Placido Tardy E La Sua Corrispondenza Con Luigi Cremona: Un Progetto Di Ricerca

Total Page:16

File Type:pdf, Size:1020Kb

Placido Tardy E La Sua Corrispondenza Con Luigi Cremona: Un Progetto Di Ricerca "The geography of the Rendiconti del Circolo Matematico di Palermo: local and international aspects " Cinzia Cerroni Università di Palermo Giovan Battista Guccia (Palermo 1855 – 1914) Some reference dates 1884: The foundation of “Circolo Matematico di Palermo” 1886-88: The “Circolo” has developed as national society of the mathematicians. 1887: Released the first volume of “Rendiconti del Circolo Matematico di Palermo”. 1888: New Constitution and New Editorial Board 1891: Henri Poincarè entered to belong to “direttivo” of Circolo. 1894: Gösta Mittag-Leffler entered to belong to “direttivo” of Circolo. The main periods Three main periods: 1888 – 1904: the Circolo as a national association; 1904 – 1908: the strategy of Guccia for the internationalization of the Circolo; 1908 – 1914: the great growth. Members of Circolo Matematico of Palermo 1884 Not residents in Palermo, 5, 19% Residents in Palermo, 22, 81% Total 27 Residents in Palermo 22 Not residents in Palermo 5 1886/1887: The first not – palermitan members of the Circolo 1886: Eugene Catalan; Giuseppe Battaglini; Valentino Cerruti; Pasquale Del Pezzo 1887: Thomas Archer Hirst; Ernesto Cesaro; Corrado Segre; Francesco Brioschi; Luigi Cremona; Enrico D’Ovidio; Luigi Berzolari; Georges Humbert; Gino Loria; Giuseppe Peano; Vito Volterra; Enrico Betti The first period: 1888 - 1904 The members of the editorial board: 1891: Henri Poincaré entered to belong to “direttivo” of Circolo. (In that way the Rendiconti is the first mathematical journal with an international editorial board: the Acta’s one was only inter scandinavian) 1894: Gösta Mittag-Leffler entered to belong to “direttivo” of Circolo. 1888: New Constitution Art. 2: [Il Circolo] potrà istituire concorsi a premi e farsi promotore di congress scientifici nelle varie città del regno. [Il Circolo] may establish prize competitions and become a promoter of scientific congress in different cities of the kingdom. Art 17: Editorial Board 20 members (five residents and 15 non residents) Art. 18: elections with a system that guarantees the secrety of the vote. 1888: New Editorial Board 5 from Palermo: Giuseppe and Michele Albeggiani; Francesco Caldarera; Michele Gebbia; Giovan Battista Guccia 3 from Pavia: Eugenio Beltrami; Eugenio Bertini; Felice Casorati; 3 from Pisa: Enrico Betti; Riccardo De Paolis; Vito Volterra 2 from Napoli: Giuseppe Battaglini; Pasquale Del Pezzo 2 from Milano: Francesco Brioschi; Giuseppe Jung 2 from Roma: Valentino Cerruti; Luigi Cremona 2 from Torino: Enrico D’Ovidio; Corrado Segre 1 from Bologna: Salvatore Pincherle A very well distributed arrangement of the best Italian mathematicians! The most important absence is that of the university of Padova: Giuseppe Veronese had joined the Circolo in 1888, Gregorio Ricci will never be a member of it Ulisse Dini and Luigi Bianchi in Pisa will join the Circolo respectively in 1900 and in 1893. Members of Circolo Matematico of Palermo 1888 Belgium 1 Foreigners, 6, 6% Bohemia 2 France 2 England 1 Residents in Palermo, 46, 45% Residents in Italy, 50, 49% Total 102 Residents in Palermo 46 Not residents in Palermo 56 Residents in Italy 50 Foreigners 6 Members of Circolo Matematico of Palermo 1898 Bohemia 2 France 13 Germany 3 Foreigners; 31; 18% Holland 1 Russia 1 Residents in Palermo; 43; 25% Scotland 1 Serbia 1 Spain 2 United States 5 Sveden 1 Switzerland 1 Residents in Italy; 100; 57% Total 174 Residents in Palermo 43 Not residents in Palermo 131 Residents in Italy 100 Foreigners 31 % Foreigners 1998 Sveden; 1; 3% Switzerland; 1; 3% Bohemia; 2; 6% United States ; 5; 16% Spain; 2; 6% France; 13; 42% Serbia; 1; 3% Scotland; 1; 3% Germany; 3; 10% Russia; 1; 3% Holland; 1; 3% Members of Circolo Matematico of Palermo 1904 Australia 1 Belgium 1 Residents in Palermo; 31; 16% Bohemia 1 Foreigners; 44; 23% Canada 1 France 16 Germany 4 England and Ireland 1 Mexico 1 Holland 1 Poland 2 Russia 2 Serbia 1 Residents in Italy; 120; 61% Spain 3 Sveden 2 Switzerland 1 United States 6 Total 195 Residents in Palermo 31 Not residents in Palermo 164 Residents in Italy 120 Foreigners 44 % Foreigners 1904 Switzerland; 1; 2% Australia; Belgiu Bohemia; 1; 2% Sveden; 2; 5% 1; 2% m; 1; 2% Canada; 1; 2% United States ; 6; 14% Spain; 3; 7% France; 16; 36% Russia; 2; 5% Serbia; 1; 2% Poland; 2; 5% Germany; 4; 9% Holland; 1; 2% Mexico; 1; 2% England and Ireland; 1; 2% The first and the second issue of the Rendiconti Some papers by Palermitan scholars and papers by Eugène Charles Catalan, Thomas Archer Hirst, Pieter Hendrik Schoute, Corrado Segre (first issue, 1887) and Enrico Betti, George Henri Halphen, Ernest de Jonquières, Camille Jordan, Giuseppe Peano, Henri Poincaré, Corrado Segre, Alexis Starkov, Vito Volterra (second issue, 1888). Rendiconti of Circolo Matematico di Palermo Ukraine, Holland, Volume 1 1887 1, 3% Volume 2 1888 1, 4% Volume 3 1889 Belgium, England, France, 4, France, 1, 4% 1, 4% 14% 4, 17% Denmark, 1, 4% Italy, 24, 83% Italy, 18, 75% Italy, 22, 92% United Holland, Volume 5 1891 Volume 4 1890 n.1 States , Volume 4 1890 n.2 1, 4% Russia; 1; 1, 6% Germany, France, Germany, 4% 1, 4% 1, 13% 1, 5% France, 3, 17% France, 4, 16% Italy, 7, Italy, 18, 87% Italy, 13, 72% 72% Rendiconti of Circolo Matematico di Palermo Austria; Volume 7 1893 Volume 8 1894 Volume 6 1892 1; 5% Holland, France, 1, 7% 2, 8% France, 3, 20% Italy, 11, 73% Italy, 23, Italy, 20, 92% 95% United Serbia States , 2, Volume 9 1895 Germany, Volume 10 1896 ; 1; Volume 11 1897 Germany, 11% 1, 6% 6% 1, 5% France, 1, France, 2, 6% 12% France, 1, 5% Italy, 14, Italy, 14, Italy, 15, 82% Austria; 1; 74% 88% 5% Rendiconti of Circolo Matematico di Palermo Austria; 1; 6% Volume 12 1898 Volume 13 1899 n.1 United Volume 13 1899 n. 2 Germany, States , 1, Austria; 1; 2, 11% 9% 17% France, 3, 27% Italy, 15, Italy, 5, Italy, 7, 83% 83% 64% Sweden, Volume 14 1900 2, 10% Volume 15 1901 n.1 Volume 15 1901 n 2 Serbia ; 1; France, Holland, 5% 1, 14% 1, 5% Belgium, France 1 Italy France, 1, 14% 50% 1 1, 5% Italy, 5, 50% 72% Italy, 15, 75% Rendiconti of Circolo Matematico di Palermo Russia Czech Volume 16 1902 n.1 ; 1; Volume 16 1902 n.2 Repubblic , Volume 17 1903 n.1-2 6% 1, 4% France, 1, Belgium, Serbia; 1; 17% 1, 5% 4% Italy, 5, Italy, 16, 83% 89% Italy 92% Volume 18 1904 n.1 France, 2, 9% Greece, 1, 4% Belgium, 1, 4% Italy, 20, 83% Rendiconti of Circolo Matematico di Palermo 1887-1904 30 25 20 15 Italians Foreigners 10 5 0 Rendiconti of Circolo Matematico di Palermo 1888-1904 Prevalently National Languages: Italian, English, France, German Content: Pure and applied Mathematics Circulation: Europe, nord, sud, est, ovest, United States The preparation and the great progress. New members 1904: Max Noether 1905: F. Klein, H.G. Zeuthen, W. Osgood, G. Cantor, J. Lüroth, O. Veblen, G. Darboux, E. Landau, R. Moore 1906: I. Fredholm, E. Borel, M. Fréchet, D. Hilbert, J. Hadamard, J. Wedderburn, 1907: P. Sylow, P. Duhem, K. Hensel, H. Lebesgue 1908: F. Riesz, M. Dehn, E. Zermelo, H. Weyl, Emmy Noether 1909: A. Hurwitz, H. Bohr, W. Sierpinski 1910: L. Bieberbach, R. Courant, F. Hausdorff, G. H. Hardy, W. Burnside 1911: J. Coolidge, Friedrich Noether 1912: B. Russell, G. Polya 1913: H. Steinhaus, G. D. Birkhoff 1914: S. Lefschetz, A.A. H.Fraenkel 1907: an important lunch Lunch which was held November 3, 1907 at the Restaurant of the Hotel Continental, Paris. At this lunch took part (as you seen from the manuscript of Guccia): C. Darboux, C. Jordan, H. Poincarè, P. Appel, P. Painlevè, G. Humbert, J. Hadamard, G. Borel, D. Andrè, C. Laisant, G. Fouret, J. Drach, L. Olivier, P. Boutroux, besides Guccia. This meeting laid the foundation for the internationalization of the Circolo Matematico di Palermo. The editorial board till 1909 From Palermo: Giuseppe Albeggiani (from 1888 till his death 1892); Michele Albeggiani (1888 – 1909); Francesco Caldarera (1888 – 1893); Michele Gebbia (1888 – 1909); Francesco Gerbaldi (1894 – 1905); Gabriele Torelli (1894 – 1909) From Italy: Giuseppe Battaglini (Napoli 1888 – 1893); Eugenio Beltrami (Pavia and Roma 1888 – 1890); Eugenio Bertini (Pavia 1888 – 1893); Enrico Betti (Pisa 1888 – 1893); Luigi Bianchi (Pisa 1897 – 1908); Francesco Brioschi (Milano 1888 – 1896); Alfredo Capelli (Napoli 1894 – 1908); Felice Casorati (Pavia 1888 – 1890); Valentino Cerruti (Roma 1888 – 1908); Luigi Cremona (Roma 1888 – 1903); Riccardo De Paolis (Pisa 1888 – 1893); Pasquale Del Pezzo (Napoli 1888 – 1908); Alfonso Del Re (Napoli 1900 – 1908); Ulisse Dini (Pisa 1900 – 1908); Enrico D’Ovidio (Torino 1888 – 1893 and 1906 – 1908); Giuseppe Jung (Milano 1888 – 1899); Gino Loria (Genova 1894 – 1908); Giovanni Maisano (Messina and Palermo 1894 – 1899); Ernesto Pascal (Pavia and Milano 1900 – 1908); Giuseppe Peano (Torino 1894 – 1908); Salvatore Pincherle (Bologna 1888 – 1908); Corrado Segre (Torino 1888 – 1890); Alberto Tonelli (Roma 1900 – 1908); Vito Volterra (Pisa, Torino, Roma 1888 – 1908) From abroad Gösta Mittag Leffler (Stockholm 1894 – 1908); Henri Poincaré (Paris 1891 – 1908) The cultural policy of Rendiconti after 1904: Opening to the young “ In any case - and this is one of the most remarkable among the great and immortal merits of Guccia - he always judged mathematicians solely from their papers, without worrying about their age, or their official position; he has helped many beginners - as I was a dozen years ago - to publish their research in his important journal and to have confidence in themselves. I came here to thank the Circolo Matematico – that is Guccia – for the fact that he has created, to many mathematicians, their position in science” [E. Landau, 14 Aprile 1914] M.
Recommended publications
  • Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E
    BOOK REVIEW Einstein’s Italian Mathematicians: Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E. Rowe Einstein’s Italian modern Italy. Nor does the author shy away from topics Mathematicians: like how Ricci developed his absolute differential calculus Ricci, Levi-Civita, and the as a generalization of E. B. Christoffel’s (1829–1900) work Birth of General Relativity on quadratic differential forms or why it served as a key By Judith R. Goodstein tool for Einstein in his efforts to generalize the special theory of relativity in order to incorporate gravitation. In This delightful little book re- like manner, she describes how Levi-Civita was able to sulted from the author’s long- give a clear geometric interpretation of curvature effects standing enchantment with Tul- in Einstein’s theory by appealing to his concept of parallel lio Levi-Civita (1873–1941), his displacement of vectors (see below). For these and other mentor Gregorio Ricci Curbastro topics, Goodstein draws on and cites a great deal of the (1853–1925), and the special AMS, 2018, 211 pp. 211 AMS, 2018, vast secondary literature produced in recent decades by the world that these and other Ital- “Einstein industry,” in particular the ongoing project that ian mathematicians occupied and helped to shape. The has produced the first 15 volumes of The Collected Papers importance of their work for Einstein’s general theory of of Albert Einstein [CPAE 1–15, 1987–2018]. relativity is one of the more celebrated topics in the history Her account proceeds in three parts spread out over of modern mathematical physics; this is told, for example, twelve chapters, the first seven of which cover episodes in [Pais 1982], the standard biography of Einstein.
    [Show full text]
  • The True Story Behind Frattini's Argument *
    Advances in Group Theory and Applications c 2017 AGTA - www.advgrouptheory.com/journal 3 (2017), pp. 117–129 ISSN: 2499-1287 DOI: 10.4399/97888255036928 The True Story Behind Frattini’s Argument * M. Brescia — F. de Giovanni — M. Trombetti (Received Apr. 12, 2017 — Communicated by Dikran Dikranjan) Mathematics Subject Classification (2010): 01A55, 20D25 Keywords: Frattini’s Argument; Alfredo Capelli In his memoir [7] Intorno alla generazione dei gruppi di operazioni (1885), Giovanni Frattini (1852–1925) introduced the idea of what is now known as a non-generating element of a (finite) group. He proved that the set of all non- generating elements of a group G constitutes a normal subgroup of G, which he named Φ. This subgroup is today called the Frattini sub- group of G. The earliest occurrence of this de- nomination in literature traces back to a pa- per of Reinhold Baer [1] submitted on Sep- tember 5th, 1952. Frattini went on proving that Φ is nilpotent by making use of an in- sightful, renowned argument, the intellectual ownership of which is the subject of this note. We are talking about what is nowadays known as Frattini’s Argument. Giovanni Frattini was born in Rome on January 8th, 1852 to Gabrie- le and Maddalena Cenciarelli. In 1869, he enrolled for Mathematics at the University of Rome, where he graduated in 1875 under the * The authors are members of GNSAGA (INdAM), and work within the ADV-AGTA project 118 M. Brescia – F. de Giovanni – M. Trombetti supervision of Giuseppe Battaglini (1826–1894), together with other up-and-coming mathematicians such as Alfredo Capelli.
    [Show full text]
  • Algebraic Research Schools in Italy at the Turn of the Twentieth Century: the Cases of Rome, Palermo, and Pisa
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Historia Mathematica 31 (2004) 296–309 www.elsevier.com/locate/hm Algebraic research schools in Italy at the turn of the twentieth century: the cases of Rome, Palermo, and Pisa Laura Martini Department of Mathematics, University of Virginia, PO Box 400137, Charlottesville, VA 22904-4137, USA Available online 28 January 2004 Abstract The second half of the 19th century witnessed a sudden and sustained revival of Italian mathematical research, especially in the period following the political unification of the country. Up to the end of the 19th century and well into the 20th, Italian professors—in a variety of institutional settings and with a variety of research interests— trained a number of young scholars in algebraic areas, in particular. Giuseppe Battaglini (1826–1892), Francesco Gerbaldi (1858–1934), and Luigi Bianchi (1856–1928) defined three key venues for the promotion of algebraic research in Rome, Palermo, and Pisa, respectively. This paper will consider the notion of “research school” as an analytic tool and will explore the extent to which loci of algebraic studies in Italy from the second half of the 19th century through the opening decades of the 20th century can be considered as mathematical research schools. 2003 Elsevier Inc. All rights reserved. Sommario Nella seconda metà dell’Ottocento, specialmente dopo l’unificazione del paese, la ricerca matematica in Italia conobbe una vigorosa rinascita. Durante gli ultimi decenni del diciannovesimo secolo e i primi del ventesimo, matematici italiani appartenenti a diverse istituzioni e con interessi in diversi campi di ricerca, formarono giovani studiosi in vari settori dell’algebra.
    [Show full text]
  • Della Matematica in Italia
    Intreccio Risorgimento, Unità d'Italia e geometria euclidea... il “Risorgimento” della matematica in Italia La ripresa della matematica italiana nell’Ottocento viene solitamente fatta coincidere con la data emblematica del !"#, cioè con l’unifica%ione del paese . In realtà altre date, precedenti a &uesta, sono altrettanto significative di 'aolo (uidera La ripresa della matematica italiana nell’Ottocento viene solitamente fatta coincidere con la data emblematica del 1860, cioè con l’unificazione del paese . In realtà altre date, precedenti a uesta, sono altrettanto si!nificative . "el 1839 si tenne a %isa il primo &on!resso de!li scienziati italiani, esperienza, uesta dei con!ressi, c'e prose!u( fino al 1847. + uesti appuntamenti parteciparono non solo i matematici della penisola, ma anche uelli stranieri . Il &on!resso del 1839 rappresent, un enorme passo avanti rispetto alla situazione di isolamento de!li anni precedenti. -n anno di svolta fu pure il 1850 uando si diede avvio alla pubblicazione del primo periodico di matematica Annali di scienze fisiche e matematiche / mal!rado il titolo !li articoli ri!uardavano uasi totalmente la matematica. La rivista , dal 1857, prese il nome di Annali di matematica pura ed applicata. I!nazio &ant0, fratello del pi0 celebre &esare, pubblic, nel 1844 il volume L’Italia scientifica contemporanea nel uale racco!lieva le notizie bio!rafiche e scientifiche de!li italiani attivi in campo culturale e uindi anche nella matematica. "ella prima metà dell’Ottocento la matematica in realtà era in!lese, francese o tedesca . L( erano i !randi nomi. 1a uei con!ressi e da!li +tti relativi pubblicati successivamente si evinceva c'e il settore andava risve!liandosi.
    [Show full text]
  • "Matematica E Internazionalità Nel Carteggio Fra Guccia E Cremona E I Rendiconti Del Circolo Matematico "
    "Matematica e internazionalità nel carteggio fra Guccia e Cremona e i Rendiconti del Circolo Matematico " Cinzia Cerroni Università di Palermo Giovan Battista Guccia (Palermo 1855 – 1914) Biography of Giovan Battista Guccia He graduated in Rome in 1880, where he had been a student of Luigi Cremona, but already before graduation he attended the life mathematics and published a work of geometry. In 1889 was appointed professor of higher geometry at the University of Palermo and in 1894 was appointed Ordinary. In 1884 he founded, with a personal contribution of resources and employment, the Circolo Matematico di Palermo, whose ”Rendiconti" became, a few decades later, one of the most important international mathematical journals. He it was, until his death, the director and animator. At the untimely end, in 1914, he left fifty geometric works, in the address closely cremoniano. Luigi Cremona (Pavia 1830- Roma 1903) Biography of Luigi Cremona He participated as a volunteer in the war of 1848. He entered the University of Pavia in 1849. There he was taught by Bordoni, Casorati and Brioschi. On 9 May 1853 he graduated in civil engineering at the University of Pavia. He taught for several years in Middle Schools of Pavia, Cremona and Milan. In 1860 he became professor of Higher Geometry at the University of Bologna. In October 1867, on Brioschi's recommendation, was called to Polytechnic Institute of Milan, to teach graphical statics. He received the title of Professor in 1872 while at Milan. He moved to Rome on 9 October 1873, as director of the newly established Polytechnic School of Engineering.
    [Show full text]
  • Salvatore Pincherle: the Pioneer of the Mellin–Barnes Integrals
    Journal of Computational and Applied Mathematics 153 (2003) 331–342 www.elsevier.com/locate/cam Salvatore Pincherle: the pioneer of the Mellin–Barnes integrals Francesco Mainardia;∗, Gianni Pagninib aDipartimento di Fisica, Universita di Bologna and INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna, Italy bIstituto per le Scienze dell’Atmosfera e del Clima del CNR, Via Gobetti 101, I-40129 Bologna, Italy Received 18 October 2001 Abstract The 1888 paper by Salvatore Pincherle (Professor of Mathematics at the University of Bologna) on general- ized hypergeometric functions is revisited. We point out the pioneering contribution of the Italian mathemati- cian towards the Mellin–Barnes integrals based on the duality principle between linear di5erential equations and linear di5erence equation with rational coe7cients. By extending the original arguments used by Pincherle, we also show how to formally derive the linear di5erential equation and the Mellin–Barnes integral representation of the Meijer G functions. c 2002 Elsevier Science B.V. All rights reserved. MSC: 33E30; 33C20; 33C60; 34-XX; 39-XX; 01-99 Keywords: Generalized hypergeometric functions; Linear di5erential equations; Linear di5erence equations; Mellin–Barnes integrals; Meijer G-functions 1. Preface In Vol. 1, p. 49 of Higher Transcendental Functions of the Bateman Project [5] we read “Of all integrals which contain gamma functions in their integrands the most important ones are the so-called Mellin–Barnes integrals. Such integrals were ÿrst introduced by Pincherle, in 1888 [21]; their theory has been developed in 1910 by Mellin (where there are references to earlier work) [17] and they were used for a complete integration of the hypergeometric di5erential equation by Barnes [2]”.
    [Show full text]
  • HOMOTECIA Nº 11-15 Noviembre 2017
    HOMOTECIA Nº 11 – Año 15 Miércoles, 1º de Noviembre de 2017 1 En una editorial anterior, comentamos sobre el consejo que le dio una profesora con años en el ejercicio del magisterio a un docente que se iniciaba en la docencia, siendo que ambos debían enseñar matemática: - Si quieres obtener buenos resultados en el aprendizaje de los alumnos que vas a atender, para que este aprendizaje trascienda debes cuidar el lenguaje, el hablado y el escrito, la ortografía, la redacción, la pertinencia. Desde la condición humana, promover la cordialidad y el respeto mutuo, el uso de la terminología correcta de nuestro idioma, que posibilite la claridad de lo que se quiere exponer, lo que se quiere explicar, lo que se quiere evaluar. Desde lo específico de la asignatura, ser lexicalmente correcto. El hecho de ser docente de matemática no significa que eso te da una licencia para atropellar el lenguaje. En consecuencia, cuando utilices los conceptos matemáticos y trabajes la operatividad correspondiente, utiliza los términos, definiciones, signos y símbolos que esta disciplina ha dispuesto para ellos. Debes esforzarte en hacerlo así, no importa que los alumnos te manifiesten que no entienden. Tu preocupación es que aprendan de manera correcta lo que se les enseña. Es una prevención para evitarles dificultades en el futuro . Traemos a colación lo de este consejo porque consideramos que es un tema que debe tratarse con mucha amplitud. El problema de hablar y escribir bien no es solamente característicos en los alumnos sino que también hay docentes que los presentan. Un alumno, por más que asista continuamente a la escuela, es afectado por el entorno cultural familiar en el que se desenvuelve.
    [Show full text]
  • Lettere Tra LUIGI CREMONA E Corrispondenti in Lingua Inglese
    Lettere tra LUIGI CREMONA e corrispondenti in lingua inglese CONSERVATE PRESSO L’ISTITUTO MAZZINIANO DI GENOVA a cura di Giovanna Dimitolo Indice Presentazione della corrispondenza 1 J.W. RUSSELL 47 Criteri di edizione 1 G. SALMON 49 A.H.H. ANGLIN 2 H.J.S. SMITH 50 M.T. BEIMER 3 R.H. SMITH 55 BINNEY 4 Smithsonian Institution 57 J. BOOTH 5 W. SPOTTISWOODE 58 British Association 6 C.M. STRUTHERS 67 W.S. BURNSIDE 7 J.J. SYLVESTER 68 CAYLEY 8 M.I. TADDEUCCI 69 G. CHRYSTAL 10 P.G. TAIT 70 R.B. CLIFTON 16 W. THOMSON (Lord Kelvin) 74 R. CRAWFORD 17 R. TUCKER 75 A.J.C. CUNNINGHAM 18 G. TYSON-WOLFF 76 C.L. DODGSON (Lewis Carrol) 19 R.H. WOLFF 90 DULAN 20 J. WILSON 93 H.T. EDDY 21 Tabella: i dati delle lettere 94 S. FERGUSON 22 Biografie dei corrispondenti 97 W.T. GAIRDNER 23 Indice dei nomi citati nelle lettere 99 J.W.L. GLAISHER 29 Bibliografia 102 A.B. GRIFFITHS 30 T. HUDSON BEARE 34 W. HUGGINS 36 M. JENKINS 37 H. LAMB 38 C. LEUDESDORF 39 H.A. NEWTON 41 B. PRICE 42 E.L. RICHARDS 44 R.G. ROBSON 45 Royal Society of London 46 www.luigi-cremona.it – aprile 2017 Presentazione della corrispondenza La corrispondenza qui trascritta è composta da 115 lettere: 65, in inglese, sono di corrispondenti stranieri e 50 (48 in inglese e 2 in italiano) sono bozze delle lettere di Luigi Cremona indirizzate a stranieri. I 43 corrispondenti stranieri sono per la maggior parte inglesi, ma vi sono anche irlandesi, scozzesi, statunitensi, australiani e un tedesco, l’amico compositore Gustav Tyson-Wolff che, per un lungo periodo visse in Inghilterra.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae INFORMAZIONI PERSONALI Nome CINZIA Cognome CERRONI Recapiti Dipartimento di Matematica e Informatica, via archirafi 34 palermo Telefono 091-320919 091-23891092 E-mail [email protected] [email protected] FORMAZIONE TITOLI • Laurea in Matematica, indirizzo generale: algebrico-geometrico, conseguita il 13 Luglio 1995 presso l’Università degli Studi di Roma ”La Sapienza”. • Frequenza e sostenimento dell’esame finale del corso di perfezionamento Didattica della Matematica e della Matematica Applicata, presso l’Università degli Studi di Roma ”La Sapienza”, di durata annuale, anno accademico 1995/1996. • Frequenza e sostenimento dell’esame finale del corso di perfezionamento Didattica della Matematica ed i Nuovi Programmi del Biennio, presso l’Università degli Studi di Roma ”Tor Vergata”, di durata annuale, anno accademico 1997/1998. • Titolo di Dottore di Ricerca conseguito il 23-02-2000, discutendo la tesi dal titolo: Disegni divisibili e loro automorfismi. • Nel Novembre 1999 ammissione mediante concorso alla Scuola di Specializzazione per l’Insegnamento presso l’Università degli Studi di Palermo, indirizzo Fisico-Matematico-Informatico, classe di concorso Matematica e Fisica. Ha conseguito in data 24-07-2001 il titolo di specializzazione e conseguente- mente l’abilitazione all’insegnamento nella classe di concorso Matematica e Fisica. • E’ stata titolare dell’assegno di ricerca dal titolo “Azione di gruppi su strutture geometriche presso" il Dipartimento di Matematica e Applicazioni dell’Università degli Studi di Palermo, di durata quadriennale, dal 01-05-2000 al 30-04-2002 e dal 01-08-2002 al 31-07-2004. • E' ricercatore universitario da gennaio 2005 nel settore scientifico disciplinare "Matematiche Complementari" (MAT/04).
    [Show full text]
  • The Bianchi Classification in the Schü
    P1: FLT General Relativity and Gravitation (GERG) PP736-GERG-459711 February 7, 2003 18:36 Style file version May 27, 2002 General Relativity and Gravitation, Vol. 35, No. 3, March 2003 (C 2003) The Bianchi Classification in the Sch¨ucking-Behr Approach1 A. Krasi´nski,2 Christoph G. Behr,3 Engelbert Sch¨ucking,4 Frank B. Estabrook,5 Hugo D. Wahlquist,6 George F. R. Ellis,7 Robert Jantzen,8 and Wolfgang Kundt9 Received July 15, 2002 The historical development of the Bianchi classification of homogeneous cosmological models is described with special emphasis on the contributions by Sch¨ucking and Behr. KEY WORDS: Bianchi models; Lie algebra; cosmology.3 1. INTRODUCTION Today, the Bianchi classification of 3-dimensional Lie algebras is no longer pre- sented by the original Bianchi method [4]. The now-common approach is usually credited to C. G. Behr, but one never sees any reference to a paper by him. Tracing the references back in time one is most often led either to the paper by Ellis and 1 Written collectively as “Golden Oldie XXX; each author is signed under his segment. 2 Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland; e-mail: [email protected] 3 Eduard-Steinle-Strae 19, 70 619 Stuttgart, Germany. 4 29 Washington Square West, New York, NY 10011, USA; e-mail: [email protected] 5 Jet Propulsion Laboratory, Mail Stop 169-327, 4800 Oak Grove Drive, Pasadena, California 91109, USA 6 Jet Propulsion Laboratory, Mail Stop 169-327, 4800 Oak Grove Drive, Pasadena, California 91109, USA; e-mail: [email protected] 7 Mathematics
    [Show full text]
  • Bianchi, Luigi.Pdf 141KB
    Centro Archivistico BIANCHI, LUIGI Elenco sommario del fondo 1 Indice generale Introduzione.....................................................................................................................................................2 Carteggio (1880-1923)......................................................................................................................................2 Carteggio Saverio Bianchi (1936 – 1954; 1975)................................................................................................4 Manoscritti didattico scientifici........................................................................................................................5 Fascicoli............................................................................................................................................................6 Introduzione Il fondo è pervenuto alla Biblioteca della Scuola Normale Superiore di Pisa per donazione degli eredi nel 1994-1995; si tratta probabilmente solo di una parte della documentazione raccolta da Bianchi negli anni di ricerca e insegnamento. Il fondo era corredato di un elenco dattiloscritto a cura di Paola Piazza, in cui venivano indicati sommariamente i contenuti delle cartelle. Il materiale è stato ordinato e descritto da Sara Moscardini e Manuel Rossi nel giugno 2014. Carteggio (1880-1923) La corrispondenza presenta oltre 100 lettere indirizzate a L. B. dal 1880 al 1923, da illustri studiosi del XIX-XX secolo come Eugenio Beltrami, Enrico Betti, A. von Brill, Francesco Brioschi,
    [Show full text]
  • On the Role Played by the Work of Ulisse Dini on Implicit Function
    On the role played by the work of Ulisse Dini on implicit function theory in the modern differential geometry foundations: the case of the structure of a differentiable manifold, 1 Giuseppe Iurato Department of Physics, University of Palermo, IT Department of Mathematics and Computer Science, University of Palermo, IT 1. Introduction The structure of a differentiable manifold defines one of the most important mathematical object or entity both in pure and applied mathematics1. From a traditional historiographical viewpoint, it is well-known2 as a possible source of the modern concept of an affine differentiable manifold should be searched in the Weyl’s work3 on Riemannian surfaces, where he gave a new axiomatic description, in terms of neighborhoods4, of a Riemann surface, that is to say, in a modern terminology, of a real two-dimensional analytic differentiable manifold. Moreover, the well-known geometrical works of Gauss and Riemann5 are considered as prolegomena, respectively, to the topological and metric aspects of the structure of a differentiable manifold. All of these common claims are well-established in the History of Mathematics, as witnessed by the work of Erhard Scholz6. As it has been pointed out by the Author in [Sc, Section 2.1], there is an initial historical- epistemological problem of how to characterize a manifold, talking about a ‘’dissemination of manifold idea’’, and starting, amongst other, from the consideration of the most meaningful examples that could be taken as models of a manifold, precisely as submanifolds of a some environment space n, like some projective spaces ( m) or the zero sets of equations or inequalities under suitable non-singularity conditions, in this last case mentioning above all of the work of Enrico Betti on Combinatorial Topology [Be] (see also Section 5) but also that of R.
    [Show full text]