Matroids You Have Known
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Towards Maximum Independent Sets on Massive Graphs
Towards Maximum Independent Sets on Massive Graphs Yu Liuy Jiaheng Lu x Hua Yangy Xiaokui Xiaoz Zhewei Weiy yDEKE, MOE and School of Information, Renmin University of China x Department of Computer Science, University of Helsinki, Finland zSchool of Computer Engineering, Nanyang Technological University, Singapore ABSTRACT Maximum independent set (MIS) is a fundamental problem in graph theory and it has important applications in many areas such as so- cial network analysis, graphical information systems and coding theory. The problem is NP-hard, and there has been numerous s- tudies on its approximate solutions. While successful to a certain degree, the existing methods require memory space at least linear in the size of the input graph. This has become a serious concern in !"#$!%&'!(#&)*+,+)*+)-#.+- /"#$!%&'0'#&)*+,+)*+)-#.+- view of the massive volume of today’s fast-growing graphs. Figure 1: An example to illustrate that fv , v g is a maximal inde- In this paper, we study the MIS problem under the semi-external 1 2 pendent set, but fv , v , v , v g is a maximum independent set. setting, which assumes that the main memory can accommodate 2 3 4 5 all vertices of the graph but not all edges. We present a greedy algorithm and a general vertex-swap framework, which swaps ver- duced subgraphs, minimum vertex covers, graph coloring, and tices to incrementally increase the size of independent sets. Our maximum common edge subgraphs, etc. Its significance is not solutions require only few sequential scans of graphs on the disk just limited to graph theory but also in numerous real-world ap- file, thus enabling in-memory computation without costly random plications, such as indexing techniques for shortest path and dis- disk accesses. -
Projective Planarity of Matroids of 3-Nets and Biased Graphs
AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 76(2) (2020), Pages 299–338 Projective planarity of matroids of 3-nets and biased graphs Rigoberto Florez´ ∗ Deptartment of Mathematical Sciences, The Citadel Charleston, South Carolina 29409 U.S.A. [email protected] Thomas Zaslavsky† Department of Mathematical Sciences, Binghamton University Binghamton, New York 13902-6000 U.S.A. [email protected] Abstract A biased graph is a graph with a class of selected circles (“cycles”, “cir- cuits”), called “balanced”, such that no theta subgraph contains exactly two balanced circles. A 3-node biased graph is equivalent to an abstract partial 3-net. We work in terms of a special kind of 3-node biased graph called a biased expansion of a triangle. Our results apply to all finite 3-node biased graphs because, as we prove, every such biased graph is a subgraph of a finite biased expansion of a triangle. A biased expansion of a triangle is equivalent to a 3-net, which, in turn, is equivalent to an isostrophe class of quasigroups. A biased graph has two natural matroids, the frame matroid and the lift matroid. A classical question in matroid theory is whether a matroid can be embedded in a projective geometry. There is no known general answer, but for matroids of biased graphs it is possible to give algebraic criteria. Zaslavsky has previously given such criteria for embeddability of biased-graphic matroids in Desarguesian projective spaces; in this paper we establish criteria for the remaining case, that is, embeddability in an arbitrary projective plane that is not necessarily Desarguesian. -
Matroid Theory
MATROID THEORY HAYLEY HILLMAN 1 2 HAYLEY HILLMAN Contents 1. Introduction to Matroids 3 1.1. Basic Graph Theory 3 1.2. Basic Linear Algebra 4 2. Bases 5 2.1. An Example in Linear Algebra 6 2.2. An Example in Graph Theory 6 3. Rank Function 8 3.1. The Rank Function in Graph Theory 9 3.2. The Rank Function in Linear Algebra 11 4. Independent Sets 14 4.1. Independent Sets in Graph Theory 14 4.2. Independent Sets in Linear Algebra 17 5. Cycles 21 5.1. Cycles in Graph Theory 22 5.2. Cycles in Linear Algebra 24 6. Vertex-Edge Incidence Matrix 25 References 27 MATROID THEORY 3 1. Introduction to Matroids A matroid is a structure that generalizes the properties of indepen- dence. Relevant applications are found in graph theory and linear algebra. There are several ways to define a matroid, each relate to the concept of independence. This paper will focus on the the definitions of a matroid in terms of bases, the rank function, independent sets and cycles. Throughout this paper, we observe how both graphs and matrices can be viewed as matroids. Then we translate graph theory to linear algebra, and vice versa, using the language of matroids to facilitate our discussion. Many proofs for the properties of each definition of a matroid have been omitted from this paper, but you may find complete proofs in Oxley[2], Whitney[3], and Wilson[4]. The four definitions of a matroid introduced in this paper are equiv- alent to each other. -
Octonion Multiplication and Heawood's
CONFLUENTES MATHEMATICI Bruno SÉVENNEC Octonion multiplication and Heawood’s map Tome 5, no 2 (2013), p. 71-76. <http://cml.cedram.org/item?id=CML_2013__5_2_71_0> © Les auteurs et Confluentes Mathematici, 2013. Tous droits réservés. L’accès aux articles de la revue « Confluentes Mathematici » (http://cml.cedram.org/), implique l’accord avec les condi- tions générales d’utilisation (http://cml.cedram.org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation á fin strictement personnelle du copiste est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Confluentes Math. 5, 2 (2013) 71-76 OCTONION MULTIPLICATION AND HEAWOOD’S MAP BRUNO SÉVENNEC Abstract. In this note, the octonion multiplication table is recovered from a regular tesse- lation of the equilateral two timensional torus by seven hexagons, also known as Heawood’s map. Almost any article or book dealing with Cayley-Graves algebra O of octonions (to be recalled shortly) has a picture like the following Figure 0.1 representing the so-called ‘Fano plane’, which will be denoted by Π, together with some cyclic ordering on each of its ‘lines’. The Fano plane is a set of seven points, in which seven three-point subsets called ‘lines’ are specified, such that any two points are contained in a unique line, and any two lines intersect in a unique point, giving a so-called (combinatorial) projective plane [8,7]. -
A Combinatorial Abstraction of the Shortest Path Problem and Its Relationship to Greedoids
A Combinatorial Abstraction of the Shortest Path Problem and its Relationship to Greedoids by E. Andrew Boyd Technical Report 88-7, May 1988 Abstract A natural generalization of the shortest path problem to arbitrary set systems is presented that captures a number of interesting problems, in cluding the usual graph-theoretic shortest path problem and the problem of finding a minimum weight set on a matroid. Necessary and sufficient conditions for the solution of this problem by the greedy algorithm are then investigated. In particular, it is noted that it is necessary but not sufficient for the underlying combinatorial structure to be a greedoid, and three ex tremely diverse collections of sufficient conditions taken from the greedoid literature are presented. 0.1 Introduction Two fundamental problems in the theory of combinatorial optimization are the shortest path problem and the problem of finding a minimum weight set on a matroid. It has long been recognized that both of these problems are solvable by a greedy algorithm - the shortest path problem by Dijk stra's algorithm [Dijkstra 1959] and the matroid problem by "the" greedy algorithm [Edmonds 1971]. Because these two problems are so fundamental and have such similar solution procedures it is natural to ask if they have a common generalization. The answer to this question not only provides insight into what structural properties make the greedy algorithm work but expands the class of combinatorial optimization problems known to be effi ciently solvable. The present work is related to the broader question of recognizing gen eral conditions under which a greedy algorithm can be used to solve a given combinatorial optimization problem. -
Matroids and Tropical Geometry
matroids unimodality and log concavity strategy: geometric models tropical models directions Matroids and Tropical Geometry Federico Ardila San Francisco State University (San Francisco, California) Mathematical Sciences Research Institute (Berkeley, California) Universidad de Los Andes (Bogotá, Colombia) Introductory Workshop: Geometric and Topological Combinatorics MSRI, September 5, 2017 (3,-2,0) Who is here? • This is the Introductory Workshop. • Focus on accessibility for grad students and junior faculty. • # (questions by students + postdocs) # (questions by others) • ≥ matroids unimodality and log concavity strategy: geometric models tropical models directions Preface. Thank you, organizers! • This is the Introductory Workshop. • Focus on accessibility for grad students and junior faculty. • # (questions by students + postdocs) # (questions by others) • ≥ matroids unimodality and log concavity strategy: geometric models tropical models directions Preface. Thank you, organizers! • Who is here? • matroids unimodality and log concavity strategy: geometric models tropical models directions Preface. Thank you, organizers! • Who is here? • This is the Introductory Workshop. • Focus on accessibility for grad students and junior faculty. • # (questions by students + postdocs) # (questions by others) • ≥ matroids unimodality and log concavity strategy: geometric models tropical models directions Summary. Matroids are everywhere. • Many matroid sequences are (conj.) unimodal, log-concave. • Geometry helps matroids. • Tropical geometry helps matroids and needs matroids. • (If time) Some new constructions and results. • Joint with Carly Klivans (06), Graham Denham+June Huh (17). Properties: (B1) B = /0 6 (B2) If A;B B and a A B, 2 2 − then there exists b B A 2 − such that (A a) b B. − [ 2 Definition. A set E and a collection B of subsets of E are a matroid if they satisfies properties (B1) and (B2). -
Arxiv:1403.0920V3 [Math.CO] 1 Mar 2019
Matroids, delta-matroids and embedded graphs Carolyn Chuna, Iain Moffattb, Steven D. Noblec,, Ralf Rueckriemend,1 aMathematics Department, United States Naval Academy, Chauvenet Hall, 572C Holloway Road, Annapolis, Maryland 21402-5002, United States of America bDepartment of Mathematics, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom cDepartment of Mathematics, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom d Aschaffenburger Strasse 23, 10779, Berlin Abstract Matroid theory is often thought of as a generalization of graph theory. In this paper we propose an analogous correspondence between embedded graphs and delta-matroids. We show that delta-matroids arise as the natural extension of graphic matroids to the setting of embedded graphs. We show that various basic ribbon graph operations and concepts have delta-matroid analogues, and illus- trate how the connections between embedded graphs and delta-matroids can be exploited. Also, in direct analogy with the fact that the Tutte polynomial is matroidal, we show that several polynomials of embedded graphs from the liter- ature, including the Las Vergnas, Bollab´as-Riordanand Krushkal polynomials, are in fact delta-matroidal. Keywords: matroid, delta-matroid, ribbon graph, quasi-tree, partial dual, topological graph polynomial 2010 MSC: 05B35, 05C10, 05C31, 05C83 1. Overview Matroid theory is often thought of as a generalization of graph theory. Many results in graph theory turn out to be special cases of results in matroid theory. This is beneficial -
Incremental Dynamic Construction of Layered Polytree Networks )
440 Incremental Dynamic Construction of Layered Polytree Networks Keung-Chi N g Tod S. Levitt lET Inc., lET Inc., 14 Research Way, Suite 3 14 Research Way, Suite 3 E. Setauket, NY 11733 E. Setauket , NY 11733 [email protected] [email protected] Abstract Many exact probabilistic inference algorithms1 have been developed and refined. Among the earlier meth ods, the polytree algorithm (Kim and Pearl 1983, Certain classes of problems, including per Pearl 1986) can efficiently update singly connected ceptual data understanding, robotics, discov belief networks (or polytrees) , however, it does not ery, and learning, can be represented as incre work ( without modification) on multiply connected mental, dynamically constructed belief net networks. In a singly connected belief network, there is works. These automatically constructed net at most one path (in the undirected sense) between any works can be dynamically extended and mod pair of nodes; in a multiply connected belief network, ified as evidence of new individuals becomes on the other hand, there is at least one pair of nodes available. The main result of this paper is the that has more than one path between them. Despite incremental extension of the singly connect the fact that the general updating problem for mul ed polytree network in such a way that the tiply connected networks is NP-hard (Cooper 1990), network retains its singly connected polytree many propagation algorithms have been applied suc structure after the changes. The algorithm cessfully to multiply connected networks, especially on is deterministic and is guaranteed to have networks that are sparsely connected. These methods a complexity of single node addition that is include clustering (also known as node aggregation) at most of order proportional to the number (Chang and Fung 1989, Pearl 1988), node elimination of nodes (or size) of the network. -
On Decomposing a Hypergraph Into K Connected Sub-Hypergraphs
Egervary´ Research Group on Combinatorial Optimization Technical reportS TR-2001-02. Published by the Egrerv´aryResearch Group, P´azm´any P. s´et´any 1/C, H{1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587{4451. On decomposing a hypergraph into k connected sub-hypergraphs Andr´asFrank, Tam´asKir´aly,and Matthias Kriesell February 2001 Revised July 2001 EGRES Technical Report No. 2001-02 1 On decomposing a hypergraph into k connected sub-hypergraphs Andr´asFrank?, Tam´asKir´aly??, and Matthias Kriesell??? Abstract By applying the matroid partition theorem of J. Edmonds [1] to a hyper- graphic generalization of graphic matroids, due to M. Lorea [3], we obtain a gen- eralization of Tutte's disjoint trees theorem for hypergraphs. As a corollary, we prove for positive integers k and q that every (kq)-edge-connected hypergraph of rank q can be decomposed into k connected sub-hypergraphs, a well-known result for q = 2. Another by-product is a connectivity-type sufficient condition for the existence of k edge-disjoint Steiner trees in a bipartite graph. Keywords: Hypergraph; Matroid; Steiner tree 1 Introduction An undirected graph G = (V; E) is called connected if there is an edge connecting X and V X for every nonempty, proper subset X of V . Connectivity of a graph is equivalent− to the existence of a spanning tree. As a connected graph on t nodes contains at least t 1 edges, one has the following alternative characterization of connectivity. − Proposition 1.1. A graph G = (V; E) is connected if and only if the number of edges connecting distinct classes of is at least t 1 for every partition := V1;V2;:::;Vt of V into non-empty subsets.P − P f g ?Department of Operations Research, E¨otv¨osUniversity, Kecskem´etiu. -
Greedy Sequential Maximal Independent Set and Matching Are Parallel on Average
Greedy Sequential Maximal Independent Set and Matching are Parallel on Average Guy E. Blelloch Jeremy T. Fineman Julian Shun Carnegie Mellon University Georgetown University Carnegie Mellon University [email protected] jfi[email protected] [email protected] ABSTRACT edge represents the constraint that two tasks cannot run in parallel, the MIS finds a maximal set of tasks to run in parallel. Parallel al- The greedy sequential algorithm for maximal independent set (MIS) gorithms for the problem have been well studied [16, 17, 1, 12, 9, loops over the vertices in an arbitrary order adding a vertex to the 11, 10, 7, 4]. Luby’s randomized algorithm [17], for example, runs resulting set if and only if no previous neighboring vertex has been in O(log jV j) time on O(jEj) processors of a CRCW PRAM and added. In this loop, as in many sequential loops, each iterate will can be converted to run in linear work. The problem, however, is only depend on a subset of the previous iterates (i.e. knowing that that on a modest number of processors it is very hard for these par- any one of a vertex’s previous neighbors is in the MIS, or know- allel algorithms to outperform the very simple and fast sequential ing that it has no previous neighbors, is sufficient to decide its fate greedy algorithm. Furthermore the parallel algorithms give differ- one way or the other). This leads to a dependence structure among ent results than the sequential algorithm. This can be undesirable in the iterates. -
A Framework for the Evaluation and Management of Network Centrality ∗
A Framework for the Evaluation and Management of Network Centrality ∗ Vatche Ishakiany D´oraErd}osz Evimaria Terzix Azer Bestavros{ Abstract total number of shortest paths that go through it. Ever Network-analysis literature is rich in node-centrality mea- since, researchers have proposed different measures of sures that quantify the centrality of a node as a function centrality, as well as algorithms for computing them [1, of the (shortest) paths of the network that go through it. 2, 4, 10, 11]. The common characteristic of these Existing work focuses on defining instances of such mea- measures is that they quantify a node's centrality by sures and designing algorithms for the specific combinato- computing the number (or the fraction) of (shortest) rial problems that arise for each instance. In this work, we paths that go through that node. For example, in a propose a unifying definition of centrality that subsumes all network where packets propagate through nodes, a node path-counting based centrality definitions: e.g., stress, be- with high centrality is one that \sees" (and potentially tweenness or paths centrality. We also define a generic algo- controls) most of the traffic. rithm for computing this generalized centrality measure for In many applications, the centrality of a single node every node and every group of nodes in the network. Next, is not as important as the centrality of a group of we define two optimization problems: k-Group Central- nodes. For example, in a network of lobbyists, one ity Maximization and k-Edge Centrality Boosting. might want to measure the combined centrality of a In the former, the task is to identify the subset of k nodes particular group of lobbyists. -
The Turan Number of the Fano Plane
Combinatorica (5) (2005) 561–574 COMBINATORICA 25 Bolyai Society – Springer-Verlag THE TURAN´ NUMBER OF THE FANO PLANE PETER KEEVASH, BENNY SUDAKOV* Received September 17, 2002 Let PG2(2) be the Fano plane, i.e., the unique hypergraph with 7 triples on 7 vertices in which every pair of vertices is contained in a unique triple. In this paper we prove that for sufficiently large n, the maximum number of edges in a 3-uniform hypergraph on n vertices not containing a Fano plane is n n/2 n/2 ex n, P G (2) = − − . 2 3 3 3 Moreover, the only extremal configuration can be obtained by partitioning an n-element set into two almost equal parts, and taking all the triples that intersect both of them. This extends an earlier result of de Caen and F¨uredi, and proves an old conjecture of V. S´os. In addition, we also prove a stability result for the Fano plane, which says that a 3-uniform hypergraph with density close to 3/4 and no Fano plane is approximately 2-colorable. 1. Introduction Given an r-uniform hypergraph F,theTur´an number of F is the maximum number of edges in an r-uniform hypergraph on n vertices that does not contain a copy of F. We denote this number by ex(n,F). Determining these numbers is one of the central problems in Extremal Combinatorics, and it is well understood for ordinary graphs (the case r =2). It is completely solved for many instances, including all complete graphs. Moreover, asymptotic results are known for all non-bipartite graphs.