Nproliferation Regime

Total Page:16

File Type:pdf, Size:1020Kb

Nproliferation Regime MOHINI RAWOOL-SULLIVAN, PAUL D. MOSKOWITZ, & LUDMILA SHELENKOVA Report Technical and Proliferation-Related Aspects of the Dismantlement of Russian Alfa-Class Nuclear Submarines MOHINI RAWOOL-SULLIVAN, PAUL D. MOSKOWITZ, & LUDMILA N. SHELENKOVA Mohini Rawool-Sullivan is a technical staff member at the Los Alamos National Laboratory. Her areas of expertise include assessing nuclear threats and building radiation sensors for the nonproliferation regime. Paul D. Moskowitz is the manager of the Environmental Threat Reduction Program in the Nonproliferation and National Security Department at Brookhaven National Laboratory. He has been working on Russia submarine decommissioning and dismantlement projects for the U.S. Department of Defense, the U.S. Department of Energy and the U.S. Environmental Protection Agency since 1995. Dr. Ludmila N. Shelenkova is an assistant biophysicist at the Brookhaven National Laboratory, Nonproliferation and National Security Department. She develops, implements, and coordinates programs based on collaboration with Russian weapon scientists. etween 1950 and 1994, the Soviet Union built a to the Northern Fleet and one-third are assigned to the total of 245 nuclear submarines. At the end of Pacific Fleet. B1994, the newly formed Russian Federation (RF) Nuclear-powered submarines have provided the Soviet had the largest fleet of nuclear-powered submarines and and Russian navies with significant advantages over die- surface ships in the world. At that time, the Russian Fed- sel submarines. Nuclear submarines can stay submerged eration had a total of 140 active nuclear-powered vessels for months at a time and hence can patrol wide underwa- in its fleet. In addition to nuclear submarines, the nuclear ter areas without detection. Nuclear submarines also have fleet included four Kirov-class guided-missile cruisers, a higher speeds than their diesel counterparts, and provide small number of nuclear-powered scientific research, sup- better living conditions for their crews. Since 1952, four port, and space-tracking vessels, and seven civilian generations of nuclear submarines and several experimen- nuclear-powered icebreakers. According to the Bellona tal nuclear submarines have been built for the Soviet and Foundation, a Norwegian organization which monitors Russian navies. From 1955 to 1964 a total of 55 first- naval nuclear developments in Russia, the eighth Russian generation (November-, Hotel-, and Echo- class) subma- nuclear-powered icebreaker, 50th Anniversary of Victory, rines were built. At the height of the Cold War, 1 was fitted with two reactors in July 2001. After the break- approximately five to 10 nuclear submarines were being up of the Soviet Union in 1991, the financially strapped commissioned per year from each of the four Soviet sub- Russian Federation inherited the Soviet nuclear fleet. As marine yards: Sevmash in Severodvinsk; Admiralteyskiye a result, by 1996 only 109 nuclear submarines remained Verfi in St. Petersburg; Krasnoye Sormovo in Nizhniy in service. Two-thirds of these submarines are assigned Novgorod; and Amurskiy Zavod in Komsomolsk-na- The Nonproliferation Review/Spring 2002 161 MOHINI RAWOOL-SULLIVAN, PAUL D. MOSKOWITZ, & LUDMILA SHELENKOVA Amure (see Figure 1). Beginning in the 1980s, the Soviet problem which has received little attention. The Soviet Union launched several titanium-hulled submarines. The Union, unlike the United States, built nuclear submarines ill-fated Komsomolets (Mike-class), which sank with 42 powered not only by pressurized water reactors (PWRs), crewmembers aboard in 1989, had a titanium hull. Later, but also constructed submarines with liquid metal cooled two series of nuclear submarines were constructed with (LMC) reactors. Although only eight submarines (seven titanium hulls: the Project 705 (Alfa-class) and the Project Alfa-class and one prototype) were built with LMC reac- 945 (Sierra-class). These titanium-hulled nuclear subma- tors, this report analyzes the unique proliferation and safety rines are no longer in production. The Kursk, which sank issues the decommissioning of these submarines presents. on August 12, 2000, killing all of its crew, belonged to the The report begins by discussing the development of the Oscar II-class (third generation). Third generation Akula- Russian naval propulsion program, including the origins class attack submarines and Oscar-class cruise missile of the liquid metal cooled reactor program. It then dis- submarines, fourth generation Severodvinsk-class attack cusses the design, development, production, and opera- submarines (which carry anti-ship cruise missiles as well tion of the Alfa-class submarines that were powered by as torpedoes), and fifth generation Borey-class SSBNs are LMC reactors. The LMC reactor fuel cycle and its pro- still in production. However, severe funding problems have liferation and safety implications are also addressed. The slowed the pace of completion and commissioning of these article concludes with an examination of the unique chal- submarines. lenges posed by the dismantling of the LMC reactors re- While the proliferation challenges posed by the disman- moved from the Alfa-class submarines, and urges tling of Russian nuclear submarines have been addressed additional international assistance to help Russian address in a number of articles, there is one unique aspect of this these challenges. Figure 1: Locations of acilities involved in the Alfa-class/LMC reactor activities 162 The Nonproliferation Review/Spring 2002 MOHINI RAWOOL-SULLIVAN, PAUL D. MOSKOWITZ, & LUDMILA SHELENKOVA History of Russian Naval Reactors Russian Nuclear-Powered Submarines with LMC Table 1 shows Russian naval propulsion reactor design reactors models, their power, the uranium enrichment level of their Immediately following the successful launch of the first fuel, and the class of vessels built with these models. This Soviet nuclear-powered submarine, Project 645 was ini- table is based on data obtained from the NIS Nuclear Pro- tiated in 1957. The objective of this project was to build files Database of the Center for Nonproliferation Studies a 1,500-ton “interceptor” submarine that could get to a at the Monterey Institute of International Studies, except target location before the target information was obsolete. for the information on the number of reactors on Alfa- To meet this requirement, the submarine had to have un- class submarines.2 For many years, most Western refer- derwater speed of about 40 knots. The speed of a sub- ence material suggested that the Alfa-, Sierra-, and marine is largely a function of its wetted hull area and the Akula-class submarines were powered by two reactors. power of its engines. Thus, to obtain high speeds, a de- Recently obtained information, however, shows that these sign with a smaller volume hull and high-powered engines submarines were powered by just one reactor.3 is required. A. B. Petrov of the Malakhit Design Bureau Russian research into naval reactors began in the early (SKB-143) in Leningrad came up with an innovative de- 4 1950s. Veterans of these early programs take great pride sign for such a submarine. A LMC reactor design was in these efforts because of the originality of their programs, selected to provide high power using a compact reactor. which were not copied from U.S. or other designs. Two The LMC reactor shielding consisted of a single wall in- options were considered from the early stages of devel- side the submarine, although normally single-wall shield- opment. The first approach used a water-cooled, water- ing would be considered inadequate. The engine plant was moderated design (also known as a PWR) developed at completely automated and expected to run unmanned. The the Kurchatov Institute in Moscow under the leadership crew in this first design was expected to be 15 to 17 per- of A. Alexandrov. The second approach used a lead-bis- sonnel. The complexity of this design required that all muth cooled reactor design (also known as an LMC reac- crewmembers be officers. If this design were built with a tor) developed at the Institute of Physics and Power steel hull, however, the weight of the submarine would Engineering in Obninsk under the leadership of A. not allow it to meet the required performance specifica- Leipunsky. Over the next 40 years, the Soviet Union de- tions. This problem was resolved by using a titanium al- veloped and produced three generations of naval PWRs. loy hull. The use of titanium alloy allowed the hull walls Each generation featured improved reliability, compact- to be thinner and reduced overall weight. Around 1963, ness, and quietness. The first generation PWRs (VM-A after many delays, Petrov was dismissed from the project, type) were deployed from 1957 to 1968. All of these re- and under the direction of M. G. Rusanov, the design of actors are now retired. The second generation, VM-4 type reactors were deployed from 1968-1987. As of 1995, some of these reactors were still in use. The third generation Figure 2: Alfa-class submarine reactors (OK-650 type) entered service starting in 1987. Besides these reactor designs, several one-of-a-kind PWR designs were developed for research submarines and ves- sels. Despite certain advantages gained by using heavy metal- coolant in a submarine reactor, the LMC reactor design was ultimately abandoned in favor of the PWR designs. This decision was motived by safety considerations, main- tenance problems, accidents, and advances in PWR de- signs. The main difficulty with LMC reactors
Recommended publications
  • Russia's Policy on Strengthening the Navy and the Defense Industry*
    Russia’s Policy on Strengthening the Navy and the Defense Industry* Yoshiaki Sakaguchi** Abstract The Russian government has begun rebuilding the Russian Navy as a part of the military reforms since October 2008. The Russian leadership has set out a clear policy on strengthening the Navy. Furthermore, the “State Weapons Program for 2011-2020,” unveiled at the end of 2010, presents that 23.4% of the total budget will be allocated to the procurement and development of vessels. This program and the budgetary measures for its realization have contributed to the gradual progress in the construction of new naval vessels since 2011. Nevertheless, the problems confronting the Russian defense industry remain unresolved, putting into question the ability of the defense industry to meet the high procurement targets identified in the State Weapons Program. Introduction A large-scale military reform has been under way in Russia since October 2008, with the focus of reform now shifting to modernization of obsolete armament following the near-completion of organizational and structural reform. The replacement and modernization of armament have been undertaken on the basis of the “State Weapons Program for 2011-2020” (hereinafter referred to as the “current State Weapons Program”), formulated in late 2010. The reform to equip the armed forces with a high degree of mobility and professionalism as well as the latest equipment is gradually beginning to take shape. Under these circumstances, the Navy is emerging out of the battered state that ensued after the collapse of the Soviet Union. The building of new naval vessels that had been stagnant for some time and their introduction into the Navy can be seen again.
    [Show full text]
  • Technical Review of Nuclear Technology As the Advanced Ships Propulsion
    Asian Journal of Applied Sciences (ISSN: 2321 – 089) Volume 04 – Issue 03, June 2016 Technical Review of Nuclear Technology as the Advanced Ships Propulsion 1M. Badrus Zaman, 2Hadi Prasutiyon, 1Hari Prastowo and 1*Semin 1Departement of Marine Engineering, Faculty of Marine Technology Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia 2Marine Technology Graduate Program, Faculty of Marine Technology Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia *Corresponding author’s email: semin [AT] its.ac.id _________________________________________________________________________________ ABSTRACT--- Advance Ships Propulsion Nuclear Technology as The Answered. With the development of technology, the need for breakthrough in the of Maritime, especially the advance ship propulsion. Results : There have been more reactor concepts investigated in the naval propulsion area by different manufactures and laboratories than in the civilian field, and much can be learned from their experience for land applications. Conclusion: For these two considerations, it is recognized that a nuclear reactor is the ideal engine for naval advanced propulsion Keywords--- Advanced ship propulsion, diesel engine as an prime mover, nuclear technology _________________________________________________________________________________ 1. INTRODUCTION Marine transport has generally been seen as having a lower environmental impact than other forms of transport. The increasing demand for economical yet rapid movement of both passengers and freight has brought renewed momentum to the development of marine propulsion systems. New technologies are aiding the production of propulsion systems that are capable of driving vessels at higher speeds; that are more efficient; that provide better maneuverability; and are quieter, with less vibration. Here, the latest developments in marine propulsion are brought into focus [1]. Mechanical transmission from energy source to thruster, e.g.
    [Show full text]
  • SBX Sourcebook, Volume II
    An SBX Sourcebook, Volume II Version of 2012-05-13 Additional information for this sourcebook would be welcome. Please send it to [email protected] SBX ballasted down in stable “semi-submerged” operating position SBX-1 fully afloat and under way http://www.indeed.com/salary/q-Shift-Security-Lead-Sbx-l-Adak,-AK.html http://marinetraffic.com/ais/ Accessed 2012-05-11T14:32Z http://hosted.ap.org/specials/interactives/documents/nas_response.pdf April 30, 2012 Representative Michael R. Turner Chairman, Strategic Forces Subcommittee House Armed Services Committee Representative Loretta Sanchez Ranking Member House Armed Services Committee Dear Mr. Turner and Ms. Sanchez: We are pleased to provide the following responses to the twelve (12) questions you raised to us in your April 20 letter. Before doing so, however, it is appropriate to make clear that our responses are unclassified as you requested (i.e., some specific details have been omitted to avoid making this letter classified). Furthermore, our responses are based on the briefing we provided to your subcommittee on April 18, as well as the work of a National Research Council (NRC) committee1 which we co-chaired and helped prepare the NRC report entitled Making Sense of Ballistic Missile Defense: An Assessment of Concepts and Systems for U.S. Boost-Phase Missile Defense in Comparison to Other Alternatives which is undergoing final security classification review by the Missile Defense Agency (MDA). It is also appropriate to make clear that the committee examined ballistic missile defense (BMD) for the following limited missions for defense against attacks that could plausibly be mounted by “rogue states” in the next decade or so: (1) protection of the U.S.
    [Show full text]
  • Powered Icebreaker
    IOP Conference Series: Earth and Environmental Science PAPER • OPEN ACCESS Conceptual design and technical requirements analysis of nuclear- powered icebreaker To cite this article: Hu Yang et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 781 042067 View the article online for updates and enhancements. This content was downloaded from IP address 170.106.33.22 on 24/09/2021 at 20:02 5th International Symposium on Resource Exploration and Environmental Science IOP Publishing IOP Conf. Series: Earth and Environmental Science 781 (2021) 042067 doi:10.1088/1755-1315/781/4/042067 Conceptual design and technical requirements analysis of nuclear-powered icebreaker Hu Yang 1, Jianbo Rao 1 and Chenghua Zhu 2, * 1 Wuhan Institute of Shipbuilding Technology, Wuhan 430000, China 2 Wuhan Second Ship Design and Research Institute, Wuhan 430000, China *Corresponding author e-mail: [email protected] Abstract. As the Arctic’s strategic position has become increasingly prominent, China’s existing icebreaker fleet has been unable to meet the growing demand for polar affairs such as polar scientific research, Arctic shipping, and polar emergency. From the perspective of route planning, the marine environmental conditions faced by nuclear- powered icebreakers have been sorted out. The research status of domestic nuclear power plant, the selection and design of nuclear power propulsion plant and the main technical requirements were put forward. Finally, the overall plan design was carried out from the aspects of general layout, main dimensions, shaft power,
    [Show full text]
  • Russia's Nuclear Icebreaker Fleet
    Science and Global Security, 14:25–31, 2006 Copyright C Taylor & Francis Group, LLC ISSN: 0892-9882 print / 1547-7800 online DOI: 10.1080/08929880600620559 Russia’s Nuclear Icebreaker Fleet Oleg Bukharin Garrett Park, MD, USA Nuclear icebreakers remain important for the economic survival of Russia’s Arctic re- gions and are a central element of the Northern Sea Route development strategy.Reactor life extension activities are critical to sustaining the nuclear fleet, as several of the cur- rently operated nuclear icebreakers are reaching the end of design service life. Russia is also finishing a new icebreaker and is planning to build additional nuclear ships within the next 10–15 years. Nuclear icebreaker reactors are fueled with highly-enriched ura- nium (HEU), which has to be reliably protected against theft and diversion. NORTHERN SEA ROUTE Soviet nuclear icebreaker technology was a spinoff of the nuclear submarine program. It was a useful demonstration of the civilian benefits of nuclear propul- sion. It also was seen as an important element of the national strategy to develop Russia’s Arctic regions, a vast stretch of land rich in natural resources. Historically, the development of the Russian Arctic has been closely linked to the development of the Northern Sea Route (in Russian, Severny Morskoi Put’ or Sevmorput’), which was established by the Soviet Union in the 1930s. The route connects Russia’s Atlantic and Pacific ports and has been in regular use since World War II. It is open for navigation from June to November and relies on extensive infrastructure, including the fleet of icebreakers and ice- class cargo ships, aerial reconnaissance, meteorological stations, navigational aids, and port facilities.
    [Show full text]
  • Project Summary
    Contact Expert Group – Project Summary Project Title UK7 Dismantling of two Oscar 1 Class nuclear submarines General Information Start Date: 2003-11-21 End Date: 2004-12-31 Status: Completed Cost: 11 424 000 GBP Project Summary Russia constructed some 250 nuclear submarines; of which about 90 are Strategic type (Housing ballistic missiles) and the remainder were General Purpose (GP) type carrying torpedoes and/or cruise missiles. Since its signature of the START agreement, Russia has accepted an obligation to progressively reduce its submarine fleet, and this intention has been reinforced by the decline in funding for the Russian navy since Perestroika, which has both accelerated the withdrawal of submarines from active service, and inhibited work on defuelling and dismantling these submarines. The Strategic submarines issue has been the subject of a bilateral agreement with the US (under its Co- Operative Threat Reduction Programme) that agreed to fund the dismantling of about 30 such submarines. However, there has hitherto been no corresponding aid programme to fund the dismantling of GP submarines. Although of somewhat lower military significance, these are of high safety and environmental significance, since they are in many cases older than the Strategic submarines, and have in many cases deteriorated to the point where they can no longer be relied on to remain afloat. Although most of these older GP submarines have been withdrawn from service, many have not yet been defuelled, and the prospect of their sinking with their nuclear fuel still on board has been a matter of rising concern to Russia and its neighbours. The underlying objectives of this project are: - To undertake dismantling of two General Purpose nuclear submarines in NW Russia nominated by MINATOM and agreed by the UK DTI.
    [Show full text]
  • Naval Postgraduate School Thesis
    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS A STUDY OF THE RUSSIAN ACQUISITION OF THE FRENCH MISTRAL AMPHIBIOUS ASSAULT WARSHIPS by Patrick Thomas Baker June 2011 Thesis Advisor: Mikhail Tsypkin Second Reader: Douglas Porch Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED June 2011 Master‘s Thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS A Study of the Russian Acquisition of the French Mistral Amphibious Assault Warships 6. AUTHOR(S) Patrick Thomas Baker 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Postgraduate School REPORT NUMBER Monterey, CA 93943-5000 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING N/A AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
    [Show full text]
  • Atomic Icebreakers of “Taimyr” Type: Propulsion Capacity – 32 MW; Propulsion Capacity – 35 MW; Water Displacement – 19240 T
    ROSATOMFLOT 2010 Summer-Autumn Transit Voyages Russian Atomic Fleet First Atomic Icebreaker “Lenin” - 03.12.1959 Atomic Icebreakers of “Taimyr” type: Propulsion Capacity – 32 MW; Propulsion Capacity – 35 MW; Water displacement – 19240 t. Water displacement 21000 t; i/b “Taimyr” – 30.06.1989 i/b “Yaygach” – 25.07.1990 Atomic icebreakers of “Arktika” type: Propulsion Capacity – 54 MW; Water displacement – 23000 t; Atomic container carrier i/b “Arktika” – 25.04.1975 “Sevmorput” – 30.12.1988 i/b “Sibir” – 28.12.1978 Propulsion Capacity – 32,5 MW; i/b “Rossia” – 21.12.1985 Water displacement – 61000 t; i/b “Sovetsky Soyuz” – 29.12.1989 Deadweight – 33900 t. i/b “Yamal” – 28.10.1992 i/b “50 Let Pobedy” – 23.03.2007 ROSATOMFLOT The Fleet On-shore Infrastructure 1308 employees 714 employees Atomic Fleet Special Vessels 4 special 6 atomic Decommissioned vessels Decommissioned icebreakers Atomic Container Carrier Sevmorput 4 i/b of Arktika mv Lepse type i/b Lenin mv Volodarsky i/b Sibir 2 i/b of Taimyr type i/b Arktika On-shore works: • base for the atomic icebreaking fleet; Atomic fleet has 16 vessels: • full complex of ship repair; Nuclear powered vessels - 10 • nuclear fuel handling; Atomic icebreakers - 9 • radioactive wastes handling. Atomic container carrier - 1 Special vessels - 6 The summer-autumn period of 2010 was marked by a number shipping operations which involved atomic icebreakers under operation of Rosatomflot. For the first time in the history of shipping a tanker of a 100 000 tons deadweight was piloted along the Northern Sea Route. Tanker SCF-Baltica (Aframax) under the flag of Liberia of 117 000 t deadweight and ice-class Arc 5 loaded 70 thousand tons of gas condensate and left the port of Murmansk (Russia) on 14 August.
    [Show full text]
  • EURASIA States Continue to Invest in Russian Energy
    EURASIA States Continue to Invest in Russian Energy OE Watch Commentary: The Arctic LNG 2 project is located on the eastern side of the Gulf of Ob-an extension of the Arctic Kara Sea. It is opposite Novatek’s “Under the terms of the deal, Total buys original Arctic LNG project designed to exploit the vast LNG fields of the Yamal 10% in Arctic LNG 2 and has an option to (Gydan) Peninsula as the accompanying excerpted article from Interfax reports. Total is a major energy giant based in France, while Mitsubishi of Japan, Kogas increase its stake to 15% if Novatek reduces of South Korea, Nuovo of Italy and Saudi Arabia have also been in talks with its participation interest below 60%.” Novatek. End OE Watch Commentary (Grau) Source: “Novatek closes sale of 10% stake in Arctic LNG 2 to Total,” Interfax, 7 March 2019. https://www.interfax.com The Arctic LNG 2 project involves building three LNG trains at 6.6 million tons per annum each, using gravity-based structure (GBS) platforms. [An “LNG train” is a liquefied natural gas plant’s liquefaction and purification facility. In order to transport LNG from one country to another, its volume has to be dramatically reduced. To do this, the gas must be liquefied by refrigeration to less than -161 °C. This refrigeration process is conducted in multiple units arranged sequentially-like a train.] The project is based on the hydrocarbon resources of the Utrennoye field on the Gydan Peninsula. The final investment decision on the project is expected to be made in the second half of 2019, and production at the first train of the plant is scheduled to start in 2023.
    [Show full text]
  • Illllllllll DK9700033
    Nordisk Nordisk Pohjoismamen Nordic kerne- karn- ydin- nuclear sikkerheds- sakerhcts- turvallisuus- safety forskning forskning uitkimus research RAK-2 NKS/RAK-2(96)TR-C3 Illllllllll DK9700033 Accidents in Nuclear Ships P. L. 01gaard Rise National Laboratory DK-4000 Roskilde, Denmark Institute of Physics Technical University of Denmark DK-2800 Lyngby, Denmark December 1996 Abstract This report starts with a discussion of the types of nuclear vessels accidents, in particular accidents which involve the nuclear propulsion systems. Next available information on 61 reported nuclear ship events is considered. Of these 6 deals with U.S. ships, 54 with USSR ships and 1 with a French ship. The ships are in almost all cases nuclear submarines. Only events that involve the sinking of vessels, the nuclear propulsion plants, radiation exposures, fires/explosions, sea-water leaks into the submarines and sinking of vessels are considered. For each event a summary of available information is presented, and comments are added. In some cases the available information is not credible, and these events are neglected. This reduces the number of events to 5 U.S. events, 35 USSR/Russian events and 1 French event. A comparison is made between the reported Soviet accidents and information available on dumped and damaged Soviet naval reactors. It seems possible to obtain good correlation between the two types of events. An analysis is made of the accident and estimates are made of the accident probabilities which are found to be of the order of 10"3 per ship reactor year It is finally pointed out that the consequences of nuclear ship accidents are fairly local and does in no way not approach the magnitude of the Chernobyl accident.
    [Show full text]
  • The Russian Northern Fleet Sources of Radioactive Contamination
    NO9600025 Bellona Report Volume 2:1996 NEI-NO--726 \ Sources of Radioactive contamination Thomas Nilsen Igor Kudrik Alexandr Nikitin BELLONA V .., I! V: NO9600025 Bellona Report Volume 2:1996 The Russian Northern Fleet Sources of Radioactive contamination Thomas Nilsen Igor Kudrik Alexandr Nikitin 2 C 1 0 1 The publication of this report is sponsored by: Stiftelsen Fritt Ord/Foundation for Freedom of Expression (Main contributor) Contributors: Norsk Hydro a.s. Petrochemicals Division NORSAS, Norwegian Resource Centre for Waste Aker ASA Management and Recycling Chemical Workers Union of Norway Norsk Sivilingeni0rers Forening Norwegian Seafood Export Council Norges ingeni0rorganisasjon (NITO) FESIL AS Green Sea Operations AS Norwegian Society of Engineers UNI STOREBRAND Confederation of Norwegian Business and Industry AGAAS WASA Forsiikring (Stockholm) OZO Hotwater A/S Norwegian Fishermen's Association Energiforsyningens Fellesorganisasjon EnFO Norwegian Federation of Oilworkers' Trade Union Store Norske Spitsbergen Kullkompani AS Norwegian Polar Institute Svalbard Samfunnsdrift AS Odda Smelteverk Norzink AS Published by: The Bellona Foundation Norway: P.O. Box 2141, Griinerl0kka N-0505 OSLO, Norway. E-mail: [email protected] Russia: Brussels: USA Russia Bellona Europa Bellona USA 183038 Murmansk 142-144 Avenue de Tervueren 310 D Street NE P.O. Box 4310 B-1150Bruxelles Washington, DC 20002 Bellona Russia Belgium USA E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] URL: Photos: Copying permitted when source is http://www.grida.no/ngo/bellona/ John Berg (archive), Thorbj0rn Bj0r- stated. kli, Per Stale Bugjerde, Nils B0hmer, ISBN 82-993138-5-6 The Norwegian Defence, Frederic Comments to this report are welco- ISSN 0806-3451 Hauge, Aleksej Klimov, Igor Kudrik, med.
    [Show full text]
  • Nuclear Reactors in Arctic Russia
    NUCLEAR REACTORS IN ARCTIC RUSSIA Scenario 2035 The nuclearification of Russian Arctic territories is by Moscow given highest priority for development in shipping, infrastructure and exploration of natural resources. Additionally, the number of navy military reactors in the north will increase substantially over the next 15 years. This scenario paper gives an overview of the situation. The paper is part of the Barents Observer’s analytical popular science studies on developments in the Euro-Arctic Region. Thomas Nilsen June 2019 June 2019 The Barents Observer – Nuclear Reactors in Northern Russia, June 2019 1 June 2019 Published by: The Independent Barents Observer Address: Storgata 5, 9900 Kirkenes, Norway E-mail: [email protected] thebarentsobserver.com (English, Russian and Chinese versions of the news-portal) Twitter @BarentsNews Instagram: @BarentsObserver Facebook.com/BarentsObserver/ Author: Thomas Nilsen, E-mail: [email protected] Twitter: @NilsenThomas Photos and illustrations: Rosatom, Rosatomflot, Thomas Nilsen, Oleg Kuleshov, H I Sutton, Atle Staalesen, Alexey Mkrtchyan, Wikimedia Commons. Keywords: Nuclear, Reactors, Icebreakers, Submarines, Northern Fleet, Russia, Arctic, Northern Sea Route, Nuclear Power, Kola Peninsula, Siberia, Arkhangelsk, Severodvinsk, Severomorsk, Murmansk, Pevek, Barents Sea, Kara Sea, White Sea. This publication is financially supported with a grant from the Norwegian Government’s Nuclear Action Plan administrated by the Norwegian Radiation and Nuclear Safety Authority. (www.dsa.no/en/). The Barents Observer – Nuclear Reactors in Northern Russia, June 2019 2 June 2019 Introduction At the peak of the Cold War some 150 nuclear-powered submarines were based on the Barents Sea coast of the Kola Peninsula. Many ships were transporting and storing nuclear waste and at shipyards and bases, spent nuclear fuel and radioactive waste was accumulated.
    [Show full text]