Exploring the Genome Diversity of Mycorrhizal Fungi – a JGI Sequencing Project Update

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Genome Diversity of Mycorrhizal Fungi – a JGI Sequencing Project Update Exploring the Genome Diversity of Mycorrhizal Fungi – A JGI Sequencing Project Update Annegret Kohler1, Joshua Herr1,2, Emmanuelle Morin1, Claude Murat1, Annick Brun1, Claire Venault-Fourrey1, David Hibbett3, Igor Grigoriev4,, and Francis Martin1 1 Tree-Microbe Interactions Research Group, INRA-Nancy, UMR 1136, Champenoux, FRANCE 2 Schatz Center for Tree Molecular Genetics, Pennsylvania State University, University Park, PA 16802 USA, 3 Biology Department, Clark University, Worcester, MA 01610 USA 4 Eukaryotic Genomics Group, Joint Genome Institute, Walnut Creek, CA 94598 USA Abstract Mycorrhizal fungi are responsible for plant and ecosystem health by providing an array of benefits. Mycorrhizal fungi help plants (including woody trees and shrubs, forbs, grasses, etc.) to acquire nutrients - notably nitrogen and phosphorus – and aid in water acquisition. Additionally, mycorrhizal fungi provide both a physical barrier to pathogens and initiate gene expression to aid in responses to be biotic and abiotic stresses. In ecosystems, mycorrhizal fungi contribute to nutrient cycling and may possess novel enzymes for the breakdown of a wide array of natural and synthetic chemicals. The goal of this sequencing initiative is to identify and compare genome determinants shaping evolution across the disparate fungal taxa in symbiosis with plants. Sequencing mycorrhizal fungal genomes will contribute to, which includes but is not limited to, the better understanding of interactions with host-trees; the basis for understanding phenotypic differences in fruit body structure and development; the description and understanding of organic secondary metabolites typical of antibiotics and volatile compounds; the comparative genomics of additional fungal parasites and saprobes; and the development of molecular markers to be used for the tractability of fungi in various environments. Sequencing the Genomes of Differing Status of Mycorrhizal Fungal Genome Sequencing Mycorrhizal Basidiomycetes in the Types of Mycorrhizal Fungi • Along with completed genomes and those in the sequencing, assembly, and Joint Genome Institute’s Fungal annotation stages (red and orange boxes, respectively), two tiers of genome • Although Smith & Read (2008) describe seven types of sequencing efforts have been planned through JGI for mycorrhizal fungi. Genomics Program mycorrhizae, mycorrhizal fungi can be described in terms of • The sequencing of mycorrhizal genomes by JGI is part of the ecto- and endomycorrhizae, which may form an infection • These sequencing efforts, planned for the next two years, will yield upwards of larger Fungal Genome Project (JGI-FGP). gradient from plant to plant. Describing mycorrhizal fungi in 30 fungal genomes from all fungal phyla and sub-phyla exhibiting the this way is an artificial classification that probably owes as mycorrhizal habit. These fungal genomes will contribute to our knowledge of • Basidiomycete representatives of both mycorrhizal and much to the plant host as the fungal symbiont. biochemical evolution and adaptation as well as ecosystem functioning. saprophytic genomes will be compared to elucidate how ecological roles have shaped genome architecture in the • Ectomycorrhizae interact with a plant symbiont by forming a Species Name Taxonomic Position Mycorrhizal Status Basidiomycetes (Martin & Nehls 2009). Type sheath around a plant root but do not penetrate the plant Laccaria bicolor Basidiomycota, Agaricales, Ecto Completed (Martin et al 2008), Version 2.0 apoplast. This form of mycorrhizae is common with trees and S238N-H82 Hydnangiaceae soon to be released scrubs and accounts for approximately 10% of plant species, Tuber Ascomycota, Pezizales, Ecto Completed (Martin et al 2010), Version 1.0 which cover large temperate and tropical ecosystems. Genomes melansporum Tuberaceae Completed • Endomycorrhizae are Cenococcum Ascomycota, Dothideomycetes Ecto In Sequencing Queue characterized by the geophilum 1.58 penetration of the fungal Glomus Glomerulomycota, Glomales Endo Illumina, 454 & Fosmid Sequencing In Progress intraradices tissue into the plant Hebeloma Basidiomycota, Agaricales, Ecto Illumina, 454 & Fosmid Sequencing Complete, apoplast, but typically do cylindrosporum h7 Cortinariaceae Assembly Near Completion not contribute a large Paxillus involutus Basidiomycota, Boletales Ecto Illumina, 454 & Fosmid Sequencing Complete, amount of fungal hyphae Assembly In Progress Pisolithus Basidiomycota, Boletales Ecto Illumina, 454 & Fosmid Sequencing Complete, to cover a plant root. microcarpus 441 Assembly In Progress Mycorrhizal types such as Pisolithus tinctorius Basidiomycota, Boletales Ecto On Hold Pending Pisolithus microcarpus 441 Ericoid and Orchid Marx 270 Assembly mycorrhizae, for the sake Rhizopogon Basdiomycota, Boletales, Ecto Illumina, 454 & Fosmid Sequencing Complete, salebrosus Suillineae (?) Assembly In Progress plant root of simplicity, can be put in Sequencing, Genomes Tuber aestivum Ascomycota, Pezizales, Ecto Sequencing started by Genoscope Genome Assembly, and Annotation. Image from into this category. Tuberaceae Institute, France Bonfante & Amanita muscaria Basidiomycota, Agaricales, Ecto In Sequencing Queue Genre 2010 BX008 Aminitaceae Laccaria Basidiomycota, Agaricales, Ecto 454 Sequencing completed through INRA amethystina Hydnangiaceae The Laccaria Pan-Genome Lactarius quietus Basidiomycota, Russulales Ecto Soon to be shipped to JGI Phylogenetic distribution of Basidiomycete representatives of the • Laccaria is a cosmopolitan genus of mycorrhizal fungi found Paxillus Basidiomycota, Boletales, Ecto Soon to be shipped to JGI JGI-FGP with in progress or pending genome sequencing. Green in temperate regions throughout the world. rubicundulus Paxilineae Piloderma croceum Basidiomycota, Atheliales Ecto Illumina & Fosmids Completed, 454 In Progress text represents mycorrhizal forming fungi and black text • Laccaria are model mycorrhizal taxa because, unlike many F1598 represents saprophytic or parasitic fungi. The box with ‘other’ Suillus luteus Basidiomycota, Boletales, Ecto Soon to be shipped to JGI Fungal Genomes taxa represent completed Basidiomycete genomes sequenced by fungi, they can be cultured and manipulated in the laboratory. Suillineae Additionally, copious amounts of ecosystem information JGI or other organizations which will be used for the purposes of Thelephora Basidiomycota, Thelephorales Ecto Soon to be shipped to JGI comparative genomics of the Basidiomycota and Eukaryotes. concerning their natural history is available. terrestris Sebacina vermifera Basidiomycota, Sebacinales Endo/Orchid Sequencing In-Progress, No Fosmids • Numerous Laccaria species are being sequenced using the MAFF 305830 Illumina GA platform for both intra-genus and population Meliniomyces Ascomycota, Helotiales Ecto/Ericoid Soon to be shipped to JGI A Tale of Two Symbionts: Laccaria bicolor genomic studies. The Laccaria bicolor S238N-H82 genome Mycorrhizal Oidiodendron Ascomycota, Leotiomycetales Endo Illumina Completed, INRA 454 Completed, JGI bicolor vs. Tuber melanosporum will be used for genome assembly (Martin et al 2008). – maius Zn 454 In Progress • Sequencing the genomes of Laccaria bicolor (Martin et al • Sequencing these genomes will allow the comparison of Rhyzoscyphus Ascomycota, Helotiales Ecto/Endo Soon to be shipped to JGI 2008) and Tuber melanosporum (Martin et al 2010) have very adaptive mutations to influences of environment, geography, Scheduled for Completion in 2011. ericeae different genomes, but exhibit a very similar suite of symbiosis- Tier 1 Terfezia boudieri Ascomycota, Pezizales Ecto/Endo DNA ready to be shipped to JGI and host specificity that have been noted across the genus. induced nutrient cycling enzymes (Plett & Martin 2011). Boletus edulis Basidiomycota, Boletales, Ecto DNA ready to be shipped to JGI • The analysis will consist of ‘ingroup’ L. bicolor (annotation Boleineae Laccaria bicolor 2.0) and L. amethystina (draft genome) with ‘outgroup’ L. Cantharellus Basidiomycota, Cantharellales Ecto DNA in production • Laccaria bicolor appears to be laccata and L. proxima. cibarius less dependent on the host and • The analysis will Coltricia Basidiomycota, Ecto DNA in production more active at acquiring carbon also consist of 20 cinnamomea Hymenochaetales Cortinarius Basidiomycota, Agaricales, Ecto DNA in production from the soil substrates and, as European, glaucopus Cortinariaceae a result, may act as a weak American, and Gymnomyces Basidiomycota, Russulales Ecto DNA in production saprotroph in the environment Fungal Genomes Genomes Fungal xanthosporus Asian strains of L. Ramaria formosa Basidiomycota, Gomphales Ecto DNA in production (Martin et al 2008). bicolor and L. amethystina for the Scleroderma Basidiomycota, Boletales, Ecto DNA in production Tuber melanosporum • Tuber melansporum is more purpose of citrinum Sclerodermataceae aggressive in its colonization of determining Tomentella Basidiomycota, Thelephorales Ecto DNA in production plant roots and does not appear geographic, sublilacina Mycorrhizal Tricholoma Basidiomycota, Ecto DNA in production to be able to acquire carbon Evolutionary relationships environmental, and – matsutake Tricholomataceae from the soil and therefore is within the host influence on Tulasnella Basidiomycota, Cantharellales, Endo/Orchid DNA in production calospora Tulasnellaceae more dependent on the host for genus Laccaria genome in 2012. Completion for Scheduled Meliniomyces Ascomycota, Helotiales Ericoid, DNA in production its survival (Martin et al
Recommended publications
  • Major Clades of Agaricales: a Multilocus Phylogenetic Overview
    Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J.
    [Show full text]
  • Olympic Mushrooms 4/16/2021 Susan Mcdougall
    Olympic Mushrooms 4/16/2021 Susan McDougall With links to species’ pages 206 species Family Scientific Name Common Name Agaricaceae Agaricus augustus Giant agaricus Agaricaceae Agaricus hondensis Felt-ringed Agaricus Agaricaceae Agaricus silvicola Forest Agaric Agaricaceae Chlorophyllum brunneum Shaggy Parasol Agaricaceae Chlorophyllum olivieri Olive Shaggy Parasol Agaricaceae Coprinus comatus Shaggy inkcap Agaricaceae Crucibulum laeve Common bird’s nest fungus Agaricaceae Cyathus striatus Fluted bird’s nest Agaricaceae Cystoderma amianthinum Pure Cystoderma Agaricaceae Cystoderma cf. gruberinum Agaricaceae Gymnopus acervatus Clustered Collybia Agaricaceae Gymnopus dryophilus Common Collybia Agaricaceae Gymnopus luxurians Agaricaceae Gymnopus peronatus Wood woolly-foot Agaricaceae Lepiota clypeolaria Shield dapperling Agaricaceae Lepiota magnispora Yellowfoot dapperling Agaricaceae Leucoagaricus leucothites White dapperling Agaricaceae Leucoagaricus rubrotinctus Red-eyed parasol Agaricaceae Morganella pyriformis Warted puffball Agaricaceae Nidula candida Jellied bird’s-nest fungus Agaricaceae Nidularia farcta Albatrellaceae Albatrellus avellaneus Amanitaceae Amanita augusta Yellow-veiled amanita Amanitaceae Amanita calyptroderma Ballen’s American Caesar Amanitaceae Amanita muscaria Fly agaric Amanitaceae Amanita pantheriana Panther cap Amanitaceae Amanita vaginata Grisette Auriscalpiaceae Lentinellus ursinus Bear lentinellus Bankeraceae Hydnellum aurantiacum Orange spine Bankeraceae Hydnellum complectipes Bankeraceae Hydnellum suaveolens
    [Show full text]
  • Checklist of Macro-Fungi from Baramati Area of Pune District, MS, India
    Int.J.Curr.Microbiol.App.Sci (2019) 8(7): 2187-2192 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 07 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.807.265 Checklist of Macro-Fungi from Baramati Area of Pune District, MS, India Anuradha K. Bhosale*, Vivek Kadam, Prasad Bankar, Sandhya Shitole, Sourabh Chandankar, Sujit Wagh and M.B. Kanade P. G. Research Center, Department of Botany, Tuljaram Chaturchand College of Arts, Science and Commerce, Baramati, Dist. Pune - 413 102, Maharashtra, India *Corresponding author ABSTRACT Macro-fungi are the fungal species that produce fruiting bodies visible to naked eyes and occurs widely in the rainy season. The macro-fungi plays K e yw or ds important role in nutrient dynamics, soil health, as pollution indicator, Macro-fungi species mutualism and its interaction and even has its economic role in diversity carbon cycling and the mobilization of nitrogen and phosphorous. Present investigation emphasizes on study of macro-fungi from Baramati area of Article Info Pune district of Maharashtra. During the study frequent field visits, listing Accepted: of genera and their species, identification and photography has done. In the 17 June 2019 Available Online: checklist total 64 fungal species belonging to 37 genera, 03 sub-divisions, 10 July 2019 13 orders and 23 families were reported. The contribution of Basidiomycotina fungi was 90% followed by Ascomycotina (7.8%) and Zygomycotina (1.6%). Introduction than 27000 fungal species throughout the India. The number of mushroom species Fungi are amongst the most important alone, recorded in the world were 41,000 of organisms in the world, not only because of which approximately 850 species were their vital role in ecosystem functions recorded from India (Deshmukh, 2004) mostly (Blackwell, 2011) but also for their influence belonging to gilled mushrooms.
    [Show full text]
  • Temporal Changes in the Ectomycorrhizal Community in Two Soil Horizons of a Temperate Oak Forest Pierre-Emmanuel Courty, Alain Franc, J-Claude Pierrat, Jean Garbaye
    Temporal changes in the ectomycorrhizal community in two soil horizons of a temperate oak forest Pierre-Emmanuel Courty, Alain Franc, J-Claude Pierrat, Jean Garbaye To cite this version: Pierre-Emmanuel Courty, Alain Franc, J-Claude Pierrat, Jean Garbaye. Temporal changes in the ectomycorrhizal community in two soil horizons of a temperate oak forest. Applied and Environmental Microbiology, American Society for Microbiology, 2008, 74 (18), pp.5792-5801. 10.1128/AEM.01592- 08. hal-01195010 HAL Id: hal-01195010 https://hal.archives-ouvertes.fr/hal-01195010 Submitted on 31 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Sept. 2008, p. 5792–5801 Vol. 74, No. 18 0099-2240/08/$08.00ϩ0 doi:10.1128/AEM.01592-08 Copyright © 2008, American Society for Microbiology. All Rights Reserved. Temporal Changes in the Ectomycorrhizal Community in Two Soil Horizons of a Temperate Oak Forestᰔ† Pierre-Emmanuel Courty,1* Alain Franc,2 Jean-Claude Pierrat,3 and Jean Garbaye1 UMR 1136 INRA-Nancy Universite´, Interactions Arbres/Micro-organisms, INRA-Nancy, 54280 Champenoux, France1; INRA Pierroton, UMR Biodiversite´, Ge`nes et Communaute´s, 33612 Cestas, France2; and UMR 1092 INRA-ENGREF Etudes des Ressources Foreˆt/Bois, ENGREF Nancy, 54000 Nancy, France3 Received 11 July 2008/Accepted 11 July 2008 The species structure of an ectomycorrhizal (ECM) community was assessed monthly for 15 months in the two horizons (A1 and A2) of an oak temperate forest in northeastern France.
    [Show full text]
  • Truffles and False Truffles: a Primer by Britt A
    Two views of Tuber canaliculatum. Photos: John Plschke III. Truffles and False Truffles: A Primer by Britt A. Bunyard; photos by John Plischke III Nothing in biology makes sense except in the light of evolution. —Theodosius Dobzhansky (1900–1979) Truffles have been the stuff of legend and culinary delight for genus of the most highly prized species of truffles.) As with every- centuries, even millennia. Historically, all mushrooms have been thing in nature, though, there is a reason. regarded with mystery or suspicion due mostly to their habit of materializing overnight (completely unlike other “plants”) and Form follows function: the convoluted hymenium often in rings (which was clearly the work of dancing fairies). Truffles are curiouser still in that they develop entirely under- Although it may not be obvious upon first inspection, species of ground. Theophrastus (372–287 B.C.) is credited with the earli- truffle are most closely related to members of the order Pezizales, est authorship of the group; he considered them the strangest of which includes Peziza, the eyelash fungus (Scutellinia scutellata), all plants (you will recall that, until fairly recently, fungi were and the beautiful scarlet cup (Sarcoscypha coccinea). But how did classified as plants) because they lack any plantlike features, in- members of the genus Tuber and their relatives go from a flattened cluding roots. morphology and epigeous (above ground) growth habit to highly When we think of truffles, we hardly get an image of the convoluted and hypogeous (subterranean)? In his terrific book typical fungus fruitbody, much less that of a mushroom. Not The Fifth Kingdom, Bryce Kendrick illustrates the evolutionary classified with true mushrooms (the Basidiomycetes), the truffles sequence from a flattened, above-ground cup like Peziza that likely possess sac-like spore producing structures (the ascus; plural gave rise to fungi that were increasingly convoluted like Genea.
    [Show full text]
  • Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya
    Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 8(2): 254–281 (2018) ISSN 2229-2225 www.creamjournal.org Article Doi 10.5943/cream/8/2/10 Copyright © Beijing Academy of Agriculture and Forestry Sciences Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya Njuguini SKM1, Nyawira MM1, Wachira PM 2, Okoth S2, Muchai SM3, Saado AH4 1 Botany Department, National Museums of Kenya, P.O. Box 40658-00100 2 School of Biological Studies, University of Nairobi, P.O. Box 30197-00100, Nairobi 3 Department of Clinical Studies, College of Agriculture & Veterinary Sciences, University of Nairobi. P.O. Box 30197- 00100 4 Department of Climate Change and Adaptation, Kenya Red Cross Society, P.O. Box 40712, Nairobi Njuguini SKM, Muchane MN, Wachira P, Okoth S, Muchane M, Saado H 2018 – Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 8(2), 254–281, Doi 10.5943/cream/8/2/10 Abstract Tropical forests are a haven of biodiversity hosting the richest macrofungi in the World. However, the rate of forest loss greatly exceeds the rate of species documentation and this increases the risk of losing macrofungi diversity to extinction. A field study was carried out in Kereita, Kikuyu Escarpment Forest, southern part of Aberdare range forest to determine effect of indigenous forest conversion to plantation forest on diversity of macrofungi. Macrofungi diversity was assessed in a 22 year old Pinus patula (Pine) plantation and a pristine indigenous forest during dry (short rains, December, 2014) and wet (long rains, May, 2015) seasons.
    [Show full text]
  • Ectomycorrhizal Fungal Community Structure in a Young Orchard of Grafted and Ungrafted Hybrid Chestnut Saplings
    Mycorrhiza (2021) 31:189–201 https://doi.org/10.1007/s00572-020-01015-0 ORIGINAL ARTICLE Ectomycorrhizal fungal community structure in a young orchard of grafted and ungrafted hybrid chestnut saplings Serena Santolamazza‑Carbone1,2 · Laura Iglesias‑Bernabé1 · Esteban Sinde‑Stompel3 · Pedro Pablo Gallego1,2 Received: 29 August 2020 / Accepted: 17 December 2020 / Published online: 27 January 2021 © The Author(s) 2021 Abstract Ectomycorrhizal (ECM) fungal community of the European chestnut has been poorly investigated, and mostly by sporocarp sampling. We proposed the study of the ECM fungal community of 2-year-old chestnut hybrids Castanea × coudercii (Castanea sativa × Castanea crenata) using molecular approaches. By using the chestnut hybrid clones 111 and 125, we assessed the impact of grafting on ECM colonization rate, species diversity, and fungal community composition. The clone type did not have an impact on the studied variables; however, grafting signifcantly infuenced ECM colonization rate in clone 111. Species diversity and richness did not vary between the experimental groups. Grafted and ungrafted plants of clone 111 had a diferent ECM fungal species composition. Sequence data from ITS regions of rDNA revealed the presence of 9 orders, 15 families, 19 genera, and 27 species of ECM fungi, most of them generalist, early-stage species. Thirteen new taxa were described in association with chestnuts. The basidiomycetes Agaricales (13 taxa) and Boletales (11 taxa) represented 36% and 31%, of the total sampled ECM fungal taxa, respectively. Scleroderma citrinum, S. areolatum, and S. polyrhizum (Boletales) were found in 86% of the trees and represented 39% of total ECM root tips. The ascomycete Cenococcum geophilum (Mytilinidiales) was found in 80% of the trees but accounted only for 6% of the colonized root tips.
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]
  • Systematics of the Genus Ramaria Inferred from Nuclear Large Subunit And
    AN ABSTRACT OF THE THESIS OF Andrea J. Humpert for the degree of Master of Science in Botany and Plant Pathology presented on November 11, 1999. Title: Systematics of the Genus Ramaria Inferred from Nuclear Large Subunit and Mitochondrial Small Subunit Ribosomal DNA Sequences. Abstract approved: Redacted for Privacy Joseph W. Spatafora Ramaria is a genus of epigeous fungi common to the coniferous forests of the Pacific Northwest of North America. The extensively branched basidiocarps and the positive chemical reaction of the context in ferric sulfate are distinguishing characteristics of the genus. The genus is estimated to contain between 200-300 species and is divided into four subgenera, i.) R. subgenus Ramaria, ii.) R. subgenus Laeticolora, iii.) R. subgenus Lentoramaria and iv.) R. subgenus Echinoramaria, according to macroscopic, microscopic and macrochemical characters. The systematics of Ramaria is problematic and confounded by intraspecific and possibly ontogenetic variation in several morphological traits. To test generic and intrageneric taxonomic classifications, two gene regions were sequenced and subjected to maximum parsimony analyses. The nuclear large subunit ribosomal DNA (nuc LSU rDNA) was used to test and refine generic, subgeneric and selected species concepts of Ramaria and the mitochondrial small subunit ribosomal DNA (mt SSU rDNA) was used as an independent locus to test the monophyly of Ramaria. Cladistic analyses of both loci indicated that Ramaria is paraphyletic due to several non-ramarioid taxa nested within the genus including Clavariadelphus, Gautieria, Gomphus and Kavinia. In the nuc LSU rDNA analyses, R. subgenus Ramaria species formed a monophyletic Glade and were indicated for the first time to be a sister group to Gautieria.
    [Show full text]
  • Truffle Farming in North America
    Examples of Truffle Cultivation Working with Riparian Habitat Restoration and Preservation Charles K. Lefevre, Ph.D. New World Truffieres, Inc. Oregon Truffle Festival, LLC What Are Truffles? • Mushrooms that “fruit” underground and depend on animals to disperse their spores • Celebrated delicacies for millennia • They are among the world’s most expensive foods • Most originate in the wild, but three valuable European species are domesticated and are grown on farms throughout the world What Is Their Appeal? • The likelihood of their reproductive success is a function of their ability to entice animals to locate and consume them • Produce strong, attractive aromas to capture attention of passing animals • Androstenol and other musky compounds French Truffle Production Trend 1900-2000 Driving Forces: • Phylloxera • Urbanization Current Annual U.S. Import volume: 15-20 tons Price Trend:1960-2000 The Human-Truffle Connection • Truffles are among those organisms that thrive in human- created environments • Urban migration and industrialization have caused the decline of truffles not by destroying truffle habitat directly, but by eliminating forms of traditional agriculture that created new truffle habitat • Truffles are the kind of disturbance-loving organisms that we can grow Ectomycorrhizae: Beneficial Symbiosis Between the Truffle Fungus and Host Tree Roots Inoculated Seedlings • Produced by five companies in the U.S. and Canada planting ~200 acres annually • ~3000 acres planted per year globally • Cultivated black truffle production now
    [Show full text]
  • MUSHROOMS of the OTTAWA NATIONAL FOREST Compiled By
    MUSHROOMS OF THE OTTAWA NATIONAL FOREST Compiled by Dana L. Richter, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI for Ottawa National Forest, Ironwood, MI March, 2011 Introduction There are many thousands of fungi in the Ottawa National Forest filling every possible niche imaginable. A remarkable feature of the fungi is that they are ubiquitous! The mushroom is the large spore-producing structure made by certain fungi. Only a relatively small number of all the fungi in the Ottawa forest ecosystem make mushrooms. Some are distinctive and easily identifiable, while others are cryptic and require microscopic and chemical analyses to accurately name. This is a list of some of the most common and obvious mushrooms that can be found in the Ottawa National Forest, including a few that are uncommon or relatively rare. The mushrooms considered here are within the phyla Ascomycetes – the morel and cup fungi, and Basidiomycetes – the toadstool and shelf-like fungi. There are perhaps 2000 to 3000 mushrooms in the Ottawa, and this is simply a guess, since many species have yet to be discovered or named. This number is based on lists of fungi compiled in areas such as the Huron Mountains of northern Michigan (Richter 2008) and in the state of Wisconsin (Parker 2006). The list contains 227 species from several authoritative sources and from the author’s experience teaching, studying and collecting mushrooms in the northern Great Lakes States for the past thirty years. Although comments on edibility of certain species are given, the author neither endorses nor encourages the eating of wild mushrooms except with extreme caution and with the awareness that some mushrooms may cause life-threatening illness or even death.
    [Show full text]
  • Ramaria Lacteobrunnescens) Funnen För Första Gången I Nordeuropa I En Uppländsk Kalkbarrskog
    Svensk Mykologisk Tidskrift Volym 29 · nummer 3 · 2008 Svensk Mykologisk Tidskrift inkluderar tidigare: www.svampar.se Svensk Mykologisk Tidskrift Sveriges Mykologiska Förening Tidskriften publicerar originalartiklar med svamp- Föreningen verkar för anknytning och med svenskt och nordeuropeiskt - en bättre kännedom om Sveriges svampar och intresse. Tidskriften utkommer med fyra nummer svampars roll i naturen per år och ägs av Sveriges Mykologiska Förening. - skydd av naturen och att svampplockning och annat Instruktioner till författare finns på SMF:s hemsida uppträdande i skog och mark sker under iakttagande www.svampar.se Tidskrift erhålls genom medlem- av gällande lagar skap i SMF. - att kontakter mellan lokala svampföreningar och Detta nummer av Svensk Mykologisk Tidskrift svampintresserade i landet underlättas framställs med bidrag från Tore Nathorst-Windahls - att kontakt upprätthålls med mykologiska föreningar minnesfond, Skogsstyrelsen och Naturvårdsverket. i grannländer - en samverkan med mykologisk forskning och veten- Redaktion skap. Redaktör och ansvarig utgivare Mikael Jeppson Medlemskap erhålles genom insättning av medlems- Lilla Håjumsgatan 4, avgiften på föreningens bankgiro 461 35 TROLLHÄTTAN 5388-7733 eller plusgiro 443 92 02-5. 0520-82910 [email protected] Medlemsavgiften för 2009 är: • 250:- för medlemmar bosatta i Sverige Hjalmar Croneborg • 300:- för medlemmar bosatta utanför Sverige Mattsarve Gammelgarn • 125:- (halv avgift) för studerande medlemmar 620 16 LJUGARN bosatta i Sverige (maximalt under 5 år) 018-672557 • 50:- för familjemedlemmar (erhåller ej SMT) [email protected] Subscriptions from abroad are welcome. Payments Jan Nilsson for 2009 (SEK 300.-) can be made to our bank ac- Smeberg 2 count: 450 84 BULLAREN Swedbank AB (publ) 0525-20972 Berga Företag [email protected] Box 22181 SE 250 23 Helsingborg, Sweden Äldre nummer av Svensk Mykologisk Tidskrift (inkl.
    [Show full text]