) observed that only 8% of over 11,000 possible networks were assortative. Despite this general trend, social networks are often said to differ from other networks by being assortative (Newman 2003; Newman and Park 2003). This has led to those finding disassortativity in networks of online interactions (Holme et al 2004), mythical stories (Mac Carron and Kenna 2012) or networks of dolphin interactions (Lusseau and Newman 2004) to suggest they are different to typical human social networks. While the generality of assortativities in social networks has been questioned (Whitney and Alderson 2008; Hu and Wang 2009), a wide variety of recent research still states that this is a property typical of social networks (e.g. (Estrada 2011; Palathingal and Chirayath 2012; Mac Carron and Kenna 2013; Litvak and van der Hofstad 2013; Thedchanamoorthy et al 2014; Araújo et al 2014; Furtenbacher et al 2014)). With assortativity being a key network property, and subject of interest in a range of fields, this topic requires clarification. In this paper we review assortativity in the networks literature, with emphasis on social networks. We assess the generality of the hypothesis that social networks tend to be distinct from other kinds of networks in their assortativities and explore whether the precise method of social network construction influences this metric. We go on to show how particular methodologies of social network construction could result in falsely assortative networks, and present a number of solutions to this by drawing on advances in sociological and biological fields. 1. Assortativity in social and other networks Random networks should be neutrally assortative (Newman 2002). However, simulations by Franks et al. (2009) showed that random social networks constructed using group-based methods are assortative unless extensive sampling is carried out. Group-based methods are where links are formed between individuals not when they directly interact, but when they both are found in the same group, or contribute to a joint piece of work e.g. co-author a paper or appear in a band together. We hypothesised that the suggestion that social networks possess assortativity was due to a preponderance of social networks constructed using group- based methods in the early literature. We thus conducted a literature search, recording the (dis)assortativity of networks, network types (social or non-social) and for the social networks, method of construction (direct interactions of group-based). We expect that social networks built using group-based methods would be more assortative than the other two classes of network, which would be similarly assortative. 1.1 Literature search - Method Assortativity has been calculated for a wide range of networks in the last decade. We compiled a list of the assortativity of published networks based on the table in Whitney & Alderson (Whitney and Alderson 2008), literature searches with the terms “degree correlation” and “assortativity”, and examining the articles citing Newman (2002). If it could not be determined how the network was constructed, or how large it was, the network was excluded. We did not include the average assortativity when reported from a range of similar networks when the individual scores were not reported. We also did not include assortativities of networks from studies re-analysing existing datasets, to avoid pseudo- replication. Only undirected networks were considered; see Piraveenan et al. (2012) for a review of assortativities in directed networks. We then classified these networks as non-social networks, social networks constructed using direct interactions, or social networks constructed using group-based methods. We then compared assortativity across network classes using a Kruskal-Wallis test as assortativity scores were not normally distributed. If this revealed significant differences among network classes, we then compared network classes to each other using Wilcoxon rank sum tests and to the a neutral assortativity of zero with Wilcoxon signed rank tests. 1.2 Literature search - Results In published papers we found assortativities for 88 networks that met our criteria for inclusion, see Table 1. 52 of these were social networks, of which 25 were constructed using group-based methods. The assortativities for the network classes are shown as boxplots in Fig. 1. The Kruskal-Wallis tests indicated that there were differences among groups (Kruskal- Wallis χ2 = 26.8, d.f. = 2, p < 0.001). All networks types were different from each other, with the group-based social networks being more assortative than both other classes of network, and the direct social networks being more assortative
Recommended publications
  • A Network Approach of the Mandatory Influenza Vaccination Among Healthcare Workers
    Wright State University CORE Scholar Master of Public Health Program Student Publications Master of Public Health Program 2014 Best Practices: A Network Approach of the Mandatory Influenza Vaccination Among Healthcare Workers Greg Attenweiler Wright State University - Main Campus Angie Thomure Wright State University - Main Campus Follow this and additional works at: https://corescholar.libraries.wright.edu/mph Part of the Influenza Virus accinesV Commons Repository Citation Attenweiler, G., & Thomure, A. (2014). Best Practices: A Network Approach of the Mandatory Influenza Vaccination Among Healthcare Workers. Wright State University, Dayton, Ohio. This Master's Culminating Experience is brought to you for free and open access by the Master of Public Health Program at CORE Scholar. It has been accepted for inclusion in Master of Public Health Program Student Publications by an authorized administrator of CORE Scholar. For more information, please contact library- [email protected]. Running Head: A NETWORK APPROACH 1 Best Practices: A network approach of the mandatory influenza vaccination among healthcare workers Greg Attenweiler Angie Thomure Wright State University A NETWORK APPROACH 2 Acknowledgements We would like to thank Michele Battle-Fisher and Nikki Rogers for donating their time and resources to help us complete our Culminating Experience. We would also like to thank Michele Battle-Fisher for creating the simulation used in our Culmination Experience. Finally we would like to thank our family and friends for all of the
    [Show full text]
  • Network Analysis of the Multimodal Freight Transportation System in New York City
    Network Analysis of the Multimodal Freight Transportation System in New York City Project Number: 15 – 2.1b Year: 2015 FINAL REPORT June 2018 Principal Investigator Qian Wang Researcher Shuai Tang MetroFreight Center of Excellence University at Buffalo Buffalo, NY 14260-4300 Network Analysis of the Multimodal Freight Transportation System in New York City ABSTRACT The research is aimed at examining the multimodal freight transportation network in the New York metropolitan region to identify critical links, nodes and terminals that affect last-mile deliveries. Two types of analysis were conducted to gain a big picture of the region’s freight transportation network. First, three categories of network measures were generated for the highway network that carries the majority of last-mile deliveries. They are the descriptive measures that demonstrate the basic characteristics of the highway network, the network structure measures that quantify the connectivity of nodes and links, and the accessibility indices that measure the ease to access freight demand, services and activities. Second, 71 multimodal freight terminals were selected and evaluated in terms of their accessibility to major multimodal freight demand generators such as warehousing establishments. As found, the most important highways nodes that are critical in terms of connectivity and accessibility are those in and around Manhattan, particularly the bridges and tunnels connecting Manhattan to neighboring areas. Major multimodal freight demand generators, such as warehousing establishments, have better accessibility to railroad and marine port terminals than air and truck terminals in general. The network measures and findings in the research can be used to understand the inventory of the freight network in the system and to conduct freight travel demand forecasting analysis.
    [Show full text]
  • Analysis of Topological Characteristics of Huge Online Social Networking Services Yong-Yeol Ahn, Seungyeop Han, Haewoon Kwak, Young-Ho Eom, Sue Moon, Hawoong Jeong
    1 Analysis of Topological Characteristics of Huge Online Social Networking Services Yong-Yeol Ahn, Seungyeop Han, Haewoon Kwak, Young-Ho Eom, Sue Moon, Hawoong Jeong Abstract— Social networking services are a fast-growing busi- the statistics severely and it is imperative to use large data sets ness in the Internet. However, it is unknown if online relationships in network structure analysis. and their growth patterns are the same as in real-life social It is only very recently that we have seen research results networks. In this paper, we compare the structures of three online social networking services: Cyworld, MySpace, and orkut, from large networks. Novel network structures from human each with more than 10 million users, respectively. We have societies and communication systems have been unveiled; just access to complete data of Cyworld’s ilchon (friend) relationships to name a few are the Internet and WWW [3] and the patents, and analyze its degree distribution, clustering property, degree Autonomous Systems (AS), and affiliation networks [4]. Even correlation, and evolution over time. We also use Cyworld data in the short history of the Internet, SNSs are a fairly new to evaluate the validity of snowball sampling method, which we use to crawl and obtain partial network topologies of MySpace phenomenon and their network structures are not yet studied and orkut. Cyworld, the oldest of the three, demonstrates a carefully. The social networks of SNSs are believed to reflect changing scaling behavior over time in degree distribution. The the real-life social relationships of people more accurately than latest Cyworld data’s degree distribution exhibits a multi-scaling any other online networks.
    [Show full text]
  • Introduction to Network Science & Visualisation
    IFC – Bank Indonesia International Workshop and Seminar on “Big Data for Central Bank Policies / Building Pathways for Policy Making with Big Data” Bali, Indonesia, 23-26 July 2018 Introduction to network science & visualisation1 Kimmo Soramäki, Financial Network Analytics 1 This presentation was prepared for the meeting. The views expressed are those of the author and do not necessarily reflect the views of the BIS, the IFC or the central banks and other institutions represented at the meeting. FNA FNA Introduction to Network Science & Visualization I Dr. Kimmo Soramäki Founder & CEO, FNA www.fna.fi Agenda Network Science ● Introduction ● Key concepts Exposure Networks ● OTC Derivatives ● CCP Interconnectedness Correlation Networks ● Housing Bubble and Crisis ● US Presidential Election Network Science and Graphs Analytics Is already powering the best known AI applications Knowledge Social Product Economic Knowledge Payment Graph Graph Graph Graph Graph Graph Network Science and Graphs Analytics “Goldman Sachs takes a DIY approach to graph analytics” For enhanced compliance and fraud detection (www.TechTarget.com, Mar 2015). “PayPal relies on graph techniques to perform sophisticated fraud detection” Saving them more than $700 million and enabling them to perform predictive fraud analysis, according to the IDC (www.globalbankingandfinance.com, Jan 2016) "Network diagnostics .. may displace atomised metrics such as VaR” Regulators are increasing using network science for financial stability analysis. (Andy Haldane, Bank of England Executive
    [Show full text]
  • A Centrality Measure for Electrical Networks
    Carnegie Mellon Electricity Industry Center Working Paper CEIC-07 www.cmu.edu/electricity 1 A Centrality Measure for Electrical Networks Paul Hines and Seth Blumsack types of failures. Many classifications of network structures Abstract—We derive a measure of “electrical centrality” for have been studied in the field of complex systems, statistical AC power networks, which describes the structure of the mechanics, and social networking [5,6], as shown in Figure 2, network as a function of its electrical topology rather than its but the two most fruitful and relevant have been the random physical topology. We compare our centrality measure to network model of Erdös and Renyi [7] and the “small world” conventional measures of network structure using the IEEE 300- bus network. We find that when measured electrically, power model inspired by the analyses in [8] and [9]. In the random networks appear to have a scale-free network structure. Thus, network model, nodes and edges are connected randomly. The unlike previous studies of the structure of power grids, we find small-world network is defined largely by relatively short that power networks have a number of highly-connected “hub” average path lengths between node pairs, even for very large buses. This result, and the structure of power networks in networks. One particularly important class of small-world general, is likely to have important implications for the reliability networks is the so-called “scale-free” network [10, 11], which and security of power networks. is characterized by a more heterogeneous connectivity. In a Index Terms—Scale-Free Networks, Connectivity, Cascading scale-free network, most nodes are connected to only a few Failures, Network Structure others, but a few nodes (known as hubs) are highly connected to the rest of the network.
    [Show full text]
  • Correlation in Complex Networks
    Correlation in Complex Networks by George Tsering Cantwell A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) in the University of Michigan 2020 Doctoral Committee: Professor Mark Newman, Chair Professor Charles Doering Assistant Professor Jordan Horowitz Assistant Professor Abigail Jacobs Associate Professor Xiaoming Mao George Tsering Cantwell [email protected] ORCID iD: 0000-0002-4205-3691 © George Tsering Cantwell 2020 ACKNOWLEDGMENTS First, I must thank Mark Newman for his support and mentor- ship throughout my time at the University of Michigan. Further thanks are due to all of the people who have worked with me on projects related to this thesis. In alphabetical order they are Eliz- abeth Bruch, Alec Kirkley, Yanchen Liu, Benjamin Maier, Gesine Reinert, Maria Riolo, Alice Schwarze, Carlos Serván, Jordan Sny- der, Guillaume St-Onge, and Jean-Gabriel Young. ii TABLE OF CONTENTS Acknowledgments .................................. ii List of Figures ..................................... v List of Tables ..................................... vi List of Appendices .................................. vii Abstract ........................................ viii Chapter 1 Introduction .................................... 1 1.1 Why study networks?...........................2 1.1.1 Example: Modeling the spread of disease...........3 1.2 Measures and metrics...........................8 1.3 Models of networks............................ 11 1.4 Inference.................................
    [Show full text]
  • Exploring Network Structure, Dynamics, and Function Using Networkx
    Proceedings of the 7th Python in Science Conference (SciPy 2008) Exploring Network Structure, Dynamics, and Function using NetworkX Aric A. Hagberg ([email protected])– Los Alamos National Laboratory, Los Alamos, New Mexico USA Daniel A. Schult ([email protected])– Colgate University, Hamilton, NY USA Pieter J. Swart ([email protected])– Los Alamos National Laboratory, Los Alamos, New Mexico USA NetworkX is a Python language package for explo- and algorithms, to rapidly test new hypotheses and ration and analysis of networks and network algo- models, and to teach the theory of networks. rithms. The core package provides data structures The structure of a network, or graph, is encoded in the for representing many types of networks, or graphs, edges (connections, links, ties, arcs, bonds) between including simple graphs, directed graphs, and graphs nodes (vertices, sites, actors). NetworkX provides ba- with parallel edges and self-loops. The nodes in Net- sic network data structures for the representation of workX graphs can be any (hashable) Python object simple graphs, directed graphs, and graphs with self- and edges can contain arbitrary data; this flexibil- loops and parallel edges. It allows (almost) arbitrary ity makes NetworkX ideal for representing networks objects as nodes and can associate arbitrary objects to found in many different scientific fields. edges. This is a powerful advantage; the network struc- In addition to the basic data structures many graph ture can be integrated with custom objects and data algorithms are implemented for calculating network structures, complementing any pre-existing code and properties and structure measures: shortest paths, allowing network analysis in any application setting betweenness centrality, clustering, and degree dis- without significant software development.
    [Show full text]
  • Robustness and Assortativity for Diffusion-Like Processes in Scale
    epl draft Robustness and Assortativity for Diffusion-like Processes in Scale- free Networks G. D’Agostino1, A. Scala2,3, V. Zlatic´4 and G. Caldarelli5,3 1 ENEA - CR ”Casaccia” - Via Anguillarese 301 00123, Roma - Italy 2 CNR-ISC and Department of Physics, University of Rome “Sapienza” P.le Aldo Moro 5 00185 Rome, Italy 3 London Institute of Mathematical Sciences, 22 South Audley St Mayfair London W1K 2NY, UK 4 Theoretical Physics Division, Rudjer Boˇskovi´cInstitute, P.O.Box 180, HR-10002 Zagreb, Croatia 5 IMT Lucca Institute for Advanced Studies, Piazza S. Ponziano 6, Lucca, 55100, Italy PACS 89.75.Hc – Networks and genealogical trees PACS 05.70.Ln – Nonequilibrium and irreversible thermodynamics PACS 87.23.Ge – Dynamics of social systems Abstract – By analysing the diffusive dynamics of epidemics and of distress in complex networks, we study the effect of the assortativity on the robustness of the networks. We first determine by spectral analysis the thresholds above which epidemics/failures can spread; we then calculate the slowest diffusional times. Our results shows that disassortative networks exhibit a higher epidemi- ological threshold and are therefore easier to immunize, while in assortative networks there is a longer time for intervention before epidemic/failure spreads. Moreover, we study by computer sim- ulations the sandpile cascade model, a diffusive model of distress propagation (financial contagion). We show that, while assortative networks are more prone to the propagation of epidemic/failures, degree-targeted immunization policies increases their resilience to systemic risk. Introduction. – The heterogeneity in the distribu- propagation of an epidemic [13–15].
    [Show full text]
  • Ollivier Ricci Curvature of Directed Hypergraphs Marzieh Eidi1* & Jürgen Jost1,2
    www.nature.com/scientificreports OPEN Ollivier Ricci curvature of directed hypergraphs Marzieh Eidi1* & Jürgen Jost1,2 Many empirical networks incorporate higher order relations between elements and therefore are naturally modelled as, possibly directed and/or weighted, hypergraphs, rather than merely as graphs. In order to develop a systematic tool for the statistical analysis of such hypergraph, we propose a general defnition of Ricci curvature on directed hypergraphs and explore the consequences of that defnition. The defnition generalizes Ollivier’s defnition for graphs. It involves a carefully designed optimal transport problem between sets of vertices. While the defnition looks somewhat complex, in the end we shall be able to express our curvature in a very simple formula, κ = µ0 − µ2 − 2µ3 . This formula simply counts the fraction of vertices that have to be moved by distances 0, 2 or 3 in an optimal transport plan. We can then characterize various classes of hypergraphs by their curvature. Principles of network analysis. Network analysis constitutes one of the success stories in the study of complex systems3,6,11. For the mathematical analysis, a network is modelled as a (perhaps weighted and/or directed) graph. One can then look at certain graph theoretical properties of an empirical network, like its degree or motiv distribution, its assortativity or clustering coefcient, the spectrum of its Laplacian, and so on. One can also compare an empirical network with certain deterministic or random theoretical models. Successful as this analysis clearly is, we nevertheless see two important limitations. One is that many of the prominent concepts and quantities used in the analysis of empirical networks are node based, like the degree sequence.
    [Show full text]
  • Maximum and Minimum Degree in Iterated Line Graphs by Manu
    Maximum and minimum degree in iterated line graphs by Manu Aggarwal A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama August 3, 2013 Keywords: iterated line graphs, maximum degree, minimum degree Approved by Dean Hoffman, Professor of Mathematics Chris Rodger, Professor of Mathematics Andras Bezdek, Professor of Mathematics Narendra Govil, Professor of Mathematics Abstract In this thesis we analyze two papers, both by Dr.Stephen G. Hartke and Dr.Aparna W. Higginson, on maximum [2] and minimum [3] degrees of a graph G under iterated line graph operations. Let ∆k and δk denote the minimum and the maximum degrees, respectively, of the kth iterated line graph Lk(G). It is shown that if G is not a path, then, there exist integers A and B such that for all k > A, ∆k+1 = 2∆k − 2 and for all k > B, δk+1 = 2δk − 2. ii Table of Contents Abstract . ii List of Figures . iv 1 Introduction . .1 2 An elementary result . .3 3 Maximum degree growth in iterated line graphs . 10 4 Minimum degree growth in iterated line graphs . 26 5 A puzzle . 45 Bibliography . 46 iii List of Figures 1.1 ............................................1 2.1 ............................................4 2.2 : Disappearing vertex of degree two . .5 2.3 : Disappearing leaf . .7 3.1 ............................................ 11 3.2 ............................................ 12 3.3 ............................................ 13 3.4 ............................................ 14 3.5 ............................................ 15 3.6 : When CD is not a single vertex . 17 3.7 : When CD is a single vertex . 18 4.1 ...........................................
    [Show full text]
  • Network Biology. Applications in Medicine and Biotechnology [Verkkobiologia
    Dissertation VTT PUBLICATIONS 774 Erno Lindfors Network Biology Applications in medicine and biotechnology VTT PUBLICATIONS 774 Network Biology Applications in medicine and biotechnology Erno Lindfors Department of Biomedical Engineering and Computational Science Doctoral dissertation for the degree of Doctor of Science in Technology to be presented with due permission of the Aalto Doctoral Programme in Science, The Aalto University School of Science and Technology, for public examination and debate in Auditorium Y124 at Aalto University (E-hall, Otakaari 1, Espoo, Finland) on the 4th of November, 2011 at 12 noon. ISBN 978-951-38-7758-3 (soft back ed.) ISSN 1235-0621 (soft back ed.) ISBN 978-951-38-7759-0 (URL: http://www.vtt.fi/publications/index.jsp) ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp) Copyright © VTT 2011 JULKAISIJA – UTGIVARE – PUBLISHER VTT, Vuorimiehentie 5, PL 1000, 02044 VTT puh. vaihde 020 722 111, faksi 020 722 4374 VTT, Bergsmansvägen 5, PB 1000, 02044 VTT tel. växel 020 722 111, fax 020 722 4374 VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O. Box 1000, FI-02044 VTT, Finland phone internat. +358 20 722 111, fax + 358 20 722 4374 Technical editing Marika Leppilahti Kopijyvä Oy, Kuopio 2011 Erno Lindfors. Network Biology. Applications in medicine and biotechnology [Verkkobiologia. Lääke- tieteellisiä ja bioteknisiä sovelluksia]. Espoo 2011. VTT Publications 774. 81 p. + app. 100 p. Keywords network biology, s ystems b iology, biological d ata visualization, t ype 1 di abetes, oxida- tive stress, graph theory, network topology, ubiquitous complex network properties Abstract The concept of systems biology emerged over the last decade in order to address advances in experimental techniques.
    [Show full text]
  • Degrees & Isomorphism: Chapter 11.1 – 11.4
    “mcs” — 2015/5/18 — 1:43 — page 393 — #401 11 Simple Graphs Simple graphs model relationships that are symmetric, meaning that the relationship is mutual. Examples of such mutual relationships are being married, speaking the same language, not speaking the same language, occurring during overlapping time intervals, or being connected by a conducting wire. They come up in all sorts of applications, including scheduling, constraint satisfaction, computer graphics, and communications, but we’ll start with an application designed to get your attention: we are going to make a professional inquiry into sexual behavior. Specifically, we’ll look at some data about who, on average, has more opposite-gender partners: men or women. Sexual demographics have been the subject of many studies. In one of the largest, researchers from the University of Chicago interviewed a random sample of 2500 people over several years to try to get an answer to this question. Their study, published in 1994 and entitled The Social Organization of Sexuality, found that men have on average 74% more opposite-gender partners than women. Other studies have found that the disparity is even larger. In particular, ABC News claimed that the average man has 20 partners over his lifetime, and the av- erage woman has 6, for a percentage disparity of 233%. The ABC News study, aired on Primetime Live in 2004, purported to be one of the most scientific ever done, with only a 2.5% margin of error. It was called “American Sex Survey: A peek between the sheets”—raising some questions about the seriousness of their reporting.
    [Show full text]