EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms (2015) Copyright © 2015 John Wiley & Sons, Ltd. Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/esp.3849 The influence of solar-induced thermal stresses on the mechanical weathering of rocks in humid mid-latitudes Jennifer Aldred, Martha Cary Eppes,* Kimberly Aquino, Rebecca Deal, Jacob Garbini, Suraj Swami, Alea Tuttle and George Xanthos Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA Received 11 May 2015; Revised 23 September 2015; Accepted 5 October 2015 *Correspondence to: Martha Cary Eppes, Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA. E-mail:
[email protected] ABSTRACT: The role of solar-induced thermal stresses in the mechanical breakdown of rock in humid-temperate climates has remained relatively unexplored. In contrast, numerous studies have demonstrated that cracks in rocks found in more arid mid- latitude locations exhibit preferred northeast orientations that are interpreted to be a consequence of insolation-related cracking. Here we hypothesize that similar insolation-related mechanisms may be efficacious in humid temperate climates, possibly in conjunction with other mechanical weathering processes. To test this hypothesis, we collected rock and crack data from a total of 310 rocks at a forested field site in North Carolina (99 rocks, 266 cracks) and at forested and unforested field sites in Pennsylvania (211 rocks, 664 cracks) in the eastern United States. We find that overall, measured cracks exhibit statistically preferred strike orientations (47° ± 16), as well as dip angles (52° ± 24°), that are similar in most respects to comparable datasets from mid-latitude deserts.