Sparsity Counts in Group-Labeled Graphs and Rigidity

Total Page:16

File Type:pdf, Size:1020Kb

Sparsity Counts in Group-Labeled Graphs and Rigidity Sparsity Counts in Group-labeled Graphs and Rigidity Rintaro Ikeshita1 Shin-ichi Tanigawa2 1University of Tokyo 2CWI & Kyoto University July 15, 2015 1 / 23 I Examples I k = ` = 1: forest I k = 1; ` = 0: pseudoforest I k = `: Decomposability into edge-disjoint k forests (Nash-Williams) I ` ≤ k: Decomposability into edge-disjoint k − ` pseudoforests and ` forests I general k; `: Rigidity of graphs and scene analysis (k; `)-sparsity def I A finite undirected graph G = (V ; E) is (k; `)-sparse , jF j ≤ kjV (F )j − ` for every F ⊆ E with kjV (F )j − ` ≥ 1. 2 / 23 (k; `)-sparsity def I A finite undirected graph G = (V ; E) is (k; `)-sparse , jF j ≤ kjV (F )j − ` for every F ⊆ E with kjV (F )j − ` ≥ 1. I Examples I k = ` = 1: forest I k = 1; ` = 0: pseudoforest I k = `: Decomposability into edge-disjoint k forests (Nash-Williams) I ` ≤ k: Decomposability into edge-disjoint k − ` pseudoforests and ` forests I general k; `: Rigidity of graphs and scene analysis 2 / 23 I Examples I k = ` = 1: graphic matroid I k = 1; ` = 0: bicircular matroid I ` ≤ k: union of k − ` copies of bicircular matroid and ` copies of graphic matroid I k = 2; ` = 3: generic 2-rigidity matroid (Laman70) Count Matroids I Suppose ` ≤ 2k − 1. Then Mk;`(G) = (E; Ik;`) forms a matroid, called the (k; `)-count matroid, where Ik;` = fI ⊆ E : I is (k; `)-sparseg: 3 / 23 Count Matroids I Suppose ` ≤ 2k − 1. Then Mk;`(G) = (E; Ik;`) forms a matroid, called the (k; `)-count matroid, where Ik;` = fI ⊆ E : I is (k; `)-sparseg: I Examples I k = ` = 1: graphic matroid I k = 1; ` = 0: bicircular matroid I ` ≤ k: union of k − ` copies of bicircular matroid and ` copies of graphic matroid I k = 2; ` = 3: generic 2-rigidity matroid (Laman70) 3 / 23 Group-labeled Graphs I A group-labeled graph (Γ-labeled graph) (G; ) is a directed finite graph whose edges are labeled invertibly from a group Γ. I G: the underlying directed graph I : E(G) ! Γ + + a b + a2b + a + a2 + Γ = {−, +} 1Γ 2 2 Γ = {1Γ, a, a , ab, a b} − 1Γ 4 / 23 I I ⊆ E is independent iff ( 0 if F is balanced jF j ≤ jV (F )j − 1 + (F ⊆ I ) 1 otherwise I What would be (k; `)-sparsity in group-labeled graphs?? Frame Matroids I In the frame matroid (or, Dowling geometry, bias matroid) of (G; ), I ⊆ E is independent iff each connected component of I contains no cycle or just one cycle, which is unbalanced if exists. − − − − − − − − − + unbalanced balanced I Examples I graphic matroid I bicircular matroid I signed graphic matroid I 1-dimensional locally completability matroid!! 5 / 23 I What would be (k; `)-sparsity in group-labeled graphs?? Frame Matroids I In the frame matroid (or, Dowling geometry, bias matroid) of (G; ), I ⊆ E is independent iff each connected component of I contains no cycle or just one cycle, which is unbalanced if exists. − − − − − − − − − + unbalanced balanced I Examples I graphic matroid I bicircular matroid I signed graphic matroid I 1-dimensional locally completability matroid!! I I ⊆ E is independent iff ( 0 if F is balanced jF j ≤ jV (F )j − 1 + (F ⊆ I ) 1 otherwise 5 / 23 Frame Matroids I In the frame matroid (or, Dowling geometry, bias matroid) of (G; ), I ⊆ E is independent iff each connected component of I contains no cycle or just one cycle, which is unbalanced if exists. − − − − − − − − − + unbalanced balanced I Examples I graphic matroid I bicircular matroid I signed graphic matroid I 1-dimensional locally completability matroid!! I I ⊆ E is independent iff ( 0 if F is balanced jF j ≤ jV (F )j − 1 + (F ⊆ I ) 1 otherwise I What would be (k; `)-sparsity in group-labeled graphs?? 5 / 23 Motivation: Rigidity of Symmetric Frameworks I Characterization of the infinitesimal rigidity of symmetric bar-joint frameworks I A framework (G; p) is Γ-symmetric if I Γ acts on G through θ :Γ ! Aut(G) and I p(θ(γ)v) = γp(v) for any γ 2 Γ and v 2 V I Extension of classical theorem | count conditions on the underlying quotient group-labeled graphs (Malestein-Theran2010,2012, Ross2011, ...) 6 / 23 I R1(G; p) = M1;1(G) for any 1-d realization (G; p) I Theorem(Laman 1970) G can be realized as an infinitesimally rigid framework in R2 iff G contains a spanning subgraph G 0 with 2jV (G)j − 3 edges satisfying the following count condition: jF j ≤ 2jV (F )j − 3 ; 6= 8F ⊆ E(G 0) I R2(G; p) = M2;3(G) for any generic 2-d realization (G; p) Characterization of Rigid Graphs 1 I G can be realized as an infinitesimally rigid framework in R iff G is connected iff G contains a spanning subgraph G 0 with jV (G)j − 1 edges satisfying the following count condition: jF j ≤ jV (F )j − 1 ; 6= 8F ⊆ E(G 0) 7 / 23 I Theorem(Laman 1970) G can be realized as an infinitesimally rigid framework in R2 iff G contains a spanning subgraph G 0 with 2jV (G)j − 3 edges satisfying the following count condition: jF j ≤ 2jV (F )j − 3 ; 6= 8F ⊆ E(G 0) I R2(G; p) = M2;3(G) for any generic 2-d realization (G; p) Characterization of Rigid Graphs 1 I G can be realized as an infinitesimally rigid framework in R iff G is connected iff G contains a spanning subgraph G 0 with jV (G)j − 1 edges satisfying the following count condition: jF j ≤ jV (F )j − 1 ; 6= 8F ⊆ E(G 0) I R1(G; p) = M1;1(G) for any 1-d realization (G; p) 7 / 23 Characterization of Rigid Graphs 1 I G can be realized as an infinitesimally rigid framework in R iff G is connected iff G contains a spanning subgraph G 0 with jV (G)j − 1 edges satisfying the following count condition: jF j ≤ jV (F )j − 1 ; 6= 8F ⊆ E(G 0) I R1(G; p) = M1;1(G) for any 1-d realization (G; p) I Theorem(Laman 1970) G can be realized as an infinitesimally rigid framework in R2 iff G contains a spanning subgraph G 0 with 2jV (G)j − 3 edges satisfying the following count condition: jF j ≤ 2jV (F )j − 3 ; 6= 8F ⊆ E(G 0) I R2(G; p) = M2;3(G) for any generic 2-d realization (G; p) 7 / 23 One Approach (Schulze-T13) I Compute the block-diagonalization of rigidity matrix R(G; p) 0 1 R0(G; p) 0 > B .. C T R(G; p)S := @ . A 0 Rr (G; p) I Its "sparsity pattern" is carried over (??): I In each block, each row and each column are associated with an edge orbit and a vertex orbit, respectively. d I The zero-nonzero pattern of each block is the same as I (G=Γ) ⊗ R , where I (G=Γ) denotes the incidence matrix of G=Γ. I Characterize the rank of each block in terms of combinatorial conditions of the underlying quotient graph G=Γ 8 / 23 1-dimensional case I (G; p): Z2-symmetric framework with Z2 = {−; +g 1 I p : V ! R with p((−)v) = −p(v) for each v 2 V I R (G; p) 0 T >R(G; p)S := 0 0 R1(G; p) I R1(G; p) = I (G=Z2) I The row-independence of R0(G; p) cannot be described by G=Z2... 9 / 23 Quotient Group-labled Graphs I Quotient group labeled graph (G=Γ; ) I G=Γ: a directed quotient graph I : E(G=Γ) ! Γ encoding the covering map 1 C32 1 C33 3 2 C31 C 2 C id 3 C22 3 C C1 C23 C3 id 2 (G=Γ; ) C2 C21 G 10 / 23 I , independent in the frame matroid of (G=Z2; ). I , 8F ⊆ E=Z2, ( 0 if F is balanced jF j ≤ jV (F )j − 1 + 1 if F is unbalanced 1-dimensional case I (G; p): Z2-symmetric framework 1 I p : V ! R with p((−)v) = −p(v) for each v 2 V I R (G; p) 0 T >R(G; p)S := 0 0 R1(G; p) I R1(G; p) = I (G=Z2) I R0(G; p) = I (G=Z2; ) I where I (G=Z2; ) is row independent iff each connected component contains no cycle or just one cycle, which is unbalanced if exists 11 / 23 I , 8F ⊆ E=Z2, ( 0 if F is balanced jF j ≤ jV (F )j − 1 + 1 if F is unbalanced 1-dimensional case I (G; p): Z2-symmetric framework 1 I p : V ! R with p((−)v) = −p(v) for each v 2 V I R (G; p) 0 T >R(G; p)S := 0 0 R1(G; p) I R1(G; p) = I (G=Z2) I R0(G; p) = I (G=Z2; ) I where I (G=Z2; ) is row independent iff each connected component contains no cycle or just one cycle, which is unbalanced if exists I , independent in the frame matroid of (G=Z2; ). 11 / 23 1-dimensional case I (G; p): Z2-symmetric framework 1 I p : V ! R with p((−)v) = −p(v) for each v 2 V I R (G; p) 0 T >R(G; p)S := 0 0 R1(G; p) I R1(G; p) = I (G=Z2) I R0(G; p) = I (G=Z2; ) I where I (G=Z2; ) is row independent iff each connected component contains no cycle or just one cycle, which is unbalanced if exists I , independent in the frame matroid of (G=Z2; ). I , 8F ⊆ E=Z2, ( 0 if F is balanced jF j ≤ jV (F )j − 1 + 1 if F is unbalanced 11 / 23 2-dimensional reflection symmetry (Schulze-T 13) I (G; p): 2-dimensional framework with reflection symmetry 2 I p : V ! R is "regular" under the reflection symmetry I R (G; p) 0 T >R(G; p)S := 0 0 R1(G; p) I Ri (G; p) is row-independent iff 8F ⊆ E=Γ, ( 0 if F is balanced jF j ≤ 2jV (F )j − 3 + 2 − i if F is unbalanced I A similar count works for grid-like frameworks (Kitson) − + + + + + + − 12 / 23 I Examples of counts in rigidity with symmetry: 8 0 hF i is trivial <> v jF j ≤ 2jV (F )|−3+ 2 hF iv is nontrivial and cyclic (F ⊆ E=Γ) :>3 otherwise Given an integer i, 8 0 hF iv is trivial > <>1 hF i ' jF j ≤ 2jV (F )|−3+ v Z2 (F ⊆ E=Γ) >2 hF iv ' Zk for some k 2 S(n; i) > :3 otherwise where S(n; i) = fk : n ≡ 0 (mod k) and i 2 {−1; 0; 1g (mod k)g n f2g.
Recommended publications
  • Biased Graphs. Vii. Contrabalance and Antivoltages
    BIASED GRAPHS. VII. CONTRABALANCE AND ANTIVOLTAGES THOMAS ZASLAVSKY Abstract. We develop linear representation theory for bicircular matroids, a chief exam- ple being a matroid associated with forests of a graph, and bicircular lift matroids, a chief example being a matroid associated with spanning forests. (These are bias and lift matroids of contrabalanced biased graphs.) The theory is expressed largely in terms of antivoltages (edge labellings that defy Kirchhoff’s voltage law) with values in the multiplicative or ad- ditive group of the scalar field. We emphasize antivoltages with values in cyclic groups and finite vector spaces since they are crucial for representing the matroids over finite fields; and integer-valued antivoltages with bounded breadth since they are crucial in constructions. We find bounds for the existence of antivoltages and we solve some examples. Other results: The number of antivoltages in an abelian group is a polynomial function of the group order, and the number of integral antivoltages with bounded breadth is a polynomial in the breadth bound. We conclude with an application to complex representation. There are many open questions. Contents Introduction 2 1. Background 3 2. General bounds on representability and antivoltages 5 3. Modular, integral, and prime-power antivoltages 7 4. Minors and matroids 11 5. Completegraphsandcomplete-graphbounds 11 6. More examples 16 7. The number of antivoltages 18 8. Root-of-unity representations 21 References 21 Date: March 2001; Aug., 2002; Aug.–Sept., 2004; Nov.–Dec., 2005. Version of April 3, 2007. 2000 Mathematics Subject Classification. Primary 05B35, 05C22; Secondary 05A15, 05C35. Key words and phrases. Antivoltage, bicircular matroid, bicircular lift matroid, forest matroid, spanning forest matroid, biased graph, gain graph, contrabalance, bias matroid, frame matroid, matroid representation, transversal matroid.
    [Show full text]
  • Graph Varieties Axiomatized by Semimedial, Medial, and Some Other Groupoid Identities
    Discussiones Mathematicae General Algebra and Applications 40 (2020) 143–157 doi:10.7151/dmgaa.1344 GRAPH VARIETIES AXIOMATIZED BY SEMIMEDIAL, MEDIAL, AND SOME OTHER GROUPOID IDENTITIES Erkko Lehtonen Technische Universit¨at Dresden Institut f¨ur Algebra 01062 Dresden, Germany e-mail: [email protected] and Chaowat Manyuen Department of Mathematics, Faculty of Science Khon Kaen University Khon Kaen 40002, Thailand e-mail: [email protected] Abstract Directed graphs without multiple edges can be represented as algebras of type (2, 0), so-called graph algebras. A graph is said to satisfy an identity if the corresponding graph algebra does, and the set of all graphs satisfying a set of identities is called a graph variety. We describe the graph varieties axiomatized by certain groupoid identities (medial, semimedial, autodis- tributive, commutative, idempotent, unipotent, zeropotent, alternative). Keywords: graph algebra, groupoid, identities, semimediality, mediality. 2010 Mathematics Subject Classification: 05C25, 03C05. 1. Introduction Graph algebras were introduced by Shallon [10] in 1979 with the purpose of providing examples of nonfinitely based finite algebras. Let us briefly recall this concept. Given a directed graph G = (V, E) without multiple edges, the graph algebra associated with G is the algebra A(G) = (V ∪ {∞}, ◦, ∞) of type (2, 0), 144 E. Lehtonen and C. Manyuen where ∞ is an element not belonging to V and the binary operation ◦ is defined by the rule u, if (u, v) ∈ E, u ◦ v := (∞, otherwise, for all u, v ∈ V ∪ {∞}. We will denote the product u ◦ v simply by juxtaposition uv. Using this representation, we may view any algebraic property of a graph algebra as a property of the graph with which it is associated.
    [Show full text]
  • Some Topics Concerning Graphs, Signed Graphs and Matroids
    SOME TOPICS CONCERNING GRAPHS, SIGNED GRAPHS AND MATROIDS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Vaidyanathan Sivaraman, M.S. Graduate Program in Mathematics The Ohio State University 2012 Dissertation Committee: Prof. Neil Robertson, Advisor Prof. Akos´ Seress Prof. Matthew Kahle ABSTRACT We discuss well-quasi-ordering in graphs and signed graphs, giving two short proofs of the bounded case of S. B. Rao's conjecture. We give a characterization of graphs whose bicircular matroids are signed-graphic, thus generalizing a theorem of Matthews from the 1970s. We prove a recent conjecture of Zaslavsky on the equality of frus- tration number and frustration index in a certain class of signed graphs. We prove that there are exactly seven signed Heawood graphs, up to switching isomorphism. We present a computational approach to an interesting conjecture of D. J. A. Welsh on the number of bases of matroids. We then move on to study the frame matroids of signed graphs, giving explicit signed-graphic representations of certain families of matroids. We also discuss the cycle, bicircular and even-cycle matroid of a graph and characterize matroids arising as two different such structures. We study graphs in which any two vertices have the same number of common neighbors, giving a quick proof of Shrikhande's theorem. We provide a solution to a problem of E. W. Dijkstra. Also, we discuss the flexibility of graphs on the projective plane. We conclude by men- tioning partial progress towards characterizing signed graphs whose frame matroids are transversal, and some miscellaneous results.
    [Show full text]
  • A Combinatorial Abstraction of the Shortest Path Problem and Its Relationship to Greedoids
    A Combinatorial Abstraction of the Shortest Path Problem and its Relationship to Greedoids by E. Andrew Boyd Technical Report 88-7, May 1988 Abstract A natural generalization of the shortest path problem to arbitrary set systems is presented that captures a number of interesting problems, in­ cluding the usual graph-theoretic shortest path problem and the problem of finding a minimum weight set on a matroid. Necessary and sufficient conditions for the solution of this problem by the greedy algorithm are then investigated. In particular, it is noted that it is necessary but not sufficient for the underlying combinatorial structure to be a greedoid, and three ex­ tremely diverse collections of sufficient conditions taken from the greedoid literature are presented. 0.1 Introduction Two fundamental problems in the theory of combinatorial optimization are the shortest path problem and the problem of finding a minimum weight set on a matroid. It has long been recognized that both of these problems are solvable by a greedy algorithm - the shortest path problem by Dijk­ stra's algorithm [Dijkstra 1959] and the matroid problem by "the" greedy algorithm [Edmonds 1971]. Because these two problems are so fundamental and have such similar solution procedures it is natural to ask if they have a common generalization. The answer to this question not only provides insight into what structural properties make the greedy algorithm work but expands the class of combinatorial optimization problems known to be effi­ ciently solvable. The present work is related to the broader question of recognizing gen­ eral conditions under which a greedy algorithm can be used to solve a given combinatorial optimization problem.
    [Show full text]
  • Arxiv:1403.0920V3 [Math.CO] 1 Mar 2019
    Matroids, delta-matroids and embedded graphs Carolyn Chuna, Iain Moffattb, Steven D. Noblec,, Ralf Rueckriemend,1 aMathematics Department, United States Naval Academy, Chauvenet Hall, 572C Holloway Road, Annapolis, Maryland 21402-5002, United States of America bDepartment of Mathematics, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom cDepartment of Mathematics, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom d Aschaffenburger Strasse 23, 10779, Berlin Abstract Matroid theory is often thought of as a generalization of graph theory. In this paper we propose an analogous correspondence between embedded graphs and delta-matroids. We show that delta-matroids arise as the natural extension of graphic matroids to the setting of embedded graphs. We show that various basic ribbon graph operations and concepts have delta-matroid analogues, and illus- trate how the connections between embedded graphs and delta-matroids can be exploited. Also, in direct analogy with the fact that the Tutte polynomial is matroidal, we show that several polynomials of embedded graphs from the liter- ature, including the Las Vergnas, Bollab´as-Riordanand Krushkal polynomials, are in fact delta-matroidal. Keywords: matroid, delta-matroid, ribbon graph, quasi-tree, partial dual, topological graph polynomial 2010 MSC: 05B35, 05C10, 05C31, 05C83 1. Overview Matroid theory is often thought of as a generalization of graph theory. Many results in graph theory turn out to be special cases of results in matroid theory. This is beneficial
    [Show full text]
  • Matroids You Have Known
    26 MATHEMATICS MAGAZINE Matroids You Have Known DAVID L. NEEL Seattle University Seattle, Washington 98122 [email protected] NANCY ANN NEUDAUER Pacific University Forest Grove, Oregon 97116 nancy@pacificu.edu Anyone who has worked with matroids has come away with the conviction that matroids are one of the richest and most useful ideas of our day. —Gian Carlo Rota [10] Why matroids? Have you noticed hidden connections between seemingly unrelated mathematical ideas? Strange that finding roots of polynomials can tell us important things about how to solve certain ordinary differential equations, or that computing a determinant would have anything to do with finding solutions to a linear system of equations. But this is one of the charming features of mathematics—that disparate objects share similar traits. Properties like independence appear in many contexts. Do you find independence everywhere you look? In 1933, three Harvard Junior Fellows unified this recurring theme in mathematics by defining a new mathematical object that they dubbed matroid [4]. Matroids are everywhere, if only we knew how to look. What led those junior-fellows to matroids? The same thing that will lead us: Ma- troids arise from shared behaviors of vector spaces and graphs. We explore this natural motivation for the matroid through two examples and consider how properties of in- dependence surface. We first consider the two matroids arising from these examples, and later introduce three more that are probably less familiar. Delving deeper, we can find matroids in arrangements of hyperplanes, configurations of points, and geometric lattices, if your tastes run in that direction.
    [Show full text]
  • A Faster Parameterized Algorithm for PSEUDOFOREST DELETION
    A faster parameterized algorithm for PSEUDOFOREST DELETION Citation for published version (APA): Bodlaender, H. L., Ono, H., & Otachi, Y. (2018). A faster parameterized algorithm for PSEUDOFOREST DELETION. Discrete Applied Mathematics, 236, 42-56. https://doi.org/10.1016/j.dam.2017.10.018 Document license: Unspecified DOI: 10.1016/j.dam.2017.10.018 Document status and date: Published: 19/02/2018 Document Version: Accepted manuscript including changes made at the peer-review stage Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Sphere-Cut Decompositions and Dominating Sets in Planar Graphs
    Sphere-cut Decompositions and Dominating Sets in Planar Graphs Michalis Samaris R.N. 201314 Scientific committee: Dimitrios M. Thilikos, Professor, Dep. of Mathematics, National and Kapodistrian University of Athens. Supervisor: Stavros G. Kolliopoulos, Dimitrios M. Thilikos, Associate Professor, Professor, Dep. of Informatics and Dep. of Mathematics, National and Telecommunications, National and Kapodistrian University of Athens. Kapodistrian University of Athens. white Lefteris M. Kirousis, Professor, Dep. of Mathematics, National and Kapodistrian University of Athens. Aposunjèseic sfairik¸n tom¸n kai σύνοla kuriarqÐac se epÐpeda γραφήματa Miχάλης Σάμαρης A.M. 201314 Τριμελής Epiτροπή: Δημήτρioc M. Jhlυκός, Epiblèpwn: Kajhγητής, Tm. Majhmatik¸n, E.K.P.A. Δημήτρioc M. Jhlυκός, Staύρoc G. Kolliόποuloc, Kajhγητής tou Τμήμatoc Anaπληρωτής Kajhγητής, Tm. Plhroforiκής Majhmatik¸n tou PanepisthmÐou kai Thl/ni¸n, E.K.P.A. Ajhn¸n Leutèrhc M. Kuroύσης, white Kajhγητής, Tm. Majhmatik¸n, E.K.P.A. PerÐlhyh 'Ena σημαντικό apotèlesma sth JewrÐa Γραφημάτwn apoteleÐ h apόdeixh thc eikasÐac tou Wagner από touc Neil Robertson kai Paul D. Seymour. sth σειρά ergasi¸n ‘Ελλάσσοna Γραφήματα’ apo to 1983 e¸c to 2011. H eikasÐa αυτή lèei όti sthn κλάση twn γραφημάtwn den υπάρχει άπειρη antialusÐda ¸c proc th sqèsh twn ελλασόnwn γραφημάτwn. H JewrÐa pou αναπτύχθηκε gia thn απόδειξη αυτής thc eikasÐac eÐqe kai èqei ακόμα σημαντικό antÐktupo tόσο sthn δομική όσο kai sthn algoriθμική JewrÐa Γραφημάτwn, άλλα kai se άλλα pedÐa όπως h Παραμετρική Poλυπλοκόthta. Sta πλάιsia thc απόδειξης oi suggrafeÐc eiσήγαγαν kai nèec paramètrouc πλά- touc. Se autèc ήτan h κλαδοαποσύνθεση kai to κλαδοπλάτoc ενός γραφήματoc. H παράμετρος αυτή χρησιμοποιήθηκε idiaÐtera sto σχεδιασμό algorÐjmwn kai sthn χρήση thc τεχνικής ‘διαίρει kai basÐleue’.
    [Show full text]
  • The Steiner Problem for Count Matroids
    Egervary´ Research Group on Combinatorial Optimization Technical reportS TR-2020-03. Published by the Egerv´aryResearch Group, P´azm´any P. s´et´any 1/C, H{1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587{4451. The Steiner problem for count matroids Tibor Jord´an,Yusuke Kobayashi, Ryoga Mahara, and Kazuhisa Makino December 2020 EGRES Technical Report No. 2020-03 1 The Steiner problem for count matroids? Tibor Jord´an??, Yusuke Kobayashi, Ryoga Mahara, and Kazuhisa Makino ??? Abstract We introduce and study a generalization of the well-known Steiner tree prob- lem to count matroids. In the count matroid Mk;l(G), defined on the edge set of a graph G = (V; E), a set F ⊆ E is independent if every vertex set X ⊆ V spans at most kjXj − l edges of F . The graph is called (k; l)-tight if its edge set is independent in Mk;l(G) and jEj = kjV j − l holds. Given a graph G = (V; E), a non-negative length function w : E ! R, a set T ⊆ V of terminals and parameters k; l, our goal is to find a shortest (k; l)- tight subgraph of G that contains the terminals. Since M1;1(G) is isomorphic to the graphic matroid of G, the special case k = l = 1 corresponds to the Steiner tree problem. We obtain other interesting problems by choosing different parameters: for example, in the case k = 2, l = 3 the target is a shortest rigid subgraph containing all terminals. First we show that this problem is NP-hard even if k = 2, l = 3, and w is metric, or w ≡ 1 and jT j = 2.
    [Show full text]
  • Branch-Depth: Generalizing Tree-Depth of Graphs
    Branch-depth: Generalizing tree-depth of graphs ∗1 †‡23 34 Matt DeVos , O-joung Kwon , and Sang-il Oum† 1Department of Mathematics, Simon Fraser University, Burnaby, Canada 2Department of Mathematics, Incheon National University, Incheon, Korea 3Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, Korea 4Department of Mathematical Sciences, KAIST, Daejeon, Korea [email protected], [email protected], [email protected] November 5, 2020 Abstract We present a concept called the branch-depth of a connectivity function, that generalizes the tree-depth of graphs. Then we prove two theorems showing that this concept aligns closely with the no- tions of tree-depth and shrub-depth of graphs as follows. For a graph G = (V, E) and a subset A of E we let λG(A) be the number of vertices incident with an edge in A and an edge in E A. For a subset X of V , \ let ρG(X) be the rank of the adjacency matrix between X and V X over the binary field. We prove that a class of graphs has bounded\ tree-depth if and only if the corresponding class of functions λG has arXiv:1903.11988v2 [math.CO] 4 Nov 2020 bounded branch-depth and similarly a class of graphs has bounded shrub-depth if and only if the corresponding class of functions ρG has bounded branch-depth, which we call the rank-depth of graphs. Furthermore we investigate various potential generalizations of tree- depth to matroids and prove that matroids representable over a fixed finite field having no large circuits are well-quasi-ordered by restriction.
    [Show full text]
  • On the Planar Split Thickness of Graphs∗
    On the Planar Split Thickness of Graphs∗ David Eppstein1, Philipp Kindermann2, Stephen Kobourov3, Giuseppe Liotta4, Anna Lubiw5, Aude Maignan6, Debajyoti Mondal5, Hamideh Vosoughpour5, Sue Whitesides7, and Stephen Wismath8 1University of California, Irvine, USA [email protected] 2FernUniversit¨atin Hagen, Germany. [email protected] 3University of Arizona, USA. [email protected] 4Universit`adegli Studi di Perugia, Italy. [email protected] 5University of Waterloo, Canada. alubiw | dmondal | hvosough @uwaterloo.ca 6Universit. Grenoblef Alpes, France. [email protected] 7University of Victoria, Canada. [email protected] 8University of Lethbridge, Canada. [email protected] Abstract Motivated by applications in graph drawing and information visualization, we ex- amine the planar split thickness of a graph, that is, the smallest k such that the graph is k-splittable into a planar graph. A k-split operation substitutes a vertex v by at most k new vertices such that each neighbor of v is connected to at least one of the new vertices. We first examine the planar split thickness of complete graphs, complete bipartite graphs, multipartite graphs, bounded degree graphs, and genus-1 graphs. We then prove that it is NP-hard to recognize graphs that are 2-splittable into a planar graph, and show that one can approximate the planar split thickness of a graph within a constant factor. If the treewidth is bounded, then we can even verify k-splittability in linear time, for a constant k. 1 Introduction arXiv:1512.04839v4 [math.CO] 6 Jun 2017 Transforming one graph into another by repeatedly applying an operation such as ver- tex/edge deletion, edge flip or vertex split is a classic problem in graph theory [24].
    [Show full text]
  • Problem Set 2 Out: April 15 Due: April 22
    CS 38 Introduction to Algorithms Spring 2014 Problem Set 2 Out: April 15 Due: April 22 Reminder: you are encouraged to work in groups of two or three; however you must turn in your own write-up and note with whom you worked. You may consult the course notes and the optional text (CLRS). The full honor code guidelines can be found in the course syllabus. Please attempt all problems. To facilitate grading, please turn in each problem on a separate sheet of paper and put your name on each sheet. Do not staple the separate sheets. 1. Recall that a prefix-free encoding scheme can be represented by a binary tree, and that the Huffman code algorithm gives an efficient way to construct an optimal such tree from the probabilities p1; p2; : : : ; pn of n symbols. In this problem, you will show that the average length of such an encoding scheme is at most one larger than the entropy (which is the information- theoretic best-possible). The entropy of the distribution given by p = (p1; p2; : : : ; pn) is defined to be Xn H(p) = − log(pi) · pi: i=1 (a) Prove that for any list of positive integers `1; `2; : : : ; `n satisfying Xn − 2 `i ≤ 1; i=1 there is a binary tree with distinct root-leaf paths having lengths `1; `2; : : : ; `n. Hint: start from the full binary tree and delete subtrees. (b) Let p = (p1; : : : ; pn) give the probabilities of n symbols. Prove that if `1; : : : ; `n are the encoding lengths in an optimal prefix-free encoding scheme for this distribution, then the average encoding length, Xn `ipi; i=1 is at most H(p) + 1.
    [Show full text]