Boulder Orientation, Shape, and Age Along a Transect
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abstract Book Progeo 2Ed 20
Abstract Book BUILDING CONNECTIONS FOR GLOBAL GEOCONSERVATION Editors: G. Lozano, J. Luengo, A. Cabrera Internationaland J. Vegas 10th International ProGEO online Symposium ABSTRACT BOOK BUILDING CONNECTIONS FOR GLOBAL GEOCONSERVATION Editors Gonzalo Lozano, Javier Luengo, Ana Cabrera and Juana Vegas Instituto Geológico y Minero de España 2021 Building connections for global geoconservation. X International ProGEO Symposium Ministerio de Ciencia e Innovación Instituto Geológico y Minero de España 2021 Lengua/s: Inglés NIPO: 836-21-003-8 ISBN: 978-84-9138-112-9 Gratuita / Unitaria / En línea / pdf © INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Ríos Rosas, 23. 28003 MADRID (SPAIN) ISBN: 978-84-9138-112-9 10th International ProGEO Online Symposium. June, 2021. Abstracts Book. Editors: Gonzalo Lozano, Javier Luengo, Ana Cabrera and Juana Vegas Symposium Logo design: María José Torres Cover Photo: Granitic Tor. Geosite: Ortigosa del Monte’s nubbin (Segovia, Spain). Author: Gonzalo Lozano. Cover Design: Javier Luengo and Gonzalo Lozano Layout and typesetting: Ana Cabrera 10th International ProGEO Online Symposium 2021 Organizing Committee, Instituto Geológico y Minero de España: Juana Vegas Andrés Díez-Herrero Enrique Díaz-Martínez Gonzalo Lozano Ana Cabrera Javier Luengo Luis Carcavilla Ángel Salazar Rincón Scientific Committee: Daniel Ballesteros Inés Galindo Silvia Menéndez Eduardo Barrón Ewa Glowniak Fernando Miranda José Brilha Marcela Gómez Manu Monge Ganuzas Margaret Brocx Maria Helena Henriques Kevin Page Viola Bruschi Asier Hilario Paulo Pereira Carles Canet Gergely Horváth Isabel Rábano Thais Canesin Tapio Kananoja Joao Rocha Tom Casadevall Jerónimo López-Martínez Ana Rodrigo Graciela Delvene Ljerka Marjanac Jonas Satkünas Lars Erikstad Álvaro Márquez Martina Stupar Esperanza Fernández Esther Martín-González Marina Vdovets PRESENTATION The first international meeting on geoconservation was held in The Netherlands in 1988, with the presence of seven European countries. -
Impacts of Sedimentation and Drivers of Variability in the Boulder Patch
Environmental Studies Program: Ongoing Study Title Impacts of Sedimentation and Drivers of Variability in the Boulder Patch Community, Beaufort Sea (AK-19-01) Administered by Anchorage, Alaska Office BOEM Contact(s) Rick Raymond [email protected] Conducting Organizations(s) University of Texas at Austin and UAF Total BOEM Cost $750,000 Performance Period FY 2019–2024 Final Report Due June 2024 Date Revised October 4, 2019 PICOC Summary Problem The Boulder Patch provides complex and unique habitat and supports high biodiversity in an area of considerable oil and gas interest, which includes the proposed construction of Liberty Island (less than half a mile away). Impacts of industry activity may smother/bury/kill productive biological area, but mitigation measures may be possible. Intervention This study will conduct a monitoring program to examine long-term drivers of community variability during Liberty development activities. In addition, it will test possible mitigation measures using common industry materials to “reseed” or replace habitat lost due to Liberty Island development activities. Comparison The post-development community structure will be compared against historic data to assess impacts of O&G activity. Further, artificial substrate will be compared to buried boulders to test efficacy of using industry materials to mitigate development impacts. Outcome Results will include defined spatial gradients and temporal trends in environmental conditions, benthic community structure, and kelp production in the Boulder Patch community; evaluation of the effect of sediments on Boulder Patch community; and assessment of test artificial substrates as possible habitat mitigation. Context Impacts of Sedimentation and Drivers of Variability in the Boulder Patch Community, Beaufort Sea (AK-19-01) BOEM Information Need(s): Impacts to the Boulder Patch from proposed gravel island construction were identified by local communities as a concern during scoping for Liberty Island. -
Hydrogeology and Ground-Water Quality of Northern Bucks County, Pennsylvania
HYDROGEOLOGY AND GROUND-WATER QUALITY OF NORTHERN BUCKS COUNTY, PENNSYLVANIA by Ronald A. Sloto and Curtis L Schreftier ' U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 94-4109 Prepared in cooperation with NEW HOPE BOROUGH AND BRIDGETON, BUCKINGHAM, NOCKAMIXON, PLUMSTEAD, SOLEBURY, SPRINGFIELD, TINICUM, AND WRIGHTSTOWN TOWNSHIPS Lemoyne, Pennsylvania 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For additional information Copies of this report may be write to: purchased from: U.S. Geological Survey Earth Science Information Center District Chief Open-File Reports Section U.S. Geological Survey Box 25286, MS 517 840 Market Street Denver Federal Center Lemoyne, Pennsylvania 17043-1586 Denver, Colorado 80225 CONTENTS Page Abstract....................................................................................1 Introduction ................................................................................2 Purpose and scope ..................................................................... 2 Location and physiography ............................................................. 2 Climate...............................................................................3 Well-numbering system................................................................. 4 Borehole geophysical logging............................................................4 Previous investigations ................................................................. 6 Acknowledgments.................................................................... -
Influence of Boulder Concentration on Turbulence and Sediment
PUBLICATIONS Journal of Geophysical Research: Earth Surface RESEARCH ARTICLE Influence of Boulder Concentration on Turbulence 10.1002/2017JF004221 and Sediment Transport in Open-Channel Flow Key Points: Over Submerged Boulders • The presence of large immobile boulders significantly influences the H. W. Fang1, Y. Liu1, and T. Stoesser2 flow and turbulence field in the vicinity of submerged boulders 1Department of Hydraulic Engineering, Tsinghua University, Beijing, China, 2School of Civil Engineering, Cardiff University, • The boulder concentration plays an important role in forming skimming to Cardiff, UK isolated roughness flows and predicting bed load transport rates • The bed load transport rate will be Abstract In this paper the effects of boulder concentration on hydrodynamics and local and underestimated when using the reach-averaged sediment transport properties with a flow over submerged boulder arrays are investigated. reach-averaged shear stress, ’ compared with that based on local Four numerical simulations are performed in which the boulders streamwise spacings are varied. Statistics shear stress of near-bed velocity, Reynolds shear stresses, and turbulent events are collected and used to predict bed load transport rates. The results demonstrate that the presence of boulders at various interboulder spacings fl fi fl Supporting Information: altered the ow eld in their vicinity causing (1) ow deceleration, wake formation, and vortex shedding; • Supporting Information S1 (2) enhanced outward and inward interaction turbulence events downstream of the boulders; and (3) a • Movie S1 redistribution of the local bed shear stress around the boulder consisting of pockets of high and low bed shear stresses. The spatial variety of the predicted bed load transport rate qs based on local bed shear stress is Correspondence to: Y. -
2016 Longshore Size Grading on a Boulder Beach
LONGSHORE SIZE GRADING ON A BOULDER BEACH ANDREW GREEN, ANDREW COOPER, AND LESLEE SALZMANN ABSTRACT Longshore size sorting on boulder beaches has not previously been reported. In a boulder beach comprising beachrock slabs, we report systematic longshore clast size grading. The boulder beach at Mission Rocks, South Africa is deposited on an elevated (þ3 m MSL) shore platform and comprises imbricated clasts up to 5 m in the a-axis dimension (9 tonnes). The clasts are derived from adjacent intertidal beachrock and eolianite outcrops and are emplaced during high-magnitude wave events. Four distinct downdrift-fining cells are present. Each is 40–50 m long. The sorting is attributed to post-emplacement clast redistribution in which the smallest clasts are transported most frequently (by lower-magnitude storms) and therefore travel farthest downdrift. The updrift cell boundary is marked by boulders (5 m in length) that exceed the transport threshold for all but the most energetic of storms while the downdrift limit contains clasts 0.3 m in length. This mechanism of longshore size sorting does not rely on variations in longshore wave power as does cell development on sand and gravel beaches. The alongshore sorting via multiple high- (and variable-) magnitude events over a period of time, distinguishes these coarse clast deposits from those of single extreme events (whether storms or tsunamis). INTRODUCTION The longshore sorting of beach sediment by waves has received much attention. On sand and gravel beaches longshore sorting is manifest in variability of size (Komar 1977; Stapor and May 1983) and shape (Bluck 1967; Carr 1969; Carr 1971; Illenberger 1991) and may also be reflected in heavy- mineral distributions (Frihy and Komar 1991; Li and Komar 1992; Frihy and Lotfy 1997). -
1 El Niño and Intertidal Boulder Field Sedimentation at Point Reyes
Blair Conklin El Niño Sedimentation Spring 2017 El Niño and intertidal boulder field sedimentation at Point Reyes National Seashore Blair Conklin ABSTRACT Wave-exposed boulder fields, a common feature of the California coast, encounter drastic fluctuations in the amount of sand within them. This study examined the inter-annual and seasonal differences of sedimentation in an intertidal boulder field from September 2014 to March 2017. The study period included one El Niño winter, characterized by increased wave energy, and two ENSO-neutral winters. I used monthly photographs to qualitatively monitor sedimentation at two intertidal boulder fields in northern California. Sand depth was also measured within the boulder fields, and those measurements were positively correlated to the photographic assessments of sedimentation. Only one of the sites exhibited a strong seasonal cycle in sedimentation. Additionally, there were no differences in sedimentation between El Niño and ENSO-neutral winters. The results of this study indicate that sedimentation and erosion on beaches can vary dramatically between adjacent shorelines based on physical factors, such as exposure to swell conditions. Monitoring and understanding coastal sedimentation can inform land management decisions, marine resource reserves, and erosional processes during climate anomalies. KEYWORDS sand; beach morphology; wave energy; intertidal; seasonal; El Niño; 1 Blair Conklin El Niño Sedimentation Spring 2017 INTRODUCTION Beach morphology can undergo drastic changes over time. Wave energy plays an important role in the transport of sediments and the transformation of sandy beach systems (Moore et al. 1999; Charlier et al. 1998; Cooper et al. 2013). Many regions of the California coast are exposed to wave energies that are produced from storms formed in the southern and northern hemispheres of the Pacific Ocean. -
Geologic Boulder Map of Campus Has Been Created As an Educational Educational an As Created Been Has Campus of Map Boulder Geologic The
Adam Larsen, Kevin Ansdell and Tim Prokopiuk Tim and Ansdell Kevin Larsen, Adam What is Geology? Igneous Geo-walk ing of marine creatures when the limestone was deposited. It also contains by edited and Written Geology is the study of the Earth, from the highest mountains to the core of The root of “igneous” is from the Latin word ignis meaning fire. Outlined in red, numerous fossils including gastropods, brachiopods, receptaculita and rugose the planet, and has traditionally been divided into physical geology and his- this path takes you across campus looking at these ancient “fire” rocks, some coral. The best example of these are in the Geology Building where the stone torical geology. Physical geology concentrates on the materials that compose of which may have been formed at great depths in the Earth’s crust. Created was hand-picked for its fossil display. Campus of the Earth and the natural processes that take place within the earth to shape by the cooling of magma or lava, they can widely vary in both grain size and Granite is another common building stone used on campus. When compa- its surface. Historical geology focuses on Earth history from its fiery begin- mineral composition. This walk stops at examples showing this variety to help nies sell granite, they do not use the same classification system as geologists. nings to the present. Geology also explores the interactions between the you understand what the change in circumstances will do to the appearance Granite is sold in many different colours and mineral compositions that a Map Boulder Geologic lithosphere (the solid Earth), the atmosphere, the biosphere (plants, animals of the rock. -
Geology Teacher Guide
National Park Service Rocky Mountain U.S. Department of Interior Rocky Mountain National Park Geology Teacher Guide Table of Contents Rocky Mountain National Park.................................................................................................1 Teacher Guides..............................................................................................................................2 Rocky Mountain National Park Education Program Goals...................................................2 Geology Background Information Introduction.......................................................................................................................4 Setting.................................................................................................................................5 Tectonics of Rocky Mountain National Park..............................................................10 Glaciers of Rocky Mountain National Park................................................................16 Erosion History of Rocky Mountain National Park...................................................20 Foothills outside Rocky Mountain National Park......................................................21 Climate and Ecology of Rocky Mountain National Park..........................................22 Geology Resources Classroom Book List.......................................................................................................26 Glossary.............................................................................................................................28 -
Mesoproterozoic Frost Action at the Base of the Svinsaga Formation 291
NORWEGIAN JOURNAL OF GEOLOGY Mesoproterozoic frost action at the base of the Svinsaga Formation 291 Mesoproterozoic frost action at the base of the Svinsaga Formation, central Telemark, South Norway Juha Köykkä & Kauko Laajoki Köykkä, J. & Laajoki, K. 2009: Mesoproterozoic frost action ath the base of the Svinsaga Formation, central telemark, South Norway. Norwegain Journal of Geology, vol 89, pp 291-303. Trondheim 2009, ISSN 029-196X. The Mesoproterozoic Svinsaga Formation (SF) in central Telemark, South Norway, was unconformably deposited after ca. 1.347 Ga on the quartz arenite of the upper member of the Brattefjell Formation (UB), which is part of the Vindeggen Group. The unconformity is marked by a fracture zone a few meters thick developed in the UB quartz arenite. The lower part of the fracture zone, which contains sparse and closed fractures, and microfractures, grades upwards into a system of wider and mostly random oriented fractures and fracture patterns. The fractures are filled with mudstone. The fracture zone is overlain by several meters of in situ SF breccia, in which the fragments consist solely of the UB quartz arenite. The in situ breccia gradually grades into a basal breccia and clast- or matrix-supported conglomerates. The SF conglomerate beds contain solitary quartz arenite fragments and blocks up to 9.0 m3 that were derived from the UB. The fractures, fracture patterns, and microfractures in the UB quartz arenite and shattered quartz arenite fragments in the in situ SF breccia are ascribed to in situ fracturing, brecciation, and the accumulation of slightly moved blocks in a cold climate. -
Sess Report 2018
SESS REPORT 2018 The State of Environmental Science in Svalbard – an annual report Xxx 1 SESS report 2018 The State of Environmental Science in Svalbard – an annual report ISSN 2535-6321 ISBN 978-82-691528-0-7 Publisher: Svalbard Integrated Arctic Earth Observing System (SIOS) Editors: Elizabeth Orr, Georg Hansen, Hanna Lappalainen, Christiane Hübner, Heikki Lihavainen Editor popular science summaries: Janet Holmén Layout: Melkeveien designkontor, Oslo Citation: Orr et al (eds) 2019: SESS report 2018, Longyearbyen, Svalbard Integrated Arctic Earth Observing System The report is published as electronic document, available from SIOS web site www.sios-svalbard.org/SESSreport Contents Foreword .................................................................................................................................................4 Authors from following institutions contributed to this report ...................................................6 Summaries for stakeholders ................................................................................................................8 Permafrost thermal snapshot and active-layer thickness in Svalbard 2016–2017 .................................................................................................................... 26 Microbial activity monitoring by the Integrated Arctic Earth Observing System (MamSIOS) .................................................................................. 48 Snow research in Svalbard: current status and knowledge gaps ............................................ -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
Quaternary Deposits and Landscape Evolution of the Central Blue Ridge of Virginia
Geomorphology 56 (2003) 139–154 www.elsevier.com/locate/geomorph Quaternary deposits and landscape evolution of the central Blue Ridge of Virginia L. Scott Eatona,*, Benjamin A. Morganb, R. Craig Kochelc, Alan D. Howardd a Department of Geology and Environmental Science, James Madison University, Harrisonburg, VA 22807, USA b U.S. Geological Survey, Reston, VA 20192, USA c Department of Geology, Bucknell University, Lewisburg, PA 17837, USA d Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA Received 30 August 2002; received in revised form 15 December 2002; accepted 15 January 2003 Abstract A catastrophic storm that struck the central Virginia Blue Ridge Mountains in June 1995 delivered over 775 mm (30.5 in) of rain in 16 h. The deluge triggered more than 1000 slope failures; and stream channels and debris fans were deeply incised, exposing the stratigraphy of earlier mass movement and fluvial deposits. The synthesis of data obtained from detailed pollen studies and 39 radiometrically dated surficial deposits in the Rapidan basin gives new insights into Quaternary climatic change and landscape evolution of the central Blue Ridge Mountains. The oldest depositional landforms in the study area are fluvial terraces. Their deposits have weathering characteristics similar to both early Pleistocene and late Tertiary terrace surfaces located near the Fall Zone of Virginia. Terraces of similar ages are also present in nearby basins and suggest regional incision of streams in the area since early Pleistocene–late Tertiary time. The oldest debris-flow deposits in the study area are much older than Wisconsinan glaciation as indicated by 2.5YR colors, thick argillic horizons, and fully disintegrated granitic cobbles.