EOAR-Raport Tech-Bibliothèque

Total Page:16

File Type:pdf, Size:1020Kb

EOAR-Raport Tech-Bibliothèque Estuary and Gulf of St. Lawrence Marine EEEcosystemEcosystem OOOverviewOverview and AAAssessmentAssessment RRReportReport R. Dufour and P. Ouellet (editors) Science Branch Department of Fisheries and Oceans Maurice–Lamontagne Institut 850, route de la Mer Mont–Joli (Québec) G5H 3Z4 2007 Canadian Technical Report of Fisheries and Aquatic Sciences 2744E Canadian Technical Report of Fisheries and Aquatic Sciences Technical reports contain scientific and technical information that contributes to existing knowledge but which is not normally appropriate for primary literature. Technical reports are directed primarily toward a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries and aquatic sciences. Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts . Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925. Rapport technique canadien des sciences halieutiques et aquatiques Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la publication dans un journal scientifique. Les rapports techniques sont destinés essentiellement à un public international et ils sont distribués à cet échelon. II n'y a aucune restriction quant au sujet; de fait, la série reflète la vaste gamme des intérêts et des politiques de Pêches et Océans Canada, c'est-à-dire les sciences halieutiques et aquatiques. Les rapports techniques peuvent être cités comme des publications à part entière. Le titre exact figure au- dessus du résumé de chaque rapport. Les rapports techniques sont résumés dans la base de données Résumés des sciences aquatiques et halieutiques. Les rapports techniques sont produits à l'échelon régional, mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page du titre. Les numéros 1 à 456 de cette série ont été publiés à titre de Rapports techniques de l'Office des recherches sur les pêcheries du Canada. Les numéros 457 à 714 sont parus à titre de Rapports techniques de la Direction générale de la recherche et du développement, Service des pêches et de la mer, ministère de l'Environnement. Les numéros 715 à 924 ont été publiés à titre de Rapports techniques du Service des pêches et de la mer, ministère des Pêches et de l'Environnement. Le nom actuel de la série a été établi lors de la parution du numéro 925. i Canadian Technical Report Fishery and Aquatic Sciences 2744E 2007 ESTUARY AND GULF OF ST. LAWRENCE MARINE ECOSYSTEM OVERVIEW AND ASSESSMENT REPORT R. Dufour and P. Ouellet (editors) Department of Fisheries and Oceans Maurice–Lamontagne Institut 850, route de la Mer Mont–Joli (Québec) G5H 3Z4 ii © Her Majesty the Queen in Right of Canada, 2007. Cat. No. Fs 97–6/2744E ISSN 1488–5379 Correct citation for this publication: Dufour, R., and Ouellet, P. 2007. Estuary and Gulf of St. Lawrence marine ecosystem overview and assessment report. Can. Tech. Rep. Fish. Aquat. Sci. 2744E: vii + 112 p. Cette publication est également disponible en français. iii TABLE OF CONTENTS LIST OF FIGURES .................................................................................................................... vii LIST OF TABLES ...................................................................................................................... vii ABSTRACT................................................................................................................................. vii RÉSUMÉ ..................................................................................................................................... vii 1.0 INTRODUCTION................................................................................................................... 1 2.0 PHYSICAL AND CHEMICAL SYSTEM ........................................................................... 2 2.1 Physical environment........................................................................................................ 2 2.1.1 Geomorphologic structure and characteristics ............................................................2 2.1.2 Descriptive physical oceanography.............................................................................2 2.1.3 Dynamic physical oceanography in the Estuary and Gulf of St. Lawrence................5 2.1.4 Forcing.........................................................................................................................5 2.2 Chemical environment...................................................................................................... 9 2.2.1 Chemical characteristics of the water masses..............................................................9 2.2.2 Suspended particulate matter (SPM) ...........................................................................9 2.2.3 Nutrients ....................................................................................................................12 2.2.4 Oxygen.......................................................................................................................13 2.2.5 Organic carbon ..........................................................................................................14 2.2.6 Metabolism in the Gulf of St. Lawrence and carbon fluxes......................................17 3.0 BIOLOGICAL SYSTEM..................................................................................................... 18 3.1 Plankton community....................................................................................................... 18 3.1.1 Bacterioplankton........................................................................................................18 3.1.2 Phytoplankton............................................................................................................19 3.1.3 Zooplankton...............................................................................................................19 3.1.4 Ichthyoplankton.........................................................................................................21 3.2 Macrophytes .................................................................................................................... 22 3.2.1 Macroalgae in the St. Lawrence system ....................................................................22 3.2.2 The macrophyte distribution......................................................................................22 3.2.3 Vascular plants in the St. Lawrence system ..............................................................23 3.3 Zoobenthic community ................................................................................................... 26 3.3.1 Gulf of St. Lawrence benthic community .................................................................26 3.3.2 St. Lawrence Estuary benthic community.................................................................28 iv 3.4 Fish Community .............................................................................................................. 32 3.4.1 Marine fishes .............................................................................................................32 3.4.2 Diadromous fishes .....................................................................................................34 3.5 Marine Mammals and Leatherback turtle ................................................................... 35 3.5.1 Whales .......................................................................................................................35 3.5.2 Seals of the St. Lawrence ..........................................................................................37 3.5.3 Leatherback turtles ( Dermochelys coriacea ).............................................................37 3.6 Marine birds .................................................................................................................... 38 4.0 SOME ELEMENTS OF THE GULF ECOSYSTEM DYNAMICS ................................ 39 4.1 Seasonal biological production cycles............................................................................ 39 4.2 Lower Estuary–Gaspé Current–southwestern Gulf complex..................................... 40 4.3 Northwestern Gulf (Anticosti Gyre).............................................................................. 42 4.4 Northeastern Gulf ........................................................................................................... 43 4.5 Recent changes in the Gulf of St. Lawrence ................................................................. 44 4.6 Marine food web dynamics............................................................................................
Recommended publications
  • Infinity Summer Rain Safety Data Sheet
    Infinity Summer Rain Safety Data Sheet SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product form : Mixture Product name : Infinity Summer Rain Product code : 11414 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Deodorizer 1.3. Details of the supplier of the safety data sheet Val-U-Chem Inc. PO Box 82310 Phoenix, AZ 85071 - USA T 602-957-2808 - F 602-957-2980 1.4. Emergency telephone number Emergency number : 800-255-3924 SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification (GHS-US) Eye Irrit. 2A H319 Skin Sens. 1 H317 Full text of H-phrases: see section 16 2.2. Label elements GHS-US labeling Hazard pictograms : GHS07 Signal word : Warning Hazard statements : May cause an allergic skin reaction. Causes serious eye irritation. Precautionary statements : Avoid breathing mist, vapors. Wash hands and forearms thoroughly after handling. Contaminated work clothing must not be allowed out of the workplace. Wear eye protection, protective gloves. If on skin: Wash with plenty of water. If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If skin irritation or rash occurs: Get medical advice/attention. If eye irritation persists: Get medical advice/attention. Take off contaminated clothing and wash it before reuse. Dispose of contents/container in accordance with Local, State, and Federal regulations. 2.3. Hazard not otherwise classified (HNOC) No additional information available 2.4. Unknown acute toxicity (GHS-US) No data available SECTION 3: Composition/information on ingredients 3.1.
    [Show full text]
  • Algae & Marine Plants of Point Reyes
    Algae & Marine Plants of Point Reyes Green Algae or Chlorophyta Genus/Species Common Name Acrosiphonia coalita Green rope, Tangled weed Blidingia minima Blidingia minima var. vexata Dwarf sea hair Bryopsis corticulans Cladophora columbiana Green tuft alga Codium fragile subsp. californicum Sea staghorn Codium setchellii Smooth spongy cushion, Green spongy cushion Trentepohlia aurea Ulva californica Ulva fenestrata Sea lettuce Ulva intestinalis Sea hair, Sea lettuce, Gutweed, Grass kelp Ulva linza Ulva taeniata Urospora sp. Brown Algae or Ochrophyta Genus/Species Common Name Alaria marginata Ribbon kelp, Winged kelp Analipus japonicus Fir branch seaweed, Sea fir Coilodesme californica Dactylosiphon bullosus Desmarestia herbacea Desmarestia latifrons Egregia menziesii Feather boa Fucus distichus Bladderwrack, Rockweed Haplogloia andersonii Anderson's gooey brown Laminaria setchellii Southern stiff-stiped kelp Laminaria sinclairii Leathesia marina Sea cauliflower Melanosiphon intestinalis Twisted sea tubes Nereocystis luetkeana Bull kelp, Bullwhip kelp, Bladder wrack, Edible kelp, Ribbon kelp Pelvetiopsis limitata Petalonia fascia False kelp Petrospongium rugosum Phaeostrophion irregulare Sand-scoured false kelp Pterygophora californica Woody-stemmed kelp, Stalked kelp, Walking kelp Ralfsia sp. Silvetia compressa Rockweed Stephanocystis osmundacea Page 1 of 4 Red Algae or Rhodophyta Genus/Species Common Name Ahnfeltia fastigiata Bushy Ahnfelt's seaweed Ahnfeltiopsis linearis Anisocladella pacifica Bangia sp. Bossiella dichotoma Bossiella
    [Show full text]
  • High-Resolution Simulations of Freezing Drizzle and Freezing Rain and Comparisons to Observations
    High-resolution simulations of freezing drizzle and freezing rain and comparisons to observations Greg Thompson Research Applications Laboratory National Center for Atmospheric Research additional contributions by: Roy Rasmussen, Trude Eidhammer, Kyoko Ikeda, Changhai Liu, Pedro Jimenez, Mei Xu, Stan Benjamin Winterwind 7 Feb 2017, Skelleftea, Sweden Outline • Brief History • High-Resolution Forecasts o Supercooled water drops aloft o Ground icing • Verification o Weather Research & Forecasting, WRF o High Resolution Rapid Refresh, HRRR • Next steps o Time-lag ensemble average o Making clouds better o WISLINE project and AROME model With respect to Numerical Weather Prediction The microphysics scheme is a component in a weather model responsible for: • Condensing water vapor into droplets • Model collisions with other droplets to become drizzle/rain • Creating ice crystals via droplet freezing or vapor-to-ice conversion • Growing ice crystals to snow size • Letting snow collect cloud water droplets (riming or accretion) • Large drops freeze into hail, snow rimes heavily to create graupel • Making rain, snow, and graupel fall to earth • etc. The treatment of processes going between water vapor, liquid water, and ice. Cloud physics & precipitation NCAR-RAL microphysics scheme Scheme version/generation Research or operational model Reisner, Rasmussen, Bruintjes (1998MWR) MM5 Rapid Update Cycle (RUC) Thompson, Rasmussen, Manning (2004MWR) MM5 WRF RUC Thompson, Field, Rasmussen, Hall (2008MWR) MM5 WRF & HWRF RUC Rapid Refresh (RAP) High-Res
    [Show full text]
  • FAA Advisory Circular AC 91-74B
    U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Pilot Guide: Flight in Icing Conditions Date:10/8/15 AC No: 91-74B Initiated by: AFS-800 Change: This advisory circular (AC) contains updated and additional information for the pilots of airplanes under Title 14 of the Code of Federal Regulations (14 CFR) parts 91, 121, 125, and 135. The purpose of this AC is to provide pilots with a convenient reference guide on the principal factors related to flight in icing conditions and the location of additional information in related publications. As a result of these updates and consolidating of information, AC 91-74A, Pilot Guide: Flight in Icing Conditions, dated December 31, 2007, and AC 91-51A, Effect of Icing on Aircraft Control and Airplane Deice and Anti-Ice Systems, dated July 19, 1996, are cancelled. This AC does not authorize deviations from established company procedures or regulatory requirements. John Barbagallo Deputy Director, Flight Standards Service 10/8/15 AC 91-74B CONTENTS Paragraph Page CHAPTER 1. INTRODUCTION 1-1. Purpose ..............................................................................................................................1 1-2. Cancellation ......................................................................................................................1 1-3. Definitions.........................................................................................................................1 1-4. Discussion .........................................................................................................................6
    [Show full text]
  • February 2021 Historical Winter Storm Event South-Central Texas
    Austin/San Antonio Weather Forecast Office WEATHER EVENT SUMMARY February 2021 Historical Winter Storm Event South-Central Texas 10-18 February 2021 A Snow-Covered Texas. GeoColor satellite image from the morning of 15 February, 2021. February 2021 South Central Texas Historical Winter Storm Event South-Central Texas Winter Storm Event February 10-18, 2021 Event Summary Overview An unprecedented and historical eight-day period of winter weather occurred between 10 February and 18 February across South-Central Texas. The first push of arctic air arrived in the area on 10 February, with the cold air dropping temperatures into the 20s and 30s across most of the area. The first of several frozen precipitation events occurred on the morning of 11 February where up to 0.75 inches of freezing rain accumulated on surfaces in Llano and Burnet Counties and 0.25-0.50 inches of freezing rain accumulated across the Austin metropolitan area with lesser amounts in portions of the Hill Country and New Braunfels area. For several days, the cold air mass remained in place across South-Central Texas, but a much colder air mass remained stationary across the Northern Plains. This record-breaking arctic air was able to finally move south into the region late on 14 February and into 15 February as a strong upper level low-pressure system moved through the Southern Plains. As this system moved through the region, snow began to fall and temperatures quickly fell into the single digits and teens. Most areas of South-Central Texas picked up at least an inch of snow with the highest amounts seen from Del Rio and Eagle Pass extending to the northeast into the Austin and San Antonio areas.
    [Show full text]
  • Winter Bird Feeding
    BirdNotes 1 Winter Bird Feeding birds at feeders in winter If you feed birds, you’re in good company. Birding is one of North America’s favorite pastimes. A 2006 report from the U.S. Fish and Wildlife Service estimates that about 55.5 mil- lion Americans provide food for wild birds. Chickadees Titmice Cardinals Sparrows Wood- Orioles Pigeons Nuthatches Finches Grosbeaks Blackbirds Jays peckers Tanagers Doves Sunflower ◆ ◆ ◆ ◆ ◆ ◆ ◆ Safflower ◆ ◆ ◆ Corn ◆ ◆ ◆ Millet ◆ ◆ ◆ Milo ◆ ◆ Nyjer ◆ Suet ◆ ◆ ◆ ◆ ◆ Preferred ◆ Readily Eaten Wintertime—and the Living’s counting birds at their feeders during selecting the best foods daunting. To Not Easy this winterlong survey. Great Back- attract a diversity of birds, provide a yard Bird Count participants provide variety of food types. But that doesn’t n much of North America, winter valuable data with a much shorter mean you need to purchase one of ev- Iis a difficult time for birds. Days time commitment—as little as fifteen erything on the shelf. are often windy and cold; nights are minutes in mid-February! long and even colder. Lush vegeta- Which Seed Types tion has withered or been consumed, Types of Bird Food Should I Provide? and most insects have died or become uring spring and summer, most dormant. Finding food can be espe- lack-oil sunflower seeds attract songbirds eat insects and spi- cially challenging for birds after a D Bthe greatest number of species. ders, which are highly nutritious, heavy snowfall. These seeds have a high meat-to- abundant, and for the most part, eas- shell ratio, they are nutritious and Setting up a backyard feeder makes ily captured.
    [Show full text]
  • METAR/SPECI Reporting Changes for Snow Pellets (GS) and Hail (GR)
    U.S. DEPARTMENT OF TRANSPORTATION N JO 7900.11 NOTICE FEDERAL AVIATION ADMINISTRATION Effective Date: Air Traffic Organization Policy September 1, 2018 Cancellation Date: September 1, 2019 SUBJ: METAR/SPECI Reporting Changes for Snow Pellets (GS) and Hail (GR) 1. Purpose of this Notice. This Notice coincides with a revision to the Federal Meteorological Handbook (FMH-1) that was effective on November 30, 2017. The Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM) approved the changes to the reporting requirements of small hail and snow pellets in weather observations (METAR/SPECI) to assist commercial operators in deicing operations. 2. Audience. This order applies to all FAA and FAA-contract weather observers, Limited Aviation Weather Reporting Stations (LAWRS) personnel, and Non-Federal Observation (NF- OBS) Program personnel. 3. Where can I Find This Notice? This order is available on the FAA Web site at http://faa.gov/air_traffic/publications and http://employees.faa.gov/tools_resources/orders_notices/. 4. Cancellation. This notice will be cancelled with the publication of the next available change to FAA Order 7900.5D. 5. Procedures/Responsibilities/Action. This Notice amends the following paragraphs and tables in FAA Order 7900.5. Table 3-2: Remarks Section of Observation Remarks Section of Observation Element Paragraph Brief Description METAR SPECI Volcanic eruptions must be reported whenever first noted. Pre-eruption activity must not be reported. (Use Volcanic Eruptions 14.20 X X PIREPs to report pre-eruption activity.) Encode volcanic eruptions as described in Chapter 14. Distribution: Electronic 1 Initiated By: AJT-2 09/01/2018 N JO 7900.11 Remarks Section of Observation Element Paragraph Brief Description METAR SPECI Whenever tornadoes, funnel clouds, or waterspouts begin, are in progress, end, or disappear from sight, the event should be described directly after the "RMK" element.
    [Show full text]
  • Taking the Guesswork out of Lightning-Caused Wildfire Marjie Brown US Forest Service, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln JFSP Briefs U.S. Joint Fire Science Program 2008 Taking the Guesswork Out of Lightning-caused Wildfire Marjie Brown US Forest Service, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/jfspbriefs Part of the Forest Biology Commons, Forest Management Commons, Other Forestry and Forest Sciences Commons, and the Wood Science and Pulp, Paper Technology Commons Brown, Marjie, "Taking the Guesswork Out of Lightning-caused Wildfire" (2008). JFSP Briefs. 23. http://digitalcommons.unl.edu/jfspbriefs/23 This Article is brought to you for free and open access by the U.S. Joint Fire Science Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in JFSP Briefs by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Lightning and fi re smoke. Taking the Guesswork Out of Lightning-caused Wildfi re Summary Lightning is a natural source of wildfi re ignitions and causes a substantial portion of large wildfi res across the globe. Simple predictions of lightning activity don’t accurately determine fi re ignition potential because fuel conditions must be considered in addition to the fact that most lightning is accompanied by signifi cant rain. Fire operations managers need improved tools for prediction of widespread dry thunderstorms, which are those that occur without signifi cant rainfall reaching the ground. It is these dry storms that generate lightning most likely to result in multiple fi re ignitions, often in remote areas. In previous work the researchers developed a formula that estimates the potential for cloud- to-ground lightning when dry thunderstorms are expected.
    [Show full text]
  • Analysis of `Miholjday Summer' for Belgrade and Serbia Region
    INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 26: 1489–1499 (2006) Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/joc.1390 ANALYSIS OF ‘MIHOLJDAY SUMMER’ FOR BELGRADE AND SERBIA REGION NEDELJKO TODOROVIC´ a* and DRAGANA VUJOVIC´ b* a Hydrometeorological Service of Serbia, Belgrade, Yugoslavia b Department of Meteorology, Faculty of Physics, Belgrade, Yugoslavia Received 30 May 2006 Revised 14 February 2006 Accepted 11 April 2006 ABSTRACT Typical weather conditions with dry and warm features occur in autumn months, with temperatures above the normal temperatures for this period of the year for the Belgrade and Serbia region. Temperatures have values like the ones for the end of summer. That period of fair weather is called Miholjday (St Michael) summer (MS). An analysis of temperature has been the most important criterion for defining MS. Synoptic situation and temperature conditions during that period are analyzed and typical and atypical MSs are defined for Belgrade and Serbia region. The frequency of MS in the period 1946–2004 for Belgrade region is also analyzed. The general definition (Glossary of Meteorology) is assumed and we gave the specific definition of MS for Belgrade and Serbia region on the basis of real weather for longer series of observations. Copyright 2006 Royal Meteorological Society. KEY WORDS: summer climate variability; weather singularity; weather classification; synoptic climatology 1. INTRODUCTION Miholjday summer (MS) appears in autumn, in the period from the middle of September to the beginning of November. The name is related with Miholjday, the Christian feast celebrated on 12 October in the Orthodox Church (29 September in the Catholic Church).
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Episodic Dust Events of Utah's Wasatch Front and Adjoining Region
    1654 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY VOLUME 51 Episodic Dust Events of Utah’s Wasatch Front and Adjoining Region W. JAMES STEENBURGH AND JEFFREY D. MASSEY Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah THOMAS H. PAINTER Jet Propulsion Laboratory, Pasadena, California (Manuscript received 4 January 2012, in final form 4 April 2012) ABSTRACT Episodic dust events cause hazardous air quality along Utah’s Wasatch Front and dust loading of the snowpack in the adjacent Wasatch Mountains. This paper presents a climatology of episodic dust events of the Wasatch Front and adjoining region that is based on surface weather observations from the Salt Lake City International Airport (KSLC), Geostationary Operational Environmental Satellite (GOES) imag- ery, and additional meteorological datasets. Dust events at KSLC—defined as any day [mountain standard time (MST)] with at least one report of a dust storm, blowing dust, and/or dust in suspension with a visi- bility of 10 km or less—average 4.3 per water year (WY: October–September), with considerable in- terannual variability and a general decline in frequency during the 1930–2010 observational record. The distributions of monthly dust-event frequency and total dust flux are bimodal, with primary and secondary maxima in April and September, respectively. Dust reports are most common in the late afternoon and evening. An analysis of the 33 most recent (2001–10 WY) events at KSLC indicates that 11 were associated with airmass convection, 16 were associated with a cold front or baroclinic trough entering Utah from the west or northwest, 4 were associated with a stationaryorslowlymovingfrontorbaroclinictroughwestof Utah, and 2 were associated with other synoptic patterns.
    [Show full text]
  • Emerging Fashion Trends for Autumn Winter Season
    IOSR Journal of Business and Management (IOSR-JBM) e-ISSN: 2278-487X, p-ISSN: 2319-7668. Volume 16, Issue 2. Ver. II (Feb. 2014), PP 46-47 www.iosrjournals.org Emerging Fashion Trends for Autumn Winter Season Muhukumar Nair* [Director-Vidya Institute of Fashion Technology, U.P. Technical University, Lucknow, India ] Abstract: This study was describe the values of trends and its need for the designers. Another purpose of the study to identify the duration of demands for the particular design/style. Thus the market value automatically high during the trend season and the merchandising process would across the break even point. Keywords : Color, Material, Market, Season, Stipulation. I. Introduction It's time to wrap up warm for autumn and winter, but there's no need to stop looking fabulous. Fashion trends this winter will let you retain a bit of glam - while also staying warm - and with versatility there's something to suit all styles and body shapes. Fashion trends change frequently keeping retail professionals on their toes. One of the most anticipated fashion trends involves the most popular colors which shift from season to season. Each year Pantone announces its top color often inspiring clothing and accessory designs for winter season, Pantone's top color is emerald green, and the color showed up consistently on the fall and winter runway shows indicating that it will be a mainstay of winter fashion. “During the cold and dark of Arctic winter, sea ice refreezes and achieves its maximum extent, usually in late Feb. or early Mar. According to a NASA analysis, this year the annual maximum extent was reached on Feb.
    [Show full text]