Thunderstorm Terminology

Total Page:16

File Type:pdf, Size:1020Kb

Thunderstorm Terminology Thunderstorm Terminology Thunderstorm — Updraft — Downdraft Cold front — Cumulonimbus cloud Latent heat — Isolated thunderstorms Cloudburst — Precipitation — Hail Thunderstorm lightning, thunder, rain, and dense clouds; may include heavy rain, hail, and strong winds Updraft an upward flow of air Downdraft a downward flow of air Cold front leading edge of a mass of heavy, colder air that is advancing Cumulonimbus giant clouds piled on top of each other; top cloud spreads out in the shape of an anvil heat released when water vapor condenses; is Latent heat the main driving energy of thunderstorms Isolated short-lived storms with light winds; usually do thunderstorms not produce violent weather on the ground Cloudburst sudden and short-lived heavy rainfall that usually occurs in a small area any moisture that falls from clouds and Precipitation reaches the ground Hail balls of ice about .2 inch (5 mm) to 6 inches (15 cm) that sometimes accompany storms WriteBonnieRose.com 1 Thunderstorm Terminology Dry thunderstorm — Thunder — Lightning Bead lightning — Ball lightning — Microburst Multiple-cell storms — Supercell Mesocyclone — Tornado Dry thunderstorm a storm where all raindrops evaporate while falling and none reach the ground sound heard when lightning heats the air so Thunder strongly and quickly it produces shock waves Lightning discharge of electricity after electric charges on particles in clouds grow large enough Bead lightning infrequent; looks like a string of bright spots; also called chain lightning Ball lightning rare; looks like a bright ball and occurs near the ground; also called globe lightning winds that hit the ground, fan out, and cause Microburst a sudden change in wind direction or speed storms where one cell grows stronger, then Multiple-cell storms weakens while another takes over; repeats Supercell a large, dangerous, and powerful thunderstorm that contains a mesocyclone Mesocyclone an air mass in a supercell that rotates rapidly Tornado a violent windstorm where destructive winds swirl, often in a funnel shape, over land WriteBonnieRose.com 2 Thunderstorm: lightning, thunder, rain, and dense clouds; may include heavy rain, hail, and strong winds Thunderstorm:/lightning, thunder,/rain,/and/////// dense/clouds;/may/////// include/heavy/rain,/hail,/ and/strong/winds//////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// WriteBonnieRose.com 3 Updraft: an upward flow of air Updraft:/an/upward//// flow/of/air/////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// WriteBonnieRose.com 4 Downdraft: a downward flow of air Downdraft:/a//////////// downward/flow/of/air/// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// WriteBonnieRose.com 5 Cold front: leading edge of a mass of heavy, colder air that is advancing Cold/front:/leading///// edge/of/a/mass/of///// heavy,/colder/air/that// is/advancing///////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// WriteBonnieRose.com 6 Cumulonimbus cloud: giant clouds piled on top of each other; top spreads out in the shape of an anvil Cumulonimbus/cloud://// giant/clouds/piled/on/// top/of/each/other;/top/ spreads/out/in/the////// shape/of/an/anvil/////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// WriteBonnieRose.com 7 Latent heat: heat released when water vapor condenses; is the main driving energy of thunderstorms Latent/heat:/heat/////// released/when/water//// vapor/condenses;/is/the/ main/driving/energy/of/ thunderstorms/////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// WriteBonnieRose.com 8 Isolated thunderstorms: short-lived storms with light winds; usually do not produce violent weather on the ground Isolated/thunderstorms:/ short-lived/storms/with/ light/winds;/usually/do// not/produce/violent///// weather/on/the/ground/ /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// WriteBonnieRose.com 9 Cloudburst: sudden and short-lived heavy rainfall that usually occurs in a small area Cloudburst:/sudden///// and/short-lived/heavy// rainfall/that/usually//// occurs/in/a/small/area// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// WriteBonnieRose.com 10 Precipitation: any moisture that falls from clouds and reaches the ground Precipitation:/any/////// moisture/that/falls////// from/clouds/and//////// reaches/the/ground///// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// WriteBonnieRose.com 11 Hail: balls of ice about .2 inch (5 mm) to 6 inches (15 cm) that sometimes accompany storms Hail:/balls/of/ice//////// about/.2/inch/(5/mm)/// to/6/inches/(15/cm)///// that/sometimes////////// accompany/storms////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// WriteBonnieRose.com 12 Dry thunderstorm: a storm where all raindrops evaporate while falling and none reach the ground Dry/thunderstorm:/a//// storm/where/all////////// raindrops/evaporate//// while/falling/and/none// reach/the/ground/////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// WriteBonnieRose.com 13 Thunder: sound heard when lightning heats the air so strongly and quickly it produces shock waves Thunder:/sound/heard/// when/lightning/heats//// the/air/so/strongly/and/ quickly/it/produces////// shock/waves////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// WriteBonnieRose.com 14 Lightning: discharge of electricity after electric charges on particles in clouds grow large enough Lightning:/discharge/of/ electricity/after///////// electric/charges/on///// particles/in/clouds/////// grow/large/enough////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// WriteBonnieRose.com 15 Bead lightning: infrequent; looks like a string of bright spots; also called chain lightning Bead/lightning:////////// infrequent;/looks/like/a/ string/of/bright/spots;// also/called/chain//////// lightning///////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// WriteBonnieRose.com 16 Ball lightning: rare; looks like a bright ball and occurs near the ground; also called globe lightning Ball/lightning:/rare;///// looks/like/a/bright/ball// and/occurs/near/the//// ground;/also/called///// globe/lightning////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// WriteBonnieRose.com 17 Microburst: winds that hit the ground, fan out, and cause a sudden change in wind direction or speed Microburst:/winds/that// hit/the/ground,/fan/out, and/cause/a/sudden//// change/in/wind////////// direction/or/speed////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// WriteBonnieRose.com 18 Multiple-cell storms: storms where one cell grows stronger, then weakens while another takes over; repeats Multiple-cell/storms://// storms/where/one/cell/// grows/stronger,/then//// weakens/while/another/ takes/over;/repeats///// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// WriteBonnieRose.com 19 Supercell: a large, dangerous, and powerful thunderstorm that contains a mesocyclone Supercell:/a/large,/////// dangerous,/and////////// powerful/thunderstorm/ that/contains/a////////// mesocyclone///////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// /////////////////////////// WriteBonnieRose.com 20 Mesocyclone: an air mass in a supercell that rotates rapidly Mesocyclone:/an/air//// mass/in/a/supercell///// that/rotates/rapidly//// /////////////////////////// /////////////////////////// ///////////////////////////
Recommended publications
  • Electricity and Lightning-Cloudburst (Grofe)
    Electricity and lightning-Cloudburst (Grofe) Summary Students will connect the concept of positive and negative ions making lightning to the concept of lightning occurring in nature. The will use the music of Grofe' "Cloudburst" to aide the learning. Additional Core Ties Science - 5th Grade Standard 4 Objective 1 Time Frame 1 class periods of 45 minutes each Group Size Large Groups Life Skills Aesthetics, Thinking & Reasoning, Employability Materials A recording of "Cloudburst" from Grand Canyon Suite by Grofe'. Pictures of Grand Canyon Pictures of rainstorms and lightning Listening map http://www.minnesotaorchestra.org/education/curricula/musicnoisesilence/musicnoisesilence_part5.p df Background for Teachers The teacher should know the basic concepts of how lightning is formed.To put it simply, lightning is electricity. It forms in the strong up-and-down air currents inside tall dark cumulonimbus clouds as water droplets, hail, and ice crystals collide with one another. Scientists believe that these collisions build up charges of electricity in a cloud. The positive and negative electrical charges in the cloud separate from one another, the negative charges dropping to the lower part of the cloud and the positive charges staying ins the middle and upper parts. Positive electrical charges also build upon the ground below. When the difference in the charges becomes large enough, a flow of electricity moves from the cloud down to the ground or from one part of the cloud to another, or from one cloud to another cloud. In typical lightning these are down-flowing negative charges, and when the positive charges on the ground leap upward to meet them, the jagged downward path of the negative charges suddenly lights up with a brilliant flash of light.
    [Show full text]
  • Taking the Guesswork out of Lightning-Caused Wildfire Marjie Brown US Forest Service, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln JFSP Briefs U.S. Joint Fire Science Program 2008 Taking the Guesswork Out of Lightning-caused Wildfire Marjie Brown US Forest Service, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/jfspbriefs Part of the Forest Biology Commons, Forest Management Commons, Other Forestry and Forest Sciences Commons, and the Wood Science and Pulp, Paper Technology Commons Brown, Marjie, "Taking the Guesswork Out of Lightning-caused Wildfire" (2008). JFSP Briefs. 23. http://digitalcommons.unl.edu/jfspbriefs/23 This Article is brought to you for free and open access by the U.S. Joint Fire Science Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in JFSP Briefs by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Lightning and fi re smoke. Taking the Guesswork Out of Lightning-caused Wildfi re Summary Lightning is a natural source of wildfi re ignitions and causes a substantial portion of large wildfi res across the globe. Simple predictions of lightning activity don’t accurately determine fi re ignition potential because fuel conditions must be considered in addition to the fact that most lightning is accompanied by signifi cant rain. Fire operations managers need improved tools for prediction of widespread dry thunderstorms, which are those that occur without signifi cant rainfall reaching the ground. It is these dry storms that generate lightning most likely to result in multiple fi re ignitions, often in remote areas. In previous work the researchers developed a formula that estimates the potential for cloud- to-ground lightning when dry thunderstorms are expected.
    [Show full text]
  • Rainfall Flooding in Urban Areas in the Context of Geomorphological Aspects
    geosciences Article Rainfall Flooding in Urban Areas in the Context of Geomorphological Aspects Tomasz Walczykiewicz * and Magdalena Skonieczna Institute of Meteorology and Water Management—National Research Institute, 01-673 Warsaw, Poland; [email protected] * Correspondence: [email protected] Received: 28 September 2020; Accepted: 10 November 2020; Published: 12 November 2020 Abstract: Flooding risk in urban areas is particularly high, due to the high population density and property values, including those of transport, residential, service and industrial infrastructure, among others. There are many reasons for flooding in urban areas; among them, direct heavy rainfall can cause special problems in risk management. In the case of random heavy rainfall, flood risk management can be supported by information about the morphology of the terrain and the degree of its sealing. In this study, we analyse methods for determining the risk of flooding in urban areas using digital terrain model (DTM) and geographic information system (GIS) tools. Predictors of precipitation floods in urban areas are defined, including the determination of flat areas, areas without outflow (non-drainage) and with large terrain height differences. The main source of information about historical rainfall floods relates to interventions by fire brigades, which constitute the basis for verifying the areas of occurrence of rainfall floods, as determined on the basis of morphological analysis of the area. Identifying the locations of rainfall flooding areas and developing accurate maps based on them are crucial for spatial planning and flood management at the local scale. Keywords: flood risk; cloudburst; urban flood hazard mapping 1. Introduction Geomorphological conditions have a significant impact on land development.
    [Show full text]
  • Appraisal of Hydro-Meteorological Factors During Extreme Precipitation Event: Case Study of Kedarnath Cloudburst, Uttarakhand, I
    Natural Hazards https://doi.org/10.1007/s11069-019-03829-4 ORIGINAL PAPER Appraisal of hydro‑meteorological factors during extreme precipitation event: case study of Kedarnath cloudburst, Uttarakhand, India Shailendra Pratap1 · Prashant K. Srivastava1 · Ashish Routray2 · Tanvir Islam3 · Rajesh Kumar Mall1 Received: 28 April 2016 / Accepted: 17 December 2019 © Springer Nature B.V. 2020 Abstract Flash food is an uncertain and most catastrophic disaster worldwide that causes socio-eco- nomic problems, devastation and loss of infrastructure. One of the major triggering factors of fash foods is the extreme events like cloudburst that causes fooding of area within a short span of time. Therefore, this study aims to understand the variations in hydro-mete- orological variables during the devastating Kedarnath cloudburst in the Uttarakhand, India. The hydro-meteorological variables were collected from the global satellites such as Mod- erate Resolution Imaging Spectroradiometer, Tropical Rainfall Measuring Mission, mod- elled datasets from Decision Support System for Agrotechnology Transfer and National Center for Environmental Prediction (NCEP). For the validation of satellite meteorological data, the NCEP Global analysis data were downscaled using Weather Research and Fore- casting model over the study area to achieve the meteorological variables’ information. The meteorological factors such as atmospheric pressure, atmospheric temperature, rainfall, cloud water content, cloud fraction, cloud particle radius, cloud mixing ratio, total cloud cover, wind speed, wind direction and relative humidity were studied during the cloud- burst, before as well as after the event. The outcomes of this study indicate that the vari- ability in hydro-meteorological variables over the Kedarnath had played a signifcant role in triggering the cloudburst in the area.
    [Show full text]
  • Dónal P. O'mathúna · Vilius Dranseika Bert Gordijn Editors
    Advancing Global Bioethics 11 Dónal P. O’Mathúna · Vilius Dranseika Bert Gordijn Editors Disasters: Core Concepts and Ethical Theories Advancing Global Bioethics Volume 11 Series editors Henk A.M.J. ten Have Duquesne University Pittsburgh, USA Bert Gordijn Institute of Ethics Dublin City University Dublin, Ireland The book series Global Bioethics provides a forum for normative analysis of a vast range of important new issues in bioethics from a truly global perspective and with a cross-cultural approach. The issues covered by the series include among other things sponsorship of research and education, scientific misconduct and research integrity, exploitation of research participants in resource-poor settings, brain drain and migration of healthcare workers, organ trafficking and transplant tourism, indigenous medicine, biodiversity, commodification of human tissue, benefit sharing, bio-industry and food, malnutrition and hunger, human rights, and climate change. More information about this series at http://www.springer.com/series/10420 Dónal P. O’Mathúna • Vilius Dranseika Bert Gordijn Editors Disasters: Core Concepts and Ethical Theories Editors Dónal P. O’Mathúna Vilius Dranseika School of Nursing and Human Sciences Vilnius University Dublin City University Vilnius, Lithuania Dublin, Ireland College of Nursing The Ohio State University Columbus, Ohio, USA Bert Gordijn Institute of Ethics Dublin City University Dublin, Ireland This publication is based upon work from COST Action IS1201, supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks - www.cost.eu. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers.
    [Show full text]
  • Modelling Dry Thunderstorm Environment During a Wildfire Episode in Portugal
    EGU2020-10796, updated on 25 Sep 2021 https://doi.org/10.5194/egusphere-egu2020-10796 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Modelling dry thunderstorm environment during a wildfire episode in Portugal Flavio T. Couto1, Maksim Iakunin1, Rui Salgado1, Paulo Pinto2, Tânia Viegas2, and Jean-Pierre Pinty3 1University of Évora, Institute of Earth Sciences – University of Évora Pole, Évora, Portugal ([email protected]) 2Instituto Português do Mar e da Atmosfera (IPMA), Lisbon, Portugal 3Laboratoire d’Aérologie, Université de Toulouse, Toulouse, France Under future climate uncertainties, a better understanding of wildfires is necessary both from physical and operational points of view, which are the goals of the CILIFO (Centro Ibérico para la Investigacion y Lucha contra Incendios Forestales) Interreg POCTEP project. Among several sources of fire ignition, lightnings are the main natural source of wildfires and an important contributor to burned areas in many regions. In 2017, devastating forest fires were reported in Portugal. The fires near Pedrógão Grande created a huge wall of flames, killing at least 60 people. The goal of this study is to discuss the atmospheric conditions that were supportive of lightning flashes to cause a fire during this event, as well as to check the possibility to correctly diagnose cloud-to-ground flashes using high resolution simulations with the non-hydrostatic atmospheric Meso-NH model. A set of meteorological data was used to validate the model results and to describe the prevailing atmospheric environment during the afternoon of 17th June 2017 over central Portugal.
    [Show full text]
  • Assessing the Determinants Facilitating Local Vulnerabilities
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2014 Assessing the Determinants Facilitating Local Vulnerabilities and Adaptive Capacities to Climate Change Impacts in High Mountain Areas: A Case Study of Northern Ladakh, India Kimiko Nygaard Barrett The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Barrett, Kimiko Nygaard, "Assessing the Determinants Facilitating Local Vulnerabilities and Adaptive Capacities to Climate Change Impacts in High Mountain Areas: A Case Study of Northern Ladakh, India" (2014). Graduate Student Theses, Dissertations, & Professional Papers. 4395. https://scholarworks.umt.edu/etd/4395 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. ASSESSING THE DETERMINANTS FACILITATING LOCAL VULNERABILITIES AND ADAPTIVE CAPACITIES TO CLIMATE CHANGE IN HIGH MOUNTAIN ENVIRONMENTS: A CASE STUDY OF NORTHERN LADAKH, INDIA By KIMIKO NYGAARD BARRETT Master of Science, Earth Sciences – Montana State University, Bozeman, MT, 2008 Bachelor of Arts, Political Science – Montana State University, Bozeman, MT, 2006 PhD Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Forestry and Conservation Sciences The University of Montana Missoula, MT December 2014 Approved by: Sandy Ross, Dean of The Graduate School Graduate School Dr. Keith Bosak, Chair Society & Conservation Dr.
    [Show full text]
  • 0Il in the Gulf 0F St. Lawrence: Facts, Myths And
    GULF 101 OIL IN THE GULF OF ST. LAWRENCE: FACTS, MYTHS AND FUTURE OUTLOOK June 2014 GULF 101 OIL IN THE GULF OF ST. LAWRENCE: FACTS, MYTHS AND FUTURE OUTLOOK June 2014 St. Lawrence Coalition AuTHORS: Sylvain Archambault, Biologist, M. Sc., Canadian Parks and Wilderness Society (CPAWS) Quebec; Danielle Giroux, LL.B., M.Sc., Attention FragÎles; and Jean-Patrick Toussaint, Biologist, Ph.D., David Suzuki Foundation ADVISORY COMMITTEE: David Suzuki Foundation, Canadian Parks and Wilderness Society (CPAWS) Quebec, Nature Québec, Attention FragÎles Cover photos : Nelson Boisvert, Luc Fontaine and Sylvain Archambault ISBN 978-1-897375-66-2 / digital version 978-1-897375-67-9 Citation: St. Lawrence Coalition. 2014. Gulf 101 – Oil in the Gulf of St. Lawrence: Facts, Myths and Future Outlook. St. Lawrence Coalition. 78 pp. This report is available, in English and French, at: www.coalitionsaintlaurent.ca Contents PHOTO: DOminic COURNOYER / WIKimedIA COMMOns Acknowledgements ..........................................................................................................................6 Acronyms .....................................................................................................................................7 Foreword .....................................................................................................................................8 SUMMARY .............................................................................................................................. 9 SECTION 1 INTRODUCTION ......................................................................................................14
    [Show full text]
  • Numerical Simulation of an Intense Precipitation Event Over Rudraprayag in the Central Himalayas During 13–14 September 2012
    Numerical simulation of an intense precipitation event over Rudraprayag in the central Himalayas during 13–14 September 2012 A Chevuturi1, APDimri1,∗, SDas2, A Kumar3,4 and D Niyogi4 1School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India. 2India Meteorological Department, New Delhi, India. 3Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA. 4Purdue University, West Lafayette, Indiana, USA. ∗Corresponding author. e-mail: [email protected] A recent heavy precipitation event on 13 September 2012 and the associated landslide on 14 September 2012 is one of the most severe calamities that occurred over the Rudraprayag region in Uttarakhand, India. This heavy precipitation event is also emblematic of the natural hazards occuring in the Himalayan region. Study objectives are to present dynamical fields associated with this event, and understand the processes related to the severe storm event, using the Weather Research and Forecasting (WRF ver 3.4) model. A triple-nested WRF model is configured over the Uttarakhand region centered over Ukhimath (30◦30′N; 79◦15′E), where the heavy precipitation event is reported. Model simulation of the intense storm on 13 September 2012 is with parameterized and then with explicit convection are examined for the 3 km grid spacing domain. The event was better simulated without the consideration of convection parameterization for the innermost domain. The role of steep orography forcings is notable in rapid dynamical lifting as revealed by the positive vorticity and high reflectivity values and the intensification of the monsoonal storm. Incursion of moist air, in the lower levels, converges at the foothills of the mountains and rise along the orography to form the updraft zone of the storm.
    [Show full text]
  • Fire Weather Services Directive
    Department of Commerce • National Oceanic & Atmospheric Administration • National Weather Service NATIONAL WEATHER SERVICE INSTRUCTION 10-401 JUNE 21, 2021 Operations and Services Products and Services to Support Fire, NWSPD 10-4 FIRE WEATHER SERVICES PRODUCT SPECIFICATION NOTICE: This publication is available at: http://www.nws.noaa.gov/directives/. OPR: W/AFS21 (H. Hockenberry) Certified by: W/AFS21 (M. Hawkins) Type of Issuance: Routine SUMMARY OF REVISIONS: This directive supersedes NWSI 10-401, “Fire Weather Services Product Specification,” dated December 29, 2017. The following revisions were made to this instruction: 1. Edited section 3.2.2 to include guidance on issuing language for exceptional or particularly dangerous Red Flag Warnings. 2. Edited sections 6.1and 6.4 to describe implementation of the seven day NFDRS forecasts. 3. Added a Section 12 to provide guidance for non-weather event messaging for fires. 4. Updated Section 10 for operational implementation of SPC Day 3-8 product content. Digitally signed by STERN.ANDREW. STERN.ANDREW.DAVID.138292 AVID.1382920348 0348 Date: 2021.06.07 14:37:41 -04'00' June 7, 2021 Andrew D. Stern Date Director Analyze, Forecast and Support Office NWSI 10-401 JUNE 21, 2021 Fire Weather Services Product Specification Table of Contents: Page 1. Introduction. 5 2. Digital Forecasts and Services 6 3. Fire Weather Watch/Red Flag Warning 6 3.1 Mission Connection. 6 3.2 Issuance Guidelines. 6 3.2.1 Creation Software 6 3.2.2 Issuance Criteria 6 3.2.2.1 Fire Weather Watch 7 3.2.2.2 Red Flag Warning. 7 3.2.3 Issuance Time.
    [Show full text]
  • Title Author(S)
    th 5 European Conference on Severe Storms 12 - 16 October 2009 - Landshut - GERMANY ECSS 2009 Abstracts by session ECSS 2009 - 5th European Conference on Severe Storms 12-16 October 2009 - Landshut – GERMANY List of the abstract accepted for presentation at the conference: O – Oral presentation P – Poster presentation Session 06: Numerical studies, e.g. of convective initiation, storm life cycles and phenomena Page Type Abstract Title Author(s) Explicit forecasting of supercells with the operational A. Seifert, M. Baldauf, C. O COSMO-DE Gebhardt, S. Theis Maritime convective initiation of the severe thunderstorm of J.-B. Cohuet, R. Romero, V. 161 O 4 October 2007 in Mallorca: numerical experiments Homar, V. Ducroq, C. Ramis Multi-decadal dynamical downscaling of tropical cyclones 163 O in East Asia using spectrally nudged regional climate F. Feser, H. von Storch models D. Mastrangelo, K. Horvath, M. Observational and numerical analysis of a heavy 165 O M. Miglietta, A. Moscatello, A. precipitation event over southern Italy Riccio An Analysis of numerically simulated mesovortices and 167 O A. D. Schenkman, M. Xue tornado-like vorticies in mesoscale convective system EnKF Analysis of the 29 May 2004 Oklahoma City T. E. Thompson, L. J. Wicker, D. 169 O Supercell using Rapid-Scan Phased Array Radar Data E. Forsyth, M. I. Biggerstaff Sensitivity of quantitative precipitation forecast to soil K. van Weverberg, N. P. M. van 171 O moisture initialization, microphysics parameterization Lipzig, L. Delobbe, D. Lauwaet and horizontal resolution A comparison of transient impinging jet and cooling source B. C. Vermeire, L. G. Orf, E. 173 P downburst models Savory B.
    [Show full text]
  • Content 1. Cloud Burst and Flash Flood 2. Avalanche and Glacial Lake Outburst Flood 3. Biological Disaster
    CONTENT 1. CLOUD BURST AND FLASH FLOOD 2. AVALANCHE AND GLACIAL LAKE OUTBURST FLOOD 3. BIOLOGICAL DISASTER WHAT IS A CLOUDBURST? A cloudburst is a sudden rainfall which can be quite unexpected, very abrupt, accompanied by hail and thunder. WHAT HAPPENS? It usually occurs in high altitude areas due to the formation of a low pressure area on the top of a mountain. The low pressure zone attracts clouds to the top of the mountain with great force. When they hit the peak, the moisture content is released in the form of rain. In some cloudbursts, up to 5 inches (almost 13 centimeters) of rain can fall in an hour, often in the form of extremely large droplets. All heavy rains are not necessarily cloudbursts. Because of the amount of rain involved, a cloudburst can be quite dangerous, especially if it lasts for several hours. Flooding is common with cloudbursts, sweeping away people, animals and land on its way. Often, these severe rainstorms appear in the summer, and in farming communities, they are sometimes welcomed, as a cloudburst can irrigate crops very thoroughly. WHAT IS A FLASH FLOOD? A flash flood is sudden flooding that occurs when floodwaters rise rapidly with no warning within several hours of an intense rain. They often occur after heavy rainfall, usually from a storm. WHA T HAPPENS? A flood results from days of heavy rain and / or melting snows, when rivers rise and go over their banks whereas flash flood is caused by excess water, usually from a storm. This usually happens downstream from the storm as heavy rains produce more water than the area can handle with nothing to block its buildup or soak it into the ground.
    [Show full text]