Biological Therapies for Atopic Dermatitis: an Update (Review)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients
antibodies Review Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients Andrew T. Lucas 1,2,3,*, Ryan Robinson 3, Allison N. Schorzman 2, Joseph A. Piscitelli 1, Juan F. Razo 1 and William C. Zamboni 1,2,3 1 University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; [email protected] (J.A.P.); [email protected] (J.F.R.); [email protected] (W.C.Z.) 2 Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] 3 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-919-966-5242; Fax: +1-919-966-5863 Received: 30 November 2018; Accepted: 22 December 2018; Published: 1 January 2019 Abstract: The rapid advancement in the development of therapeutic proteins, including monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs), has created a novel mechanism to selectively deliver highly potent cytotoxic agents in the treatment of cancer. These agents provide numerous benefits compared to traditional small molecule drugs, though their clinical use still requires optimization. The pharmacology of mAbs/ADCs is complex and because ADCs are comprised of multiple components, individual agent characteristics and patient variables can affect their disposition. To further improve the clinical use and rational development of these agents, it is imperative to comprehend the complex mechanisms employed by antibody-based agents in traversing numerous biological barriers and how agent/patient factors affect tumor delivery, toxicities, efficacy, and ultimately, biodistribution. -
Review Anti-Cytokine Biologic Treatment Beyond Anti-TNF in Behçet's Disease
Review Anti-cytokine biologic treatment beyond anti-TNF in Behçet’s disease A. Arida, P.P. Sfikakis First Department of Propedeutic Internal ABSTRACT and thrombotic complications (1-3). Medicine Laikon Hospital, Athens, Unmet therapeutic needs in Behçet’s Treatment varies according to type and University Medical School, Greece. disease have drawn recent attention to severity of disease manifestations. Cor- Aikaterini Arida, MD biological agents targeting cytokines ticosteroids, interferon-alpha and con- Petros P. Sfikakis, MD other than TNF. The anti-IL-17 anti- ventional immunosuppressive drugs, Please address correspondence to: body secukinumab and the anti-IL-2 such as azathioprine, cyclosporine-A, Petros P. Sfikakis, MD, receptor antibody daclizumab were not cyclophosphamide and methotrexate, First Department of Propedeutic superior to placebo for ocular Behçet’s and Internal Medicine, are used either alone or in combination Laikon Hospital, in randomised controlled trials, com- for vital organ involvement. During the Athens University Medical School, prising 118 and 17 patients, respec- last decade there has been increased use Ag Thoma, 17, tively. The anti-IL-1 agents anakinra of anti-TNF monoclonal antibodies in GR-11527 Athens, Greece. and canakinumab and the anti-IL-6 patients with BD who were refractory E-mail: [email protected] agent tocilizumab were given to iso- to conventional treatment or developed Received on June 7, 2014; accepted in lated refractory disease patients, who life-threatening complications (4, 5). revised form on September 17, 2014. were either anti-TNF naïve (n=9) or Anti-TNF treatment has been shown to Clin Exp Rheumatol 2014; 32 (Suppl. 84): experienced (n=18). -
Challenges and Approaches for the Development of Safer Immunomodulatory Biologics
REVIEWS Challenges and approaches for the development of safer immunomodulatory biologics Jean G. Sathish1*, Swaminathan Sethu1*, Marie-Christine Bielsky2, Lolke de Haan3, Neil S. French1, Karthik Govindappa1, James Green4, Christopher E. M. Griffiths5, Stephen Holgate6, David Jones2, Ian Kimber7, Jonathan Moggs8, Dean J. Naisbitt1, Munir Pirmohamed1, Gabriele Reichmann9, Jennifer Sims10, Meena Subramanyam11, Marque D. Todd12, Jan Willem Van Der Laan13, Richard J. Weaver14 and B. Kevin Park1 Abstract | Immunomodulatory biologics, which render their therapeutic effects by modulating or harnessing immune responses, have proven their therapeutic utility in several complex conditions including cancer and autoimmune diseases. However, unwanted adverse reactions — including serious infections, malignancy, cytokine release syndrome, anaphylaxis and hypersensitivity as well as immunogenicity — pose a challenge to the development of new (and safer) immunomodulatory biologics. In this article, we assess the safety issues associated with immunomodulatory biologics and discuss the current approaches for predicting and mitigating adverse reactions associated with their use. We also outline how these approaches can inform the development of safer immunomodulatory biologics. Immunomodulatory Biologics currently represent more than 30% of licensed The high specificity of the interactions of immu- biologics pharmaceutical products and have expanded the thera- nomodulatory biologics with their relevant immune Biotechnology-derived peutic options available -
BIOLOGIC THERAPIES ASTHMA DYKEWICZ F BW.Pdf
11/30/2011 Biologic Asthma Therapies and Individualized Medicine Disclosures Advisory boards Mark S. Dykewicz, MD Merck (advisor, honorarium) Director, Allergy & Immunology Shire (advisor, honorarium) Fellowship Program Director Wake Forest University School of Medicine Editorial boards Winston-Salem, North Carolina USA Allergy & Asthma Proceedings American Journal of Rhinology & Allergy Clinical Reviews in Allergy & Immunology Journal of Angioedema Learning Objective Biological therapies May fill unmet needs, potentially in To better understand the use of biologic subpopulations or phenotypes of patients with modifiers in individualized asthma more severe asthma. treatment. May provide insight into mechanisms of asthma Sheharyar, Durrani, Busse. Biological Therapy for Asthma. ACCP PCCSU Article | 03.15.11 Omalizumab (Anti-IgE) Biologics with action against IgE (omalizumab) Biologic mechanism: Mab against IgE; decreases IgE Cytokines levels; results in down-regulation of IgE receptor IL-4 and/or IL-13 Patient subsets: persistent asthma selected for IL-5 specific IgE to perennial allergen, total serum IgE in Chemokine Receptors specified range CCR3 Benefits: 8 trials (n=3429) Rodrigo. Chest 2011 139:28 CXCR2 decreases in exacerbations, dose of inhaled and oral Transcription Factors corticosteroids, hospitalizations PPARs (peroxisome proliferator-activated receptors) improvement in QOL when used as add-on Rx Prostaglandin Receptors no improvement in lung function. CRTH2 6 1 11/30/2011 IL-4 Modifiers IL-13 Altrakincept Solubilized IL-4 Failed to show efficacy in large phase Pleiotropic cytokine of Th2 cells, promotes IgE receptor fragment, 3 trial. production neutralizes IL-4 Adcock et al (2008) May contribute to key features of asthma Pascolizumab Monoclonal Ab Phase 2 study of pascolizumab IL-13 production inhibited by inhaled glucocorticoids against IL- 4 discontinued because of inefficacy. -
Evaluation of Antibody Properties and Clinically Relevant Immunogenicity
Drug Safety https://doi.org/10.1007/s40264-018-00788-w ORIGINAL RESEARCH ARTICLE Evaluation of Antibody Properties and Clinically Relevant Immunogenicity, Anaphylaxis, and Hypersensitivity Reactions in Two Phase III Trials of Tralokinumab in Severe, Uncontrolled Asthma Mats Carlsson1 · Martin Braddock2 · Yuling Li3 · Jihong Wang3 · Weichen Xu3 · Nicholas White4 · Ayman Megally5 · Gillian Hunter6 · Gene Colice5 © The Author(s) 2019 Abstract Introduction Tralokinumab is a monoclonal antibody (mAb) that neutralizes interleukin (IL)-13, a cytokine involved in the pathogenesis of asthma. Objective The objectives of this study were to characterize the potential immunogenic properties of tralokinumab and report data for anti-drug antibodies (ADAs) and hypersensitivity reactions from two phase III clinical trials. Methods The oligosaccharide structure of tralokinumab, Fab-arm exchange, and ADAs were characterized by standard techniques. Hypersensitivity adverse events (AEs) were evaluated in two pivotal clinical trials of tralokinumab in severe, uncontrolled asthma: STRATOS 1 and 2 (NCT02161757 and NCT02194699). Results No galactose-α-1,3-galactose (α-Gal) epitopes were found in the Fab region of tralokinumab and only 4.5% of glycoforms contained α-Gal in the Fc region. Under non-reducing conditions, Fab-arm exchange did not take place with another immunoglobulin (Ig) G 4 mAb (mavrilimumab). However, following glutathione reduction, a hybrid antibody with monovalent bioactivity was detected. ADA incidences (titers) were as follows: STRATOS 1—every 2 weeks (Q2 W) 0.8% (26.0), every 4 weeks (Q4 W) 0.5% (26.0), placebo 0.8% (52.0); STRATOS 2—Q2 W 1.2% (39.0), placebo 0.8% (13.0). Participant-reported hypersensitivity AE rates were as follows: STRATOS 1—Q2 W 25.9%, Q4 W 25.0%, placebo 25.5%; STRATOS 2—Q2 W 13.2%, placebo 9.0%. -
Anticorps FR-EN 110X90.Indd
MONOCLONAL ANTIBODIES and Fc fusion proteins for therapeutic use DISTRIBUTION OF INTERNATIONAL NONPROPRIETARY NAMES BY INDICATION SOLID TUMORS RHUMATOLOGY PNEUMOLOGY Lung cancer bevacizumab Rheumatoid arthritis etanercept Allergic asthma omalizumab nivolumab infliximab Severe eosinophilic asthma mepolizumab necitumumab adalimumab reslizumab atezolizumab rituximab Colorectal cancer bevacizumab abatacept TRANSPLANTATION cetuximab tocilizumab Transplant rejection basiliximab panitumumab certolizumab pegol belatacept aflibercept golimumab Graft versus host disease inolimomab Bladder cancer atezolizumab Psoriatic arthritis etanercept Breast cancer trastuzumab adalimumab OPHTALMOLOGY bevacizumab infliximab Age related macular ranibizumab pertuzumab golimumab degeneration aflibercept trastuzumab entansine ustekinumab bevacizumab Gastric cancer trastuzumab certolizumab pegol Macular edema ranibizumab ramucirumab secukinumab aflibercept Head and neck cancer cetuximab Ankylosing spondylitis infliximab Myopic choroidal ranibizumab Ovarian cancer bevacizumab etanercept neovascularization aflibercept Fallopian tube cancer bevacizumab adalimumab Cervical cancer bevacizumab golimumab HAEMOSTASIS AND THROMBOSIS Kidney cancer bevacizumab certolizumab pegol nivolumab secukinumab Haemophilia A efmoroctocog α Melanoma ipilimumab Juvenile arthritis etanercept Haemophilia B eftrenonacog α nivolumab adalimumab Reversal of dabigatran idarucizumab Idiopathic thrombocytopenic pembrolizumab abatacept romiplostim Neuroblastoma dinutuximab tocilizumab purpura Malignant -
New Treatments for Atopic Dermatitis Targeting Skin Barrier Repair Via the Regulation of FLG Expression
Journal of Clinical Medicine Review New Treatments for Atopic Dermatitis Targeting Skin Barrier Repair via the Regulation of FLG Expression Anna D˛ebi´nska 1st Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, Chałubi´nskiego2a, 50-368 Wrocław, Poland; [email protected]; Tel.: +48-510-066-478 or +71-770-30-91; Fax: +48-713-281-206 Abstract: Atopic dermatitis (AD) is one of the most common chronic, inflammatory skin disorders with a complex etiology and a broad spectrum of clinical phenotypes. Despite its high prevalence and effect on the quality of life, safe and effective systemic therapies approved for long-term management of AD are limited. A better understanding of the pathogenesis of atopic dermatitis in recent years has contributed to the development of new therapeutic approaches that target specific pathophysiological pathways. Skin barrier dysfunction and immunological abnormalities are critical in the pathogenesis of AD. Recently, the importance of the downregulation of epidermal differentiation complex (EDC) molecules caused by external and internal stimuli has been extensively emphasized. The purpose of this review is to discuss the innovations in the therapy of atopic dermatitis, including biologics, small molecule therapies, and other drugs by highlighting regulatory mechanisms of skin barrier-related molecules, such as filaggrin (FLG) as a crucial pathway implicated in AD pathogenesis. Keywords: atopic dermatitis; skin barrier; filaggrin; biologicals; small molecule therapies Citation: D˛ebi´nska,A. New Treatments for Atopic Dermatitis 1. Introduction Targeting Skin Barrier Repair via the Atopic dermatitis (AD) is one of the most common chronic inflammatory skin disor- Regulation of FLG Expression. -
Safety of Specifically Targeting Interleukin 13 with Tralokinumab In
Safety of specifically targeting interleukin 13 with tralokinumab in adult patients with moderate-to-severe atopic dermatitis: pooled analysis of five randomized, double-blind, placebo-controlled Phase 3 and Phase 2 trials Eric Simpson,1 Joseph F Merola,2 Jonathan I Silverberg,3 Rebecca Zachariae,4 Christina Kurre Olsen,4 Andreas Wollenberg5 1Department of Dermatology, Oregon Health & Science University, Portland, OR, USA; 2Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA; 3Department of Dermatology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA; 4LEO Pharma A/S, Ballerup, Denmark; 5Klinikum der Universität München, Klinik und Poliklinik für Dermatologie und Allergologie, Munich, Germany ● AEs are summarised by the number and proportion of patients with AEs and the number and rate of Safety: monotherapy pool events by treatment group Table 3. Overall safety summary (safety analysis set, initial treatment period) ● Medical Dictionary for Regulatory Activities (MedDRA) version 2.0 was used (initial and maintenance treatment period) Introduction ● The overall frequency of AEs during the initial treatment period was similar for tralokinumab (69.0%) ● Event rates are presented as the number of events per 100 patient-years of exposure (PYE) AD pool Monotherapy pool and placebo (71.5%) and similar to the AD pool (Table 3) ● Atopic dermatitis (AD) is a chronic, debilitating, inflammatory skin disease1,2 characterised by Statistical analysis — The majority of AEs were mild -
Atopic Dermatitis (AD)
This activity is provided by PRIME Education. There is no fee to participate. This activity is supported by education grants from AbbVie, Inc., Sanofi Genzyme and Regeneron Pharmaceuticals. © 2019 PRIME® Education, LLC. All Rights Reserved.. Overview This downloadable fact‐sheet provides an easy‐to‐follow collection of the latest evidence shaping the treatment and management of psoriasis (PsO) and atopic dermatitis (AD). Learn about validated tools, evidence‐based strategies, and new and emerging targeted therapies that can be incorporated in daily practice to improve outcomes for patients with these conditions. © 2019 PRIME® Education, LLC. All Rights Reserved.. 2 1 Learning Objectives • Identify major barriers to evidence‐based treatment and management in federal and public sectors • Implement appropriate methods for diagnosis and assessment of disease activity • Assess current evidence on targeted biologic and small‐molecule therapies to guide treatment decisions for patients with moderate to severe disease • Monitor treatment responses according to treat‐to‐target principles and methods • Apply current evidence and guidelines to inform treatment decisions for patients with inadequate responses to initial therapies • Incorporate patient‐reported outcomes and shared decision‐making into clinical practice • Apply effective strategies for multidisciplinary care coordination and shared patient management © 2019 PRIME® Education, LLC. All Rights Reserved.. 3 Accreditation In support of improving patient care, PRIME® is jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC) to provide continuing education for the healthcare team. This activity was planned by and for the healthcare team, and learners will receive 2.25 Interprofessional Continuing Education (IPCE) credits for learning and change. -
Atopic Dermatitis: an Expanding Therapeutic Pipeline for a Complex Disease
REVIEWS Atopic dermatitis: an expanding therapeutic pipeline for a complex disease Thomas Bieber 1,2,3 Abstract | Atopic dermatitis (AD) is a common chronic inflammatory skin disease with a complex pathophysiology that underlies a wide spectrum of clinical phenotypes. AD remains challenging to treat owing to the limited response to available therapies. However, recent advances in understanding of disease mechanisms have led to the discovery of novel potential therapeutic targets and drug candidates. In addition to regulatory approval for the IL-4Ra inhibitor dupilumab, the anti- IL-13 inhibitor tralokinumab and the JAK1/2 inhibitor baricitinib in Europe, there are now more than 70 new compounds in development. This Review assesses the various strategies and novel agents currently being investigated for AD and highlights the potential for a precision medicine approach to enable prevention and more effective long-term control of this complex disease. Atopic disorders Atopic dermatitis (AD) is the most common chronic inhibitors tacrolimus and pimecrolimus and more 1,2 A group of disorders having in inflammatory skin disease . About 80% of disease cases recently the phosphodiesterase 4 (PDE4) inhibitor cris- common a genetic tendency to typically start in infancy or childhood, with the remain- aborole. For the more severe forms of AD, besides the develop IgE- mediated allergic der developing during adulthood. Whereas the point use of ultraviolet light, current therapeutic guidelines reactions. These are atopic dermatitis, food allergy, allergic prevalence in children varies from 2.7% to 20.1% across suggest ciclosporin A, methotrexate, azathioprine and 3,4 rhino- conjunctivitis and countries, it ranges from 2.1% to 4.9% in adults . -
Pharmacokinetic-Pharmacodynamic Modelling of Systemic IL13 Blockade by Monoclonal Antibody Therapy: a Free Assay Disguised As Total
pharmaceutics Article Pharmacokinetic-Pharmacodynamic Modelling of Systemic IL13 Blockade by Monoclonal Antibody Therapy: A Free Assay Disguised as Total John Hood 1,*, Ignacio González-García 1 , Nicholas White 1, Leeron Marshall 1,2, Vincent F. S. Dubois 1 , Paolo Vicini 1,3 and Paul G. Baverel 1,4 1 Clinical Pharmacology and Quantitative Pharmacology, AstraZeneca, Cambridge CB21 6GH, UK; [email protected] (I.G.-G.); [email protected] (N.W.); [email protected] (L.M.); [email protected] (V.F.S.D.); [email protected] (P.V.); [email protected] (P.G.B.) 2 Salford Royal Foundation Trust, Salford M6 8HD, UK 3 Confo Therapeutics, 9052 Ghent, Zwijnaarde, Belgium 4 Roche Pharma Research and Early Development, Clinical Pharmacology, Pharmaceutical Sciences, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland * Correspondence: [email protected]; Tel.: +44-1223-749-6288 Abstract: A sequential pharmacokinetic (PK) and pharmacodynamic (PD) model was built with Nonlinear Mixed Effects Modelling based on data from a first-in-human trial of a novel biologic, MEDI7836. MEDI7836 is a human immunoglobulin G1 lambda (IgG1λ-YTE) monoclonal antibody, Citation: Hood, J.; González-García, with an Fc modification to reduce metabolic clearance. MEDI7836 specifically binds to, and function- I.; White, N.; Marshall, L.; Dubois, ally neutralizes interleukin-13. Thirty-two healthy male adults were enrolled into a dose-escalation V.F.S.; Vicini, P.; Baverel, P.G. clinical trial. Four active doses were tested (30, 105, 300, and 600 mg) with 6 volunteers enrolled Pharmacokinetic-Pharmacodynamic per cohort. Eight volunteers received placebo as control. -
Asthma Agents
APPROVED PA Criteria Initial Approval Date: July 10, 2019 Revised Date: January 20, 2021 CRITERIA FOR PRIOR AUTHORIZATION Asthma Agents BILLING CODE TYPE For drug coverage and provider type information, see the KMAP Reference Codes webpage. MANUAL GUIDELINES Prior authorization will be required for all current and future dose forms available. All medication-specific criteria, including drug-specific indication, age, and dose for each agent is defined in Table 1 below. Benralizumab (Fasenra®) Dupilumab (Dupixent®) Mepolizumab (Nucala®) Omalizumab (Xolair®) Reslizumab (Cinqair®) GENERAL CRITERIA FOR INITIAL PRIOR AUTHORIZATION: (must meet all of the following) • Must be approved for the indication, age, and not exceed dosing limits listed in Table 1. • Must be prescribed by or in consultation with a pulmonologist, allergist, or immunologist.1,2 • For all agents listed, the preferred PDL drug, which treats the PA indication, is required unless the patient meets the non-preferred PDL PA criteria. • Must have experienced ≥ 2 exacerbations within the last 12 months despite meeting all of the following (exacerbation is defined as requiring the use of oral/systemic corticosteroids, urgent care/hospital admission, or intubation: o Patient adherence to two long-term controller medications, including a high-dose inhaled corticosteroid 1,2 (ICS) and a long-acting beta2-agonist (LABA) listed in Table 2. ▪ Combination ICS/LABA and ICS/LABA/LAMA products meet the requirement of two controller medications. o Patient must have had an adequate trial (at least 90 consecutive days) of a leukotriene modifier or a long-acting muscarinic antagonist (LAMA) as a third long-term controller medication listed in Table 2.