The Identification of a SIRT6 Activator from Brown Algae Fucus Distichus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Algae & Marine Plants of Point Reyes
Algae & Marine Plants of Point Reyes Green Algae or Chlorophyta Genus/Species Common Name Acrosiphonia coalita Green rope, Tangled weed Blidingia minima Blidingia minima var. vexata Dwarf sea hair Bryopsis corticulans Cladophora columbiana Green tuft alga Codium fragile subsp. californicum Sea staghorn Codium setchellii Smooth spongy cushion, Green spongy cushion Trentepohlia aurea Ulva californica Ulva fenestrata Sea lettuce Ulva intestinalis Sea hair, Sea lettuce, Gutweed, Grass kelp Ulva linza Ulva taeniata Urospora sp. Brown Algae or Ochrophyta Genus/Species Common Name Alaria marginata Ribbon kelp, Winged kelp Analipus japonicus Fir branch seaweed, Sea fir Coilodesme californica Dactylosiphon bullosus Desmarestia herbacea Desmarestia latifrons Egregia menziesii Feather boa Fucus distichus Bladderwrack, Rockweed Haplogloia andersonii Anderson's gooey brown Laminaria setchellii Southern stiff-stiped kelp Laminaria sinclairii Leathesia marina Sea cauliflower Melanosiphon intestinalis Twisted sea tubes Nereocystis luetkeana Bull kelp, Bullwhip kelp, Bladder wrack, Edible kelp, Ribbon kelp Pelvetiopsis limitata Petalonia fascia False kelp Petrospongium rugosum Phaeostrophion irregulare Sand-scoured false kelp Pterygophora californica Woody-stemmed kelp, Stalked kelp, Walking kelp Ralfsia sp. Silvetia compressa Rockweed Stephanocystis osmundacea Page 1 of 4 Red Algae or Rhodophyta Genus/Species Common Name Ahnfeltia fastigiata Bushy Ahnfelt's seaweed Ahnfeltiopsis linearis Anisocladella pacifica Bangia sp. Bossiella dichotoma Bossiella -
The Marine Life Information Network® for Britain and Ireland (Marlin)
The Marine Life Information Network® for Britain and Ireland (MarLIN) Description, temporal variation, sensitivity and monitoring of important marine biotopes in Wales. Volume 1. Background to biotope research. Report to Cyngor Cefn Gwlad Cymru / Countryside Council for Wales Contract no. FC 73-023-255G Dr Harvey Tyler-Walters, Charlotte Marshall, & Dr Keith Hiscock With contributions from: Georgina Budd, Jacqueline Hill, Will Rayment and Angus Jackson DRAFT / FINAL REPORT January 2005 Reference: Tyler-Walters, H., Marshall, C., Hiscock, K., Hill, J.M., Budd, G.C., Rayment, W.J. & Jackson, A., 2005. Description, temporal variation, sensitivity and monitoring of important marine biotopes in Wales. Report to Cyngor Cefn Gwlad Cymru / Countryside Council for Wales from the Marine Life Information Network (MarLIN). Marine Biological Association of the UK, Plymouth. [CCW Contract no. FC 73-023-255G] Description, sensitivity and monitoring of important Welsh biotopes Background 2 Description, sensitivity and monitoring of important Welsh biotopes Background The Marine Life Information Network® for Britain and Ireland (MarLIN) Description, temporal variation, sensitivity and monitoring of important marine biotopes in Wales. Contents Executive summary ............................................................................................................................................5 Crynodeb gweithredol ........................................................................................................................................6 -
Download PDF Version
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Dabberlocks (Alaria esculenta) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Dr Harvey Tyler-Walters 2008-05-29 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1291]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tyler-Walters, H., 2008. Alaria esculenta Dabberlocks. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1291.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2008-05-29 Dabberlocks (Alaria esculenta) - Marine Life Information Network See online review for distribution map Exposed sublittoral fringe bedrock with Alaria esculenta, Isles of Scilly. -
Optimization of Seedling Production Using Vegetative Gametophytes Of
Optimization of seedling production using vegetative gametophytes of Alaria esculenta Aires Duarte Mestrado em Biologia Funcional e Biotecnologia de Plantas Departamento de Biologia 2017 Orientador Isabel Sousa Pinto, associate professor, CIIMAR Coorientador Jorunn Skjermo, Senior Scientist, SINTEF OCEAN 2 3 Acknowledgments First and foremost, I would like to express my sincere gratitude to: professor Isabel Sousa Pinto of Universidade do Porto and senior research scientist Jorunn Skjermo of SINTEF ocean. From the beginning I had an interest to work aboard with macroalgae, after talking with prof. Isabel Sousa Pinto about this interest, she immediately suggested me a few places that I could look over. One of the suggestions was SINTEF ocean where I got to know Jorunn Skjermo. The door to Jorunn’s office was always open whenever I ran into a trouble spot or had a question about my research. She consistently allowed this study to be my own work, but steered me in the right the direction whenever she thought I needed it. Thank you!! I want to thank Isabel Azevedo, Silje Forbord and Kristine Steinhovden for all the guidance provided in the beginning and until the end of my internship. I would also like to thank the experts who were involved in the different subjects of my research project: Arne Malzahn, Torfinn Solvang-Garten, Trond Storseth and to the amazing team of SINTEF ocean. I also want to thank my master’s director professor Paula Melo, who was a relentless person from the first day, always taking care of her “little F1 plants”. A huge thanks to my fellows Mónica Costa, Fernando Pagels and Leonor Martins for all the days and nights that we spent working and studying hard. -
Seaweed Harvesting and Processing
FISHERIES DIVERSIFICATION PROGRAM Productivity and Product Enhancement Project Summary: FDP 17 2002 Sea Kelp Health Products Developed and Marketing Goals Pursued This project involves the marketing and development of certain types of seaweed or kelp found near Ramea as new health food products. This project assisted Newfoundland Aqua Products Inc. (NAPI) with the design and con- struction of a prototype food grade product shredder, the hiring of a full-time marketing person and improvements to the company website - www.nfkelp.com. Background Newfoundland Aqua Products Inc. produced and sold the first encapsulated marine plant One of many kelp products available. nutritional supplements every manufactured in Newfoundland at Ramea in 1998. From the Methodology harvesting to the bottling and labeling, all This company has been inspected and is reg- aspects of the creation of these new kelp ulated by the Canadian Food Inspection products were completed in this province. Agency. Their harvesting sites and process- One main goal since those times has been to ing methods are Certified Organic. The try and secure a number of contracts with dis- species available in commercial quantities tributors and manufacturers for their products are Laminaria digitata, Ascophyllum under the SeaviteTM name. The company nodosum, fucus species and alaria esculenta. also sought others who would be interested in The company employs up to 11 people who buying bulk amounts of their products. The harvest the marine vegetables with knives company has been told by a number of busi- and scissors. The company has been careful ness contacts that the marine plant industry to develop a harvesting plan based on an has great potential and is just at the start of its approved crop rotation system with a strong growth potential as people accept marine priority on sustainability. -
Safety Assessment of Brown Algae-Derived Ingredients As Used in Cosmetics
Safety Assessment of Brown Algae-Derived Ingredients as Used in Cosmetics Status: Draft Report for Panel Review Release Date: August 29, 2018 Panel Meeting Date: September 24-25, 2018 The 2018 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This report was prepared by Lillian C. Becker, former Scientific Analyst/Writer and Priya Cherian, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Priya Cherian, Scientific Analyst/Writer Date: August 29, 2018 Subject: Safety Assessment of Brown Algae as Used in Cosmetics Enclosed is the Draft Report of 83 brown algae-derived ingredients as used in cosmetics. (It is identified as broalg092018rep in this pdf.) This is the first time the Panel is reviewing this document. The ingredients in this review are extracts, powders, juices, or waters derived from one or multiple species of brown algae. Information received from the Personal Care Products Council (Council) are attached: • use concentration data of brown algae and algae-derived ingredients (broalg092018data1, broalg092018data2, broalg092018data3); • Information regarding hydrolyzed fucoidan extracted from Laminaria digitata has been included in the report. -
Development and Function of Plasmodesmata in Zygotes of Fucus Distichus
Botanica Marina 2015; 58(3): 229–238 Chikako Nagasato*, Makoto Terauchi, Atsuko Tanaka and Taizo Motomura Development and function of plasmodesmata in zygotes of Fucus distichus Abstract: Brown algae have plasmodesmata, tiny tubu- Introduction lar cytoplasmic channels connecting adjacent cells. The lumen of plasmodesmata is 10–20 nm wide, and it takes a Multicellular organisms such as animals, fungi, land simple form, without a desmotubule (the inner membrane plants, and brown algae have specific cellular connections. structure consisting of endoplasmic reticulum in the plas- These structures connect the cytoplasm of adjacent cells modesmata of green plants). In this study, we analyzed and provide a route for cell-cell communication. Green the ultrastructure and distribution of plasmodesmata plants, including land plants and certain species of green during development of Fucus distichus zygotes. The first algae (reviewed in Robards and Lucas 1990, Raven 1997), cytokinesis of zygotes in brown algae is not accompanied and brown algae (Bisalputra 1966) possess plasmodes- by plasmodesmata formation. As the germlings develop, mata. These are cytoplasmic canals that pass through the plasmodesmata are found in all septal cell walls, includ- septal cell wall and connect adjacent cells. Plasmodes- ing the first cell division plane. Plasmodesmata are formed mata in green plants and brown algae share similar char- de novo on the existing cell wall. Pit fields, which are clus- acteristics; however, plasmodesmata in brown algae lack ters of plasmodesmata, were observed in germlings with a desmotubule, a tubular strand of connecting endoplas- differentiated cell layers. Apart from the normal plas- mic reticulum (ER) that penetrates the plasmodesmata modesmata, these pit fields had branched plasmodes- of land plants (Terauchi et al. -
Kelp Aquaculture
Aquaculture in Shared Waters Kelp Aquaculture Sarah Redmond1 ; Samuel Belknap2 ; Rebecca Clark Uchenna3 “Kelp” are large brown marine macroalgae species native to New England and traditionally wild harvested for food. There are three commercially important kelp species in Maine—sugar kelp (Saccharina latissima), winged kelp (Alaria esculenta), and horsetail kelp (Laminaria digitata). Maine is developing techniques for culturing kelp on sea farms as a way for fishermen and farmers to diversify their operations while providing a unique, high quality, nutritious vegetable seafood for new and existing markets. Kelp is grown on submerged horizontal long lines on leased sea farms from September to May, making it a “winter crop” for Maine. The simple farm design, winter season, and relatively low startup costs allow for new and existing sea farmers to experiment with this newly developing type of aquaculture on Maine’s coast. “Kelp” can refer to sugar kelp (Saccharina latissima), Alaria (Alaria esculenta), or horsetail kelp (Laminaria digitata). Sugar kelp has been cultivated in Maine for several years, and successful experimental cultivation has been done with species such as Alaria. These photos are examples of the cultivation stages of sugar kelp. Microscopic Seeded kelp line Kelp line at time of kelp seed harvest 1 Sarah Redmond • Marine Extension Associate, Maine Sea Grant College Program and University of Maine Cooperative Extension 33 Salmon Farm Road Franklin, ME • 207.422.6289 • [email protected] 2 Samuel Belknap • University of Maine • 234C South Stevens Hall Orono, ME • 207.992.7726 • [email protected] 3 Rebecca Clark Uchenna • Island Institute • Rockland, ME • 207.691.2505 • [email protected] Is there a viable market for Q: kelps grown in Maine? aine is home to a handful of consumers are looking for healthier industry, the existing producers and Mcompanies that harvest sea alternatives. -
Full Text in Pdf Format
Vol. 9: 57–71, 2017 AQUACULTURE ENVIRONMENT INTERACTIONS Published February 8§ doi: 10.3354/aei00215 Aquacult Environ Interact OPEN ACCESS Successional changes of epibiont fouling communities of the cultivated kelp Alaria esculenta: predictability and influences A. M. Walls1,*, M. D. Edwards1, L. B. Firth2, M. P. Johnson1 1Irish Seaweed Research Group, Ryan Institute, National University of Ireland, Galway, Ireland 2School of Geography, Earth & Environmental Science, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK ABSTRACT: There has been an increase in commercial-scale kelp cultivation in Europe, with fouling of cultivated kelp fronds presenting a major challenge to the growth and development of the industry. The presence of epibionts decreases productivity and impacts the commercial value of the crop. Several abiotic and biotic factors may influence the occurrence and degree of fouling of wild and cultivated fronds. Using a commercial kelp farm on the SW coast of Ireland, we studied the development of fouling communities on cultivated Alaria esculenta fronds over 2 typical grow- ing seasons. The predictability of community development was assessed by comparing mean occurrence-day. Hypotheses that depth, kelp biomass, position within the farm and the hydrody- namic environment affect the fouling communities were tested using species richness and com- munity composition. Artificial kelp mimics were used to test whether local frond density could affect the fouling communities. Species richness increased over time during both years, and spe- cies composition was consistent over years with early successional communities converging into later communities (no significant differences between June 2014 and June 2015 communities, ANOSIM; R = −0.184, p > 0.05). -
Seaweed Aquaculture in Norway: Recent Industrial Developments and Future Perspectives
Aquacult Int DOI 10.1007/s10499-017-0120-7 Seaweed aquaculture in Norway: recent industrial developments and future perspectives Pierrick Stévant1,2 & Céline Rebours1,3 & Annelise Chapman1 Received: 7 June 2016 /Accepted: 18 January 2017 # The Author(s) 2017. This article is published with open access at Springerlink.com Abstract The use of cultivated seaweeds as a feedstock for multiple industrial applica- tions has gained increasing interest in the Western World over the past decades. Norway has an extensive coastline and a well-established aquaculture sector offering suitable preconditions for developing large-scale cultivation of seaweed biomass both in mono- culture and in Integrated Multi-Trophic Aquaculture (IMTA) systems. Recent efforts from research, industry and public authorities have been committed to develop a Nor- wegian bio-economy based on cultivated seaweed, focusing on cultivation and process- ing of the biomass. This review reports on the status of seaweed aquaculture in Norway, supported by production data collected since the delivery of the first commercial cultivation permits at sea in 2014. Although novel product developments are currently limited, future industrial perspectives based on cultivated biomass are being discussed. Upscaling from experimental cultivation schemes to commercial production requires a thorough assessment of the risks and benefits associated with seaweed aquaculture, as well as the development of a regulative framework adapted to this industry. Issues associated with upscaling the macroalgal production that needs to be addressed includes (i) genetic interactions between cultivated and wild crops, (ii) impacts of seaweed cultivation on surrounding ecosystems, (iii) epiphytes and diseases, (iv) area utilization and (v) threats from climate change. -
Fucoid Algae As Model Organisms for Investigating Early Embryogenesis
Cah. Biol. Mar. (2001) 42 : 101-107 Fucoid algae as model organisms for investigating early embryogenesis Francois-Yves BOUGET1, Florence CORELLOU1 & Darryl L. KROPF2* 1 UMR 1931 CNRS-Goëmar, Station Biologique CNRS-INSU-Université Paris 6, Place Georges-Teissier, BP 74, F29682 Roscoff Cedex, France. 2 University of Utah, Department of Biology, 257 South 1400 East Salt Lake City, UT 84112-0840, USA E-mail: [email protected] * Author for correspondence Abstract: In the past few years, there have been exciting advances in our understanding of the mechanisms that control morphogenesis in fucoid embryos. In this article we review recent findings from our laboratories concerning 1) polarity establishment and expression in the zygote and 2) development of the zygote into a multicellular embryo. Résumé : Durant la dernière décennie, des avancées importantes ont été réalisées dans la compréhension des mécanismes qui contrôlent la morphogenèse des embryons de Fucacées. Dans cette revue, nous présentons les résultats récents obtenus dans nos laboratoires respectifs concernant 1) l’établissement de la polarité et son expression dans le zygote et 2) le déve- loppement du zygote en un embryon pluricellulaire. Keywords : Fucus, Pelvetia, embryogenesis, polarity. Introduction onto the substratum (rocks in the intertidal zone) where they attach tenaciously by a secreted adhesive (Vreeland et al., In addition to their importance as sources of natural 1993). Rapid adhesion is critical for survival because polymers and foods, many marine algae also provide zygotes that fail to attach are washed out to sea in the next excellent opportunities for investigating the mechanisms tidal cycle. As was first recognized over 100 years ago by that control development. -
Ascophyllum Nodosum) in Breiðafjörður, Iceland: Effects of Environmental Factors on Biomass and Plant Height
Rockweed (Ascophyllum nodosum) in Breiðafjörður, Iceland: Effects of environmental factors on biomass and plant height Lilja Gunnarsdóttir Faculty of Life and Environmental Sciences University of Iceland 2017 Rockweed (Ascophyllum nodosum) in Breiðafjörður, Iceland: Effects of environmental factors on biomass and plant height Lilja Gunnarsdóttir 60 ECTS thesis submitted in partial fulfillment of a Magister Scientiarum degree in Environment and Natural Resources MS Committee Mariana Lucia Tamayo Karl Gunnarsson Master’s Examiner Jörundur Svavarsson Faculty of Life and Environmental Science School of Engineering and Natural Sciences University of Iceland Reykjavik, December 2017 Rockweed (Ascophyllum nodosum) in Breiðafjörður, Iceland: Effects of environmental factors on biomass and plant height Rockweed in Breiðafjörður, Iceland 60 ECTS thesis submitted in partial fulfillment of a Magister Scientiarum degree in Environment and Natural Resources Copyright © 2017 Lilja Gunnarsdóttir All rights reserved Faculty of Life and Environmental Science School of Engineering and Natural Sciences University of Iceland Askja, Sturlugata 7 101, Reykjavik Iceland Telephone: 525 4000 Bibliographic information: Lilja Gunnarsdóttir, 2017, Rockweed (Ascophyllum nodosum) in Breiðafjörður, Iceland: Effects of environmental factors on biomass and plant height, Master’s thesis, Faculty of Life and Environmental Science, University of Iceland, pp. 48 Printing: Háskólaprent Reykjavik, Iceland, December 2017 Abstract During the Last Glacial Maximum (LGM) ice covered all rocky shores in eastern N-America while on the shores of Europe ice reached south of Ireland where rocky shores were found south of the glacier. After the LGM, rocky shores ecosystem development along European coasts was influenced mainly by movement of the littoral species in the wake of receding ice, while rocky shores of Iceland and NE-America were most likely colonized from N- Europe.