Optumrx Brand Pipeline Forecast
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tetraphase Pharmaceuticals, Inc
WBB Securities, LLC Steve Brozak, DMH [email protected] (908) 518-7610 Tetraphase Pharmaceuticals, Inc. (NasdaqGS: TTPH) Initiating Coverage Initiating Coverage with a Speculative Buy Rating February 22, 2018 and a 12-Month Price Target of $6.00 Tetraphase Prepares for Commercialization of a Needed Antibiotic Tetraphase Pharmaceuticals, Inc. (TTPH) is Current Price $2.20 a clinical stage pharmaceutical company, 12 Month Target Price $6.00 with eravacycline as its lead candidate. It is a novel tetracycline-derived antibiotic to 12-Month Trading Range $2.05-$9.93 treat resistant and multidrug-resistant Market Capitalization (Mil) $113.50 infections, including multidrug-resistant Shares Outstanding (Mil) 51.59 Gram-negative infections. Following Avg. Daily Volume 872,642 successful IGNITE1 and IGNITE4 Phase 3 L.T. Debt (Mil) 0.00 trials in complicated intra-abdominal infections (cIAI), a New Drug Application Dividend/Yield N/A (NDA) was filed with the FDA and a Book Value P/S $2.92 Marketing Authorisation Application (MAA) was submitted to the EMA for IV NASDAQ Composite 7,218.23 eravacycline. S&P 500 2,701.33 Historical Performance and Disclosures on Page 10 - 11 Two days ago, TTPH announced an exclusive Source: QUODD+ licensing agreement with Everest Medicines Limited, a C-bridge Capital-backed biopharmaceutical company based in China, to develop and commercialize eravacycline in mainland China, Taiwan, Hong Kong, Macau, South Korea, and Singapore (known as the Territories). Tetraphase will receive an initial upfront payment of $7.0 million and may receive clinical and regulatory milestones of up to $16.5 million as well as a maximum of $20.0 million via achieving annual sales milestones. -
WO 2015/063180 Al 7 May 2015 (07.05.2015) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/063180 Al 7 May 2015 (07.05.2015) P O P C T (51) International Patent Classification: (74) Agent: WILLIAMS, Rachel; Novozymes Biopharma UK A61K 39/00 (2006.01) C07K 16/00 (2006.01) Ltd., Castle Court, 59 Castle Boulevard, Nottingham Not A61K 39/395 (2006.01) tinghamshire NG7 1FD (GB). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/EP2014/073261 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 29 October 2014 (29.10.2014) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (26) Publication Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (30) Priority Data: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 13 190750.3 29 October 2013 (29. 10.2013) EP SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 14166865.7 2 May 2014 (02.05.2014) EP TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicant: NOVOZYMES BIOPHARMA DK A S (84) Designated States (unless otherwise indicated, for every [DK/DK]; Krogshoejvej 36, DK-2880 Bagsvaerd (DK). -
The Top 100 November, 2016 a List of Stocks Topping Our Custom 'Torpedo’ Screen
The Top 100 November, 2016 A list of stocks topping our custom 'torpedo’ screen. Updated monthly. GPRO GoPro, Inc. Class A Consumer Discretionary TSLA Tesla Motors, Inc. Consumer Discretionary UA Under Armour, Inc. Class A Consumer Discretionary CRC California Resources Corp Energy CRZO Carrizo Oil & Gas, Inc. Energy CWEI Clayton Williams Energy, Inc. Energy FANG Diamondback Energy, Inc. Energy GST Gastar Exploration, Inc. Energy MPLX MPLX LP Energy RSPP RSP Permian, Inc. Energy SLCA U.S. Silica Holdings, Inc. Energy AAC AAC Holdings, Inc. Health Care ABEO Abeona Therapeutics, Inc. Health Care ACAD ACADIA Pharmaceuticals Inc. Health Care ADMP Adamis Pharmaceuticals Corporation Health Care ADMS Adamas Pharmaceuticals, Inc. Health Care ADXS Advaxis, Inc. Health Care AIMT Aimmune Therapeutics Inc Health Care AKBA Akebia Therapeutics, Inc. Health Care ALDR Alder Biopharmaceuticals, Inc. Health Care ARDM Aradigm Corporation Health Care ARDX Ardelyx, Inc. Health Care ARLZ Aralez Pharmaceuticals Inc. Health Care ATRA Atara Biotherapeutics Inc Health Care BCRX BioCryst Pharmaceuticals, Inc. Health Care BLUE bluebird bio, Inc. Health Care CARA Cara Therapeutics Inc Health Care CDNA CareDx, Inc. Health Care CEMP Cempra, Inc. Health Care CERS Cerus Corporation Health Care CFMS ConforMIS Inc Health Care CLVS Clovis Oncology, Inc. Health Care COLL Collegium Pharmaceutical, Inc. Health Care CORI Corium International, Inc. Health Care CRMD CorMedix Inc. Health Care CSU Capital Senior Living Corporation Health Care DERM Dermira Inc Health Care DVAX Dynavax Technologies Corporation Health Care DXCM DexCom, Inc. Health Care EPZM Epizyme, Inc. Health Care FOLD Amicus Therapeutics, Inc. Health Care HRTX Heron Therapeutics Inc Health Care ICPT Intercept Pharmaceuticals, Inc. -
Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models. -
(COVID-19) in the Era of Cardiac Vigilance: a Systematic Review
Journal of Clinical Medicine Review Repurposing Immunomodulatory Therapies against Coronavirus Disease 2019 (COVID-19) in the Era of Cardiac Vigilance: A Systematic Review Courtney M. Campbell 1,* , Avirup Guha 2 , Tamanna Haque 3, Tomas G. Neilan 4 and Daniel Addison 1,5 1 Cardio-Oncology Program, Division of Cardiology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43210, USA; [email protected] 2 Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, OH 44106, USA; [email protected] 3 Division of Hematology/Oncology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43210, USA; [email protected] 4 Cardio-Oncology Program, Division of Cardiology, Department of Internal Medicine, Massachusetts General Hospital, Boston, MA 02144, USA; [email protected] 5 Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA * Correspondence: [email protected] Received: 23 July 2020; Accepted: 8 September 2020; Published: 11 September 2020 Abstract: The ongoing coronavirus disease 2019 (COVID-19) pandemic has resulted in efforts to identify therapies to ameliorate adverse clinical outcomes. The recognition of the key role for increased inflammation in COVID-19 has led to a proliferation of clinical trials targeting inflammation. The purpose of this review is to characterize the current state of immunotherapy trials in COVID-19, and focuses on associated cardiotoxicities, given the importance of pharmacovigilance. The search terms related to COVID-19 were queried in ClinicalTrials.gov. A total of 1621 trials were identified and screened for interventional trials directed at inflammation. -
Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix
United States International Trade Commission Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix USITC Publication 4208 December 2010 U.S. International Trade Commission COMMISSIONERS Deanna Tanner Okun, Chairman Irving A. Williamson, Vice Chairman Charlotte R. Lane Daniel R. Pearson Shara L. Aranoff Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix Publication 4208 December 2010 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 15, 2010, set forth at the end of this publication, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the United States International Trade Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement changes to the Pharmaceutical Appendix, effective on January 1, 2011. Table 1 International Nonproprietary Name (INN) products proposed for addition to the Pharmaceutical Appendix to the Harmonized Tariff Schedule INN CAS Number Abagovomab 792921-10-9 Aclidinium Bromide 320345-99-1 Aderbasib 791828-58-5 Adipiplon 840486-93-3 Adoprazine 222551-17-9 Afimoxifene 68392-35-8 Aflibercept 862111-32-8 Agatolimod -
The Pipeline Report 2016 Pipeline 2014 Autoimmune
THE PIPELINE REPORT 2016 PIPELINE 2014 AUTOIMMUNE PRODUCTS GENERATING BUZZ OTHER KEY PRODUCTS IN THE PIPELINE BIG-TIME Baricitinib Eli Lilly/Incyte Indication: RA (Ph.III) Romosozumab Amgen/UCB Sirukumab Janssen Biotech RA What the clinical trials found: The daily oral demonstrated superiority Osteoporosis (Ph.III) (Ph.III) compared to placebo after 12 weeks based on ACR20 response (Ph. Avatrombopag Astellas Pharma Anifrolumab Medarex/Med III RA-BEAM). The agent also proved superior to adalimumab on ITP/thrombocytopenia (Ph.III) Immune Systemic lupus erythema- tosus (Ph.III) key secondary objectives of ACR20 response and improvement in Elobixibat AstraZeneca CIC and DAS28-hsCRP score. A few occasional AEs were reported. IBS-C (Ph.III) Odanacatib Merck Osteoporosis (Ph.III) Credit Suisse Success Probability and inThought Comment: 70%. Lesinurad AstraZeneca Gout (Ph. III) Tildrakizumab Merck Psoriasis The JAK inhibitor appears to have similar efficacy and safety to (Ph.III) Pfizer’s Xeljanz. It was supposed to have a once daily vs. Xeljanz’s Alicaforsen Atlantic Healthcare Pouchitis/ulcerative colitis (Ph.III) Siponimod Novartis MS (Ph.III) twice daily advantage, but Xeljanz’s once daily formulation will likely be approved soon. It’ll be interesting to see if Lilly/Incyte Rituximab biosimilar Boehringer Infliximab biosimilar Pfizer RA Ingelheim RA (Ph.III) (Ph.III) can do something with patient access and price to improve upon Mongersen Celgene/Nogra RHB 104 RedHill Biopharma the poor performance of Xeljanz and expand the JAK inhibitor Pharma Crohn’s disease (Ph.III) Crohn’s disease (Ph.III) market. Expected launch: 2016 (Source: Credit Suisse) Etanercept biosimilar Coherus Sarilumad Regeneron RA (Ph.III) Credit Suisse forecast: $1.09 billion in global annual sales by 2020 Biosciences/Daiichi Sankyo/ Etrolizumab Roche Ulcerative A peek at 159 aspiring agents, with profiles on 17 that could shoot to stardom. -
Biological Therapies for Atopic Dermatitis: an Update (Review)
EXPERIMENTAL AND THERAPEUTIC MEDICINE 17: 1061-1067, 2019 Biological therapies for atopic dermatitis: An update (Review) DIANA DELEANU1-3 and IRENA NEDELEA1,2 1Allergology and Immunology Discipline, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400058 Cluj-Napoca; Departments of 2Allergy and 3Internal Medicine, ‘Professor Doctor Octavian Fodor’ Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania Received July 6, 2018; Accepted August 22, 2018 DOI: 10.3892/etm.2018.6989 Abstract. Severe atopic dermatitis, which affects both adults in low-income countries (3). Furthermore, the past decades and children, is a debilitating disorder with a significant decline brought a 2-3-fold increase in prevalence in industrialized of patients' quality of life. Although aetiopathogenic factors countries (3). Generally AD onset is in early childhood, as are currently a topic of study and interpretation, the main one of the first steps of the ‘atopic march’, which describes the features of atopic eczema are skin barrier disturbance and natural history of atopic manifestations, and it is character- immune dysregulation. Severe refractory disease that fails to ized by xerotic skin and acute flare-ups of intensely pruritic improve with conventional therapy may benefit from biologic eczematous lesions (4). Recent studies recognize a predilection therapy. Progress in understanding immunopathology of atopic of AD for persistence in adulthood, with a lifetime prevalence dermatitis have allowed identification of therapeutic molecular accounting for 34.1% (5). Early onset, allergic rhinitis and targets in the field of biological therapy. We reviewed the hand eczema in childhood are high-risk factors for persistent different biological treatments with a focus on novel targeted AD (5). -
Evaluation of Antibody Properties and Clinically Relevant Immunogenicity
Drug Safety https://doi.org/10.1007/s40264-018-00788-w ORIGINAL RESEARCH ARTICLE Evaluation of Antibody Properties and Clinically Relevant Immunogenicity, Anaphylaxis, and Hypersensitivity Reactions in Two Phase III Trials of Tralokinumab in Severe, Uncontrolled Asthma Mats Carlsson1 · Martin Braddock2 · Yuling Li3 · Jihong Wang3 · Weichen Xu3 · Nicholas White4 · Ayman Megally5 · Gillian Hunter6 · Gene Colice5 © The Author(s) 2019 Abstract Introduction Tralokinumab is a monoclonal antibody (mAb) that neutralizes interleukin (IL)-13, a cytokine involved in the pathogenesis of asthma. Objective The objectives of this study were to characterize the potential immunogenic properties of tralokinumab and report data for anti-drug antibodies (ADAs) and hypersensitivity reactions from two phase III clinical trials. Methods The oligosaccharide structure of tralokinumab, Fab-arm exchange, and ADAs were characterized by standard techniques. Hypersensitivity adverse events (AEs) were evaluated in two pivotal clinical trials of tralokinumab in severe, uncontrolled asthma: STRATOS 1 and 2 (NCT02161757 and NCT02194699). Results No galactose-α-1,3-galactose (α-Gal) epitopes were found in the Fab region of tralokinumab and only 4.5% of glycoforms contained α-Gal in the Fc region. Under non-reducing conditions, Fab-arm exchange did not take place with another immunoglobulin (Ig) G 4 mAb (mavrilimumab). However, following glutathione reduction, a hybrid antibody with monovalent bioactivity was detected. ADA incidences (titers) were as follows: STRATOS 1—every 2 weeks (Q2 W) 0.8% (26.0), every 4 weeks (Q4 W) 0.5% (26.0), placebo 0.8% (52.0); STRATOS 2—Q2 W 1.2% (39.0), placebo 0.8% (13.0). Participant-reported hypersensitivity AE rates were as follows: STRATOS 1—Q2 W 25.9%, Q4 W 25.0%, placebo 25.5%; STRATOS 2—Q2 W 13.2%, placebo 9.0%. -
Tanibirumab (CUI C3490677) Add to Cart
5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor -
Eflapegrastim-Xnst Submitted by Spectrum Pharmaceuticals
Anton F. Ehrhardt, PhD, VP Medical Affairs Spectrum Pharmaceuticals, Inc One Main St, 11th floor Cambridge, MA 02142 Phone: (617) 477-8091 Email: [email protected] Date of request: 31 August 2020 NCCN Guidelines Panel: Hematopoietic Growth Factors On behalf of Spectrum Pharmaceuticals, Inc., I respectfully request the NCCN Hematopoietic Growth Factors Panel review the enclosed data for inclusion of eflapegrastim-xnst (Rolontis®), a non-biosimilar long-acting G- CSF of noVel structure, as a recommendation for prophylaxis of febrile neutropenia and maintenance of scheduled dose deliVery (MGF-B). Specific Changes: 1. Addition of eflapegrastim-xnst as a recommendation for prophylaxis of febrile neutropenia and maintenance of scheduled dose deliVery (MGF-B) a. Dosing recommendation below listing of eflapegrastim-xnst: One dose of 13.2 mg (MGF-B) 2. Addition of eflapegrastim-xnst to the listing of Filgrastim, Pegfilgrastim and Tbo-filgrastim in table MGF- D (Toxicity Risks for Myeloid Growth Factors) FDA Clearance: Rolontis is undergoing FDA reView based on an original BLA#761148 for a proposed indication of: to decrease the incidence of infection, as manifested by febrile neutropenia, in patients with non-myeloid malignancies receiving myelosuppressive anti-cancer drugs associated with clinically significant incidence of febrile neutropenia. PDUFA for this reView is October 24th, 2020. Rationale: In support of the proposed change, data were generated in pre-clinical in-Vitro and animal model studies that indicated structure-related enhancement of potency, and increased concentrations in bone marrow compared to pegfilgrastim (Barrett 2020(reference 1)). Eflapegrastim is composed of a recombinant human G- CSF joined to an IgG4 Fc moiety Via a short polyethylene glycol linker. -
Primary and Acquired Resistance to Immunotherapy in Lung Cancer: Unveiling the Mechanisms Underlying of Immune Checkpoint Blockade Therapy
cancers Review Primary and Acquired Resistance to Immunotherapy in Lung Cancer: Unveiling the Mechanisms Underlying of Immune Checkpoint Blockade Therapy Laura Boyero 1 , Amparo Sánchez-Gastaldo 2, Miriam Alonso 2, 1 1,2,3, , 1,2, , José Francisco Noguera-Uclés , Sonia Molina-Pinelo * y and Reyes Bernabé-Caro * y 1 Institute of Biomedicine of Seville (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Seville, Spain; [email protected] (L.B.); [email protected] (J.F.N.-U.) 2 Medical Oncology Department, Hospital Universitario Virgen del Rocio, 41013 Seville, Spain; [email protected] (A.S.-G.); [email protected] (M.A.) 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain * Correspondence: [email protected] (S.M.-P.); [email protected] (R.B.-C.) These authors contributed equally to this work. y Received: 16 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Simple Summary: Immuno-oncology has redefined the treatment of lung cancer, with the ultimate goal being the reactivation of the anti-tumor immune response. This has led to the development of several therapeutic strategies focused in this direction. However, a high percentage of lung cancer patients do not respond to these therapies or their responses are transient. Here, we summarized the impact of immunotherapy on lung cancer patients in the latest clinical trials conducted on this disease. As well as the mechanisms of primary and acquired resistance to immunotherapy in this disease. Abstract: After several decades without maintained responses or long-term survival of patients with lung cancer, novel therapies have emerged as a hopeful milestone in this research field.