Dónal P. O'mathúna · Vilius Dranseika Bert Gordijn Editors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Civil Disobedience
Civil Disobedience Henry David Toreau Civil Disobedience Henry David Toreau Foreword by Connor Boyack Libertas Institute Salt Lake City, Utah Civil Disobedience Thoreau’s essay is out of copyright and in the public domain; this version is lightly edited for modernization. Supplemental essays are copyrighted by their respective authors and included with permission. The foreword is licensed under a Creative Commons Attribution- ShareAlike 3.0 Unported License. LIBERTAS PRESS 770 E. MAIN STREET, SUITE 255 LEHI, UT 84043 Civil Disobedience / Henry David Toreau — 1st ed. First printing, June 2014 Cover Design by Ben Jenkins Manufactured in the United States of America For bulk orders, send inquiries to: [email protected] ISBN-13: 978-0-9892912-3-1 dedicated to Edward Snowden for doing what was right “Te most foolish notion of all is the belief that everything is just which is found in the customs or laws of nations. Would that be true, even if these laws had been enacted by tyrants?” “What of the many deadly, the many pestilential statutes which nations put in force? Tese no more deserve to be called laws than the rules a band of robbers might pass in their assembly. For if ignorant and unskillful men have prescribed deadly poisons instead of healing drugs, these cannot possibly be called physicians’ prescriptions; neither in a nation can a statute of any sort be called a law, even though the nation, in spite of being a ruinous regulation, has accepted it.” —Cicero Foreword by Connor Boyack Americans know Henry David Thoreau as the author of Walden, a narrative published in 1854 detailing the author’s life at Walden Pond, on property owned by his friend Ralph Waldo Emerson near Concord, Massachusetts. -
Electricity and Lightning-Cloudburst (Grofe)
Electricity and lightning-Cloudburst (Grofe) Summary Students will connect the concept of positive and negative ions making lightning to the concept of lightning occurring in nature. The will use the music of Grofe' "Cloudburst" to aide the learning. Additional Core Ties Science - 5th Grade Standard 4 Objective 1 Time Frame 1 class periods of 45 minutes each Group Size Large Groups Life Skills Aesthetics, Thinking & Reasoning, Employability Materials A recording of "Cloudburst" from Grand Canyon Suite by Grofe'. Pictures of Grand Canyon Pictures of rainstorms and lightning Listening map http://www.minnesotaorchestra.org/education/curricula/musicnoisesilence/musicnoisesilence_part5.p df Background for Teachers The teacher should know the basic concepts of how lightning is formed.To put it simply, lightning is electricity. It forms in the strong up-and-down air currents inside tall dark cumulonimbus clouds as water droplets, hail, and ice crystals collide with one another. Scientists believe that these collisions build up charges of electricity in a cloud. The positive and negative electrical charges in the cloud separate from one another, the negative charges dropping to the lower part of the cloud and the positive charges staying ins the middle and upper parts. Positive electrical charges also build upon the ground below. When the difference in the charges becomes large enough, a flow of electricity moves from the cloud down to the ground or from one part of the cloud to another, or from one cloud to another cloud. In typical lightning these are down-flowing negative charges, and when the positive charges on the ground leap upward to meet them, the jagged downward path of the negative charges suddenly lights up with a brilliant flash of light. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
Method: Journal of Lonergan Studies, Vol. 16, No. 1
VOLUME16 ER 1 SPRING19 METHOD lournalof LonerganStudies VolumeL6 NumberLSPring199S PATRICK H. BYRNE CHARLESC. HEFLINC, JR. MARK D. MORELU Editor Eilitor Editor KERRYCRoNIN ANNE E. C/DONNELL Business Manager Editoial Manager CONTENTS Fredeick E. Crcnoe. 1 Editor's lntroduction BernardI . F. Lonergan 5 "Variations in Fundamental Theology" LouisRoy, O.P. 25 Schleiermacher'sEpistemology IamesSwindal 47 The Role of Cognitive Reflection in Bernard Lonergan's Moral TheologY 67 BooK REvIEws METHzD:lournal of LonerganStudies is published by The Lonergan Institute at Boston College METHoD: lournal of Lonergan Studies aims, first, at furthering interpretive, historical, and critical study of the philosophicaf theological, economic, and methodological writings of Bernard l,onergan. Secondly, it aims at promoting original research into the methodological foundations of the sciencesand disciplines. METHoD is published twice yearly, in April and October, by The Lonergan Institute at Boston College. SuBscRtPrtoNPRICE 1998: $16.00 yearly for individuals, $28.00yearly for institutions (U.S. currency). SUBSCRIPTIoNORDERS must be prepaid in U.S. funds and should be addressed to the Business Manager, Meruoo, Lonergan Center, Bapst Library, Boston College, Chestnut Hill, MA 02767-3806. Changes of address and other correspondence related to subscriptions and advertising should be sent to the same address. MANUScRIPTSshould be sent to Mark Morelli METHoD, Deparhent of Philosophy, Loyola Marymount University, Loyola Blvd. at W. 80th Street, Los Angeles, CA 9fiX5 or to Kerry Cronin, METHoD,Lonergan Center, Bapst Library, Boston College, Chestnut Hill, MA 02167-3806.In order to facilitate an early decisioru authors should send three copies of each manurript, double-spaced throughou! including footnotes. Submissions should be accompanied by a short biographical note. -
'The Supreme Principle of Morality'? in the Preface to His Best
The Supreme Principle of Morality Allen W. Wood 1. What is ‘The Supreme Principle of Morality’? In the Preface to his best known work on moral philosophy, Kant states his purpose very clearly and succinctly: “The present groundwork is, however, nothing more than the search for and establishment of the supreme principle of morality, which already constitutes an enterprise whole in its aim and to be separated from every other moral investigation” (Groundwork 4:392). This paper will deal with the outcome of the first part of this task, namely, Kant’s attempt to formulate the supreme principle of morality, which is the intended outcome of the search. It will consider this formulation in light of Kant’s conception of the historical antecedents of his attempt. Our first task, however, must be to say a little about the meaning of the term ‘supreme principle of morality’. For it is not nearly as evident to many as it was to Kant that there is such a thing at all. And it is extremely common for people, whatever position they may take on this issue, to misunderstand what a ‘supreme principle of morality’ is, what it is for, and what role it is supposed to play in moral theorizing and moral reasoning. Kant never directly presents any argument that there must be such a principle, but he does articulate several considerations that would seem to justify supposing that there is. Kant holds that moral questions are to be decided by reason. Reason, according to Kant, always seeks unity under principles, and ultimately, systematic unity under the fewest possible number of principles (Pure Reason A298-302/B355-359, A645- 650/B673-678). -
(50000) Quaoar, See Quaoar (90377) Sedna, See Sedna 1992 QB1 267
Index (50000) Quaoar, see Quaoar Apollo Mission Science Reports 114 (90377) Sedna, see Sedna Apollo samples 114, 115, 122, 1992 QB1 267, 268 ap-value, 3-hour, conversion from Kp 10 1996 TL66 268 arcade, post-eruptive 24–26 1998 WW31 274 Archimedian spiral 11 2000 CR105 269 Arecibo observatory 63 2000 OO67 277 Ariel, carbon dioxide ice 256–257 2003 EL61 270, 271, 273, 274, 275, 286, astrometric detection, of extrasolar planets – mass 273 190 – satellites 273 Atlas 230, 242, 244 – water ice 273 Bartels, Julius 4, 8 2003 UB313 269, 270, 271–272, 274, 286 – methane 271–272 Becquerel, Antoine Henry 3 – orbital parameters 271 Biermann, Ludwig 5 – satellite 272 biomass, from chemolithoautotrophs, on Earth 169 – spectroscopic studies 271 –, – on Mars 169 2005 FY 269, 270, 272–273, 286 9 bombardment, late heavy 68, 70, 71, 77, 78 – atmosphere 273 Borealis basin 68, 71, 72 – methane 272–273 ‘Brown Dwarf Desert’ 181, 188 – orbital parameters 272 brown dwarfs, deuterium-burning limit 181 51 Pegasi b 179, 185 – formation 181 Alfvén, Hannes 11 Callisto 197, 198, 199, 200, 204, 205, 206, ALH84001 (martian meteorite) 160 207, 211, 213 Amalthea 198, 199, 200, 204–205, 206, 207 – accretion 206, 207 – bright crater 199 – compared with Ganymede 204, 207 – density 205 – composition 204 – discovery by Barnard 205 – geology 213 – discovery of icy nature 200 – ice thickness 204 – evidence for icy composition 205 – internal structure 197, 198, 204 – internal structure 198 – multi-ringed impact basins 205, 211 – orbit 205 – partial differentiation 200, 204, 206, -
The Problem of the Brisbane Tuff
50 VoL. XLV., No. 11. The Problem of the Brisbane Tuff. By PROFESSOR H. C. RICHARDS, D. Sc., and W. H. BRYAN, D. Sc. (Department of Geology, University of Queensland). PLATES IV.-VI. ( Accepted for publication by the Roya� Society of Qiu!ensland, 30th November, 1933). · 1. INTRODUCTION. The following paper recor�s an attempt to discover the ongm, and explain the mode of formation of the rock now known as the Brisbane Tuff. While the authors long ago realised that this rock possessed a number of unusual features, their doubts as to its true nature were revived and strengthened when a section showing well developed columnar structure was exposed in the municipal quarry at Windsor some three miles north of the centre of the city of Brisbane. A more detailed examination disclosed other anomalous features, but a search of the literature showed that the characters displayed by the Brisbane Tuff, although rare, were not unique but could be closely paralleled in the "Great Hot Sand Flow" of Alaska and in the "Ignimbrites " of New Zealand, while they also resembled in certain respects the " Nitees ardentes" of Mt. Pelee. In the pages which follow only those features that have a direct bearing on the origin and nature of the Eris bane Tuff will be con sidered. For a more general account the reader is referred. to the paper by Mrs. C. Briggs (1928) published in these proceedings. 2. EARLIER VIEWS AS TO ORIGIN AND MODE OF FORMATION. The rock which is now knpwn as the Eris bane Tuff was first described by Leichhardt (1855) who examined the rock on his visit to Brisbane in 1844. -
Proceedings Geological Society of London
Downloaded from http://jgslegacy.lyellcollection.org/ at University of California-San Diego on February 18, 2016 PROCEEDINGS OF THE GEOLOGICAL SOCIETY OF LONDON. SESSION 1884-851 November 5, 1884. Prof. T. G. Bo~sEY, D.Sc., LL.D., F.R.S., President, in the Chair. William Lower Carter, Esq., B.A., Emmanuel College, Cambridge, was elected a Fellow of the Society. The SECRETARYaunouneed.bhat a water-colour picture of the Hot Springs of Gardiner's River, Yellowstone Park, Wyoming Territory, U.S.A., which was painted on the spot by Thomas Moran, Esq., had been presented to the Society by the artist and A. G. Re"::~aw, Esq., F.G.S. The List of Donations to the Library was read. The following communications were read :-- 1. "On a new Deposit of Pliocene Age at St. Erth, 15 miles east of the Land's End, Cornwall." By S. V. Wood, Esq., F.G.S. 2. "The Cretaceous Beds at Black Ven, near Lyme Regis, with some supplementary remarks on the Blackdown Beds." By the Rev. W. Downes, B.A., F.G.S. 3. "On some Recent Discoveries in the Submerged Forest of Torbay." By D. Pidgeon, Esq., F.G.S. The following specimens were exhibited :- Specimens exhibited by Searles V. Wood, Esq., the Rev. W. Downes, B.A., and D. Pidgeon, Esq., in illustration of their papers. a Downloaded from http://jgslegacy.lyellcollection.org/ at University of California-San Diego on February 18, 2016 PROCEEDINGS OF THE GEOLOGICAL SOCIETY. A worked Flint from the Gravel-beds (? Pleistocene) in the Valley of the Tomb of the Kings, near Luxor (Thebes), Egypt, ex- hibited by John E. -
GRAIL Reveals Secrets of the Lunar Interior
GRAIL Reveals Secrets of the Lunar Interior — Dr. Patrick J. McGovern, Lunar and Planetary Institute A mini-flotilla of spacecraft sent to the Moon in the past few years by several nations has revealed much about the characteristics of the lunar surface via techniques such as imaging, spectroscopy, and laser ranging. While the achievements of these missions have been impressive, only GRAIL has seen deeply enough to reveal inner secrets that the Moon holds. LRecent Lunar Missions Country Name Launch Date Status ESA Small Missions for Advanced September 27, 2003 Ended with lunar surface impact on Research in Technology-1 (SMART-1) September 3, 2006 USA Acceleration, Reconnection, February 27, 2007 Extension of the THEMIS mission; ended Turbulence and Electrodynamics of in 2012 the Moon’s Interaction with the Sun (ARTEMIS) Japan SELENE (Kaguya) September 14, 2007 Ended with lunar surface impact on June 10, 2009 PChina Chang’e-1 October 24, 2007 Taken out of orbit on March 1, 2009 India Chandrayaan-1 October 22, 2008 Two-year mission; ended after 315 days due to malfunction and loss of contact USA Lunar Reconnaissance Orbiter (LRO) June 18, 2009 Completed one-year primary mission; now in five-year extended mission USA Lunar Crater Observation and June 18, 2009 Ended with lunar surface impact on Sensing Satellite (LCROSS) October 9, 2009 China Chang’e-2 October 1, 2010 Primary mission lasted for six months; extended mission completed flyby of asteroid 4179 Toutatis in December 2012 USA Gravity Recovery and Interior September 10, 2011 Ended with lunar surface impact on I Laboratory (GRAIL) December 17, 2012 To probe deeper, NASA launched the Gravity Recovery and Interior Laboratory (GRAIL) mission: twin spacecraft (named “Ebb” and “Flow” by elementary school students from Montana) flying in formation over the lunar surface, tracking each other to within a sensitivity of 50 nanometers per second, or one- twenty-thousandth of the velocity that a snail moves [1], according to GRAIL Principal Investigator Maria Zuber of the Massachusetts Institute of Technology. -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei -
The Vanderbilt Hustler
www.InsideVandy.com HUSTLER THETHURSDAY, FEBRUARY VANDERBIL 2, 2012 ★ 124TH YEAR, NO. 7 ★ THE VOICE OF VANDERBILT SINCE 1888 T New kids on the block U.S. ambassador talks Egypt, Vanderbilt head coach James Arab spring KATIE KROG Franklin and the SENIOR PRODUCER coaching staff Students, faculty and guests crowded into Buttrick 101 Wednesday evening to listen to celebrated one former U.S. Ambassador to Egypt Margaret Scobey speak. of the best The event, which included a talk and a ques- tion and answer session, focused on Egypt signing classes and the Arab Spring, a series of protests and demonstrations that began in 2010. in Vanderbilt Scobey referred to the Arab Spring as “un- doubtedly the most exciting event of my ca- football history reer.” She added, “It was really just kind of on Wednesday, amazing to see a country of 82 million people rise up and say ‘enough.’ It was a very exciting welcoming 21 time, very momentous, and I think it’s going to have long term impact on a variety of is- new players to sues.” According to Scobey, a key priority for the Nashville. United States is “advancing peace, security K EVIN BARNETT/ THE VANDERBILT HUSTLER and opportunity in the Middle East, not only because of the long-term benefits to the na- signees receiving less tional order and global prosperity, but to the than a three-star rating here-and-now issues that we are confronting.” according to Rivals.com 6’5” Scobey said that these current issues in- 0 average height clude the defeat of al-Qaeda and other extrem- 285 of the six ist groups; the erasure of the spread of nuclear weight of three different signees with offensive line weapons; the promotion of Arab-Israeli peace; offensive line signees the increase of commerce; the countering of offers from other signees aggression; and furthering the spread of de- SEC programs signees who led mocracy and respect for human rights. -
Thunderstorm Terminology
Thunderstorm Terminology Thunderstorm — Updraft — Downdraft Cold front — Cumulonimbus cloud Latent heat — Isolated thunderstorms Cloudburst — Precipitation — Hail Thunderstorm lightning, thunder, rain, and dense clouds; may include heavy rain, hail, and strong winds Updraft an upward flow of air Downdraft a downward flow of air Cold front leading edge of a mass of heavy, colder air that is advancing Cumulonimbus giant clouds piled on top of each other; top cloud spreads out in the shape of an anvil heat released when water vapor condenses; is Latent heat the main driving energy of thunderstorms Isolated short-lived storms with light winds; usually do thunderstorms not produce violent weather on the ground Cloudburst sudden and short-lived heavy rainfall that usually occurs in a small area any moisture that falls from clouds and Precipitation reaches the ground Hail balls of ice about .2 inch (5 mm) to 6 inches (15 cm) that sometimes accompany storms WriteBonnieRose.com 1 Thunderstorm Terminology Dry thunderstorm — Thunder — Lightning Bead lightning — Ball lightning — Microburst Multiple-cell storms — Supercell Mesocyclone — Tornado Dry thunderstorm a storm where all raindrops evaporate while falling and none reach the ground sound heard when lightning heats the air so Thunder strongly and quickly it produces shock waves Lightning discharge of electricity after electric charges on particles in clouds grow large enough Bead lightning infrequent; looks like a string of bright spots; also called chain lightning Ball lightning rare; looks