Book of Abstracts Keynote 1

Total Page:16

File Type:pdf, Size:1020Kb

Book of Abstracts Keynote 1 GEO BON OPEN SCIENCE CONFERENCE & ALL HANDS MEETING 2020 06–10 July 2020, 100 % VIRTUAL Book of Abstracts Keynote 1 IPBES: Science and evidence for biodiversity policy and action Anne Larigauderie Executive Secretary of IPBES This talk will start by a presentation of the achievements of the Intergovernmental Science-Policy Platform for Biodiversity (IPBES) during its first work programme, starting with the release of its first assessment, on Pollinators, Pollination and Food Production in 2016, and culminating with the release of the first IPBES Global Assessment of Biodiversity and Ecosystem Services in 2019. The talk will highlights some of the findings of the IPBES Global Assessment, including trends in the contributions of nature to people over the past 50 years, direct and indirect causes of biodiversity loss, and progress against the Aichi Biodiversity Targets, and some of the Sustainable Development Goals, ending with options for action. The talk will then briefly present the new IPBES work programme up to 2030, and its three new topics, and end with considerations regarding GEO BON, and the need to establish an operational global observing system for biodiversity to support the implementation of the post 2020 Global Biodiversity Framework. 1 Keynote 2 Securing Critical Natural Capital: Science and Policy Frontiers for Essential Ecosystem Service Variables Rebecca Chaplin-Kramer Stanford University, USA As governments, business, and lending institutions are increasingly considering investments in natural capital as one strategy to meet their operational and development goals sustainably, the importance of accurate, accessible information on ecosystem services has never been greater. However, many ecosystem services are highly localized, requiring high-resolution and contextually specific information—which has hindered the delivery of this information at the pace and scale at which it is needed. To meet the demand for global, standardized data on ecosystem services, while still retaining representation of their fine-scale socio-ecological processes, a new approach is warranted. Integrating the Essential Biodiversity Variables into ecosystem service modeling and the evolving framework for Essential Ecosystem Service Variables provides a path forward. With satellites scanning every meter of the planet every few days, a rich array of social media delineating human behavior and activity, and high-speed computing capable of metabolizing terabytes of data in minutes, we are poised to harness the information age to advance the reliability, relevance, and readiness of ecosystem service data. 2 Essential biodiversity and ecosystem service variables for the ocean William W. L. Cheung Institute for the Oceans and Fisheries, The University of British Columbia Marine ecosystems have been impacted by human activities, including overfishing, habitat destruction, climate change and pollution. These impacts are altering ecosystem functions, goods and services deemed vital to human communities. There are urgent calls, such as through the Intergovernmental Platform on Biodiversity and Ecosystem Services, for engaging in societal pathways that will lead us to ‘positive’ futures in which these ocean challenges can be met. Development of such pathways require knowledge about the past and current capacity of the ocean to support biodiversity, maintain ecosystem functions and services, as well as projections of how such capacity would be altered under scenarios of global changes. Here, using fisheries as an example, I illustrate how a candidate set of essential biodiversity and ecosystem service variables for the ocean, with global coverages, can be used to track past changes and explore the consequences of climate and societal changes. These candidate sets of essential variables for the ocean have also been applied to project the futures of fisheries-related ecosystem functions and services using integrated ocean models under scenarios of global change and policy options. These examples highlight the importance and utilities of developing interconnected essential biodiversity and ecosystem services variables that are harmonized across the ocean. They also underscore the need to build data and modelling infrastructure to facilitate the use of these variables in exploring sustainable ocean development pathways. 3 Keynote – EBV & EESV Development What monitoring invasive species has taught us about governing biodiversity knowledge Melodie A. McGeoch Monash University / Australia Biodiversity governance is what holds the relevant actions, research, expertise, policy and institutions together as we work towards a common goal. GEO BON and Essential Biodiversity Variables (EBVs) have played a significant role over the last decade developing the concepts, tools and networks to span the boundaries of otherwise sometimes disconnected thinking and activity on biodiversity and how best to govern it. As a test case, monitoring biological invasions has posed opportunities and challenges to implementing GEO BON’s vision to improve the quality, quantity and usefulness of biodiversity data. From a biodiversity perspective, biological invasions are a theoretically well-understood, species populations problem and one with substantial policy traction. Nonetheless, the many hurdles encountered in the process of implementing EBVs for invasion monitoring may provide more general insights on the work needed to support the Post-2020 Biodiversity Framework. I’ll provide an overview of progress on invasion monitoring for the purpose of national and global reporting, examine what some of the more general emergent messages might be, and how these could guide the tasks for GEO BON in the coming decade. 4 The InSiGHTS framework for modelling species’ Area of Habitat Carlo Rondinini Sapienza University / Italy InSiGHTS (Integrated Scenarios of Global Habitat for Terrestrial Species) is a modelling framework that enables the estimation, monitoring and projection of species’ Area of Habitat (AOH), i.e., the habitat available to a species within its range. InSiGHTS combines three components: (1) a climate- envelope model, used for projecting climatically suitable space; (2) assumptions on species’ response to climate change, used to infer potential range gains and losses following changes in climate suitability; and (3) a habitat suitability model to estimate the AOH. All three components of the framework are flexible in terms of data input and processing. InSiGHTS has been applied in a variety of contexts to assess the indirect effects of alternative pathways of socio-economic development, exerted through changes in climate and land use, on mammal habitat, populations and extinction risk. Based on InSiGHTS projections, known sustainability pathways reduce impacts on mammal diversity, but are insufficient to halt declines. 5 Panel discussion on BON Development The Global Coral Reef Monitoring Network – the thematic BON for coral reefs David Obura CORDIO East Africa and GCRMN Regional coordinator for the Western Indian Ocean Four years from the last GEOBON Open Science Conference in 2016, conditions for coral reefs have worsened, with the 3rd global bleaching event spanning three years from 2015-2017 touching almost all coral reef regions around the world. 2020 was anticipated as a ‘bumper policy year’ for the biodiversity and climate nexus, but the global attention has been diverted by another global nexus crisis, the Covid-19 pandemic. With this as a backdrop, the Global Coral Reef Monitoring Network (GCRMN) adopted a new Implementation and Governance Plan in January 2019, incorporating standards and principles from the Essential Biodiversity and Ocean Variable (EBV/EOV) frameworks. The principal task of the GCRMN in 2020 is to produce the first global update of coral reef status since 2008. The GCRMN community contributed 195 datasets from 75 countries. These datasets included more than 1,7500,000 observations of 23 different variables recorded from more than 100,000 transects. Long-term time series data (>15 years) were provided from almost 700 different sites around the world. The report will be produced in the second half of 2020. With both climate and biodiversity Conferences of Parties delayed to 2021, the timing of the report will be perfect to strengthen global commitments to stay within the safe climate boundary of 1.5-2 C and to adopt strong goals and targets of the new Global Biodiversity Framework (GBF) for 2021-2030 to achieve no net loss of biodiversity. In this regard, the GCRMN’s parent body, the International Coral Reef Initiative, submitted recommendations to the Open Ended Working Group on the GBF, including recommended metrics for coral reefs in the indicator framework of the GBF for monitoring target and goal attainment. A number of additional threads are in motion relevant to establishing the GCRMN as a thematic BON or OOS, including: • strengthening protocols, standards and data platforms, as well as of metadata and data sharing agreements, to facilitate aggregation, sharing and multiplying the use of data from a global, or set of coherent regional, datasets; • establishing formal procedures for contribution of GCRMN data into the Biodiversity Indicators Partnership and related platforms for international reporting on biodiversity policies, as well as for global standard reporting indices such as the IUCN Red List of Threatened Species and the Red List of Ecosystems; • establishing regional processes to address data contributor and networking needs,
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Critically Endangered - Wikipedia
    Critically endangered - Wikipedia Not logged in Talk Contributions Create account Log in Article Talk Read Edit View history Critically endangered From Wikipedia, the free encyclopedia Main page Contents This article is about the conservation designation itself. For lists of critically endangered species, see Lists of IUCN Red List Critically Endangered Featured content species. Current events A critically endangered (CR) species is one which has been categorized by the International Union for Random article Conservation status Conservation of Nature (IUCN) as facing an extremely high risk of extinction in the wild.[1] Donate to Wikipedia by IUCN Red List category Wikipedia store As of 2014, there are 2464 animal and 2104 plant species with this assessment, compared with 1998 levels of 854 and 909, respectively.[2] Interaction Help As the IUCN Red List does not consider a species extinct until extensive, targeted surveys have been About Wikipedia conducted, species which are possibly extinct are still listed as critically endangered. IUCN maintains a list[3] Community portal of "possibly extinct" CR(PE) and "possibly extinct in the wild" CR(PEW) species, modelled on categories used Recent changes by BirdLife International to categorize these taxa. Contact page Contents Tools Extinct 1 International Union for Conservation of Nature definition What links here Extinct (EX) (list) 2 See also Related changes Extinct in the Wild (EW) (list) 3 Notes Upload file Threatened Special pages 4 References Critically Endangered (CR) (list) Permanent
    [Show full text]
  • Scientific Support for Successful Implementation of the Natura 2000 Network
    Scientific support for successful implementation of the Natura 2000 network Focus Area B Guidance on the application of existing scientific approaches, methods, tools and knowledge for a better implementation of the Birds and Habitat Directives Environment FOCUS AREA B SCIENTIFIC SUPPORT FOR SUCCESSFUL i IMPLEMENTATION OF THE NATURA 2000 NETWORK Imprint Disclaimer This document has been prepared for the European Commis- sion. The information and views set out in the handbook are Citation those of the authors only and do not necessarily reflect the Van der Sluis, T. & Schmidt, A.M. (2021). E-BIND Handbook (Part B): Scientific support for successful official opinion of the Commission. The Commission does not implementation of the Natura 2000 network. Wageningen Environmental Research/ Ecologic Institute /Milieu guarantee the accuracy of the data included. The Commission Ltd. Wageningen, The Netherlands. or any person acting on the Commission’s behalf cannot be held responsible for any use which may be made of the information Authors contained therein. Lead authors: This handbook has been prepared under a contract with the Anne Schmidt, Chris van Swaay (Monitoring of species and habitats within and beyond Natura 2000 sites) European Commission, in cooperation with relevant stakehold- Sander Mücher, Gerard Hazeu (Remote sensing techniques for the monitoring of Natura 2000 sites) ers. (EU Service contract Nr. 07.027740/2018/783031/ENV.D.3 Anne Schmidt, Chris van Swaay, Rene Henkens, Peter Verweij (Access to data and information) for evidence-based improvements in the Birds and Habitat Kris Decleer, Rienk-Jan Bijlsma (Guidance and tools for effective restoration measures for species and habitats) directives (BHD) implementation: systematic review and meta- Theo van der Sluis, Rob Jongman (Green Infrastructure and network coherence) analysis).
    [Show full text]
  • Major Clades of Agaricales: a Multilocus Phylogenetic Overview
    Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J.
    [Show full text]
  • <I>Clitopilus Byssisedoides</I>
    MYCOTAXON Volume 112, pp. 225–229 April–June 2010 Clitopilus byssisedoides, a new species from a hothouse in Germany Machiel Noordeloos1, Delia Co-David1 & Andreas Gminder2 [email protected] Netherlands Centre for Biodiversity Naturalis (section NHN) P.O. Box 9514, 2300 RA Leiden, The Netherlands 2Dorfstrasse 27, D-07751 Jena, Germany Abstract — Clitopilus byssisedoides is described as a new species found in a hothouse in Botanischer Garten Jena, in Jena, Germany, of unknown, possibly tropical origin. In this study, it is described, illustrated and distinguished from other pleurotoid Clitopilus species with rhodocyboid spores, particularly from other members of (Rhodocybe) sect. Claudopodes Key words — Entolomataceae, phylogeny, taxonomy Introduction Gminder (2005) described a remarkable pleurotoid species with rhodocyboid spores from a hothouse in the botanical garden in Jena, Germany. It was provisionally called “Rhodocybe byssisedoides” because of its resemblance to Entoloma byssisedum (Pers.) Donk. In a recent molecular phylogenetic study of the Entolomataceae (where this new species was included as “Rhodocybe sp.”), it has been shown that Clitopilus is nested within Rhodocybe. As a result, both genera were merged into Clitopilus sensu lato (Co-David et al. 2009). In this study, we formally describe the new species, Clitopilus byssisedoides and compare it to the other pleurotoid taxa. Material and methods The morphology was studied on dried material with standard methods, using sections mounted in either ammonia 5% or Congo red and a Leica DM1000 microscope. Microscopic structures were drawn with help of a drawing tube. 226 ... Noordeloos, Co-David & Gminder Taxonomic description Clitopilus byssisedoides Gminder, Noordel. & Co-David, sp. nov. MycoBank # 515443 Fig.
    [Show full text]
  • (63) Continuation Inspart of Application No. PCT RE"SE SEN"I", "ES"E"NE
    US 2010.0086647A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0086647 A1 Kristiansen (43) Pub. Date: Apr. 8, 2010 (54) FEED OR FOOD PRODUCTS COMPRISING filed on Jan. 25, 2006, provisional application No. FUNGALMATERAL 60/690,496, filed on Jun. 15, 2005. (75) Inventor: Bjorn Kristiansen, Frederikstad (30) Foreign Application Priority Data (NO) May 13, 2005 (DK) ........................... PA 2005 00710 Correspondence Address: Jun. 15, 2005 (DK). ... PA 2005 OO88O BROWDY AND NEIMARK, P.L.L.C. Jul. 15, 2005 (DK) ....................... PCTFDKO5/OO498 624 NINTH STREET, NW Jan. 25, 2006 (DK)........................... PA 2006 OO117 SUTE 300 WASHINGTON, DC 20001-5303 (US) Publication Classification 51) Int. Cl. (73)73) AssigneeA : MEDMUSHAS(DK) s HORSHOLM ( A2.3L I/28 (2006.01) A23K L/18 (2006.01) (21) Appl. No.: 11/914,318 A23K L/6 (2006.01) CI2P 19/04 (2006.01) (22) PCT Filed: May 11, 2006 AOIK 6L/00 (2006.01) (86). PCT NO. PCT/DKO6/OO2S3 (52) U.S. Cl. ................................ 426/62: 426/2: 119/230 S371 (c)(1) (57) ABSTRACT (2), (4) Date: Dec. 1, 2009 The present invention relates to feed and food compositions comprising material obtained by fermenting fungi of the Related U.S. Application Data Basidiomycetes family in a liquid medium. Interestingly, (63) DK2005/000498,continuation inspart filed onof Jul.application 15, 2005. No. PCT enhanceRE"SE Survival SEN"I",and/or support "ES"E"NE growth of normal, healthy (60) Provisional application No. 60/690,496, filed on Jun. animals. Furthermore, the compounds may modulate the 15, 2005, provisional application No.
    [Show full text]
  • The Mycological Society of San Francisco • Jan. 2016, Vol. 67:05
    The Mycological Society of San Francisco • Jan. 2016, vol. 67:05 Table of Contents JANUARY 19 General Meeting Speaker Mushroom of the Month by K. Litchfield 1 President Post by B. Wenck-Reilly 2 Robert Dale Rogers Schizophyllum by D. Arora & W. So 4 Culinary Corner by H. Lunan 5 Hospitality by E. Multhaup 5 Holiday Dinner 2015 Report by E. Multhaup 6 Bizarre World of Fungi: 1965 by B. Sommer 7 Academic Quadrant by J. Shay 8 Announcements / Events 9 2015 Fungus Fair by J. Shay 10 David Arora’s talk by D. Tighe 11 Cultivation Quarters by K. Litchfield 12 Fungus Fair Species list by D. Nolan 13 Calendar 15 Mushroom of the Month: Chanterelle by Ken Litchfield Twenty-One Myths of Medicinal Mushrooms: Information on the use of medicinal mushrooms for This month’s profiled mushroom is the delectable Chan- preventive and therapeutic modalities has increased terelle, one of the most distinctive and easily recognized mush- on the internet in the past decade. Some is based on rooms in all its many colors and meaty forms. These golden, yellow, science and most on marketing. This talk will look white, rosy, scarlet, purple, blue, and black cornucopias of succu- at 21 common misconceptions, helping separate fact lent brawn belong to the genera Cantharellus, Craterellus, Gomphus, from fiction. Turbinellus, and Polyozellus. Rather than popping up quickly from quiescent primordial buttons that only need enough rain to expand About the speaker: the preformed babies, Robert Dale Rogers has been an herbalist for over forty these mushrooms re- years. He has a Bachelor of Science from the Univer- quire an extended period sity of Alberta, where he is an assistant clinical profes- of slower growth and sor in Family Medicine.
    [Show full text]
  • Biological Species Concepts in Eastern North American Populations of Lentinellus Ursinus Andrew N
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1997 Biological Species Concepts in Eastern North American Populations of Lentinellus ursinus Andrew N. Miller Eastern Illinois University This research is a product of the graduate program in Botany at Eastern Illinois University. Find out more about the program. Recommended Citation Miller, Andrew N., "Biological Species Concepts in Eastern North American Populations of Lentinellus ursinus" (1997). Masters Theses. 1784. https://thekeep.eiu.edu/theses/1784 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. THESIS REPRODUCTION CERTIFICATE TO: Graduate Degree Candidates {who have written formal theses) SUBJECT: Permission to Reproduce Theses The University Library is receiving a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS: Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings. Andrew N. Miller u~l.ff~ Author Date 7 I respectfully request Booth Library of Eastern Illinois University not allow my thesis to be reproduced because: Author Date Biological species concepts in eastern North American populations of Lentinellus ursinus (TITLE) BY Andrew N.
    [Show full text]
  • Larger Brain Size Indirectly Increases Vulnerability to Extinction in Mammals
    Larger brain size indirectly increases vulnerability to extinction in mammals Article Accepted Version Gonzalez-Voyer, A., Gonzalez-Suarez, M., Vilá, C. and Revilla, E. (2016) Larger brain size indirectly increases vulnerability to extinction in mammals. Evolution. ISSN 0014- 3820 doi: https://doi.org/10.1111/evo.12943 Available at http://centaur.reading.ac.uk/65634/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1111/evo.12943 Publisher: Wiley All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Larger brain size indirectly increases vulnerability to extinction in mammals. Alejandro Gonzalez-Voyer1,2,3†, Manuela González-Suárez4,5†, Carles Vilà1 and Eloy Revilla4. Affiliations: 1Conservation and Evolutionary Genetics Group, Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), c/Américo Vespucio s/n, 41092, Sevilla, Spain. 2Department of Zoology / Ethology, Stockholm University, Svante Arrheniusväg 18 B, SE-10691, Stockholm, Sweden. 3Laboratorio de Conducta Animal, Instituto de Ecología, Circuito Exterior S/N, Universidad Nacional Autónoma de México, México, D. F., 04510, México. 4Department
    [Show full text]
  • Children's Perceptions of Rainforest Biodiversity
    Children’s Perceptions of Rainforest Biodiversity: Which Animals Have the Lion’s Share of Environmental Awareness? Jake L. Snaddon1., Edgar C. Turner1,2.*, William A. Foster1 1 Department of Zoology, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom, 2 Bedfordshire, Cambridgeshire, Northamptonshire and Peterborough Wildlife Trusts, Bedford, Bedfordshire, United Kingdom Abstract Globally, natural ecosystems are being lost to agricultural land at an unprecedented rate. This land-use often results in significant reductions in abundance and diversity of the flora and fauna as well as alterations in their composition. Despite this, there is little public perception of which taxa are most important in terms of their total biomass, biodiversity or the ecosystem services they perform. Such awareness is important for conservation, as without appreciation of their value and conservation status, species are unlikely to receive adequate conservation protection. We investigated children’s perceptions of rainforest biodiversity by asking primary-age children, visiting the University Museum of Zoology, Cambridge to draw their ideal rainforest. By recording the frequency at which children drew different climatic, structural, vegetative and faunal components of the rainforest, we were able to quantify children’s understanding of a rainforest environment. We investigated children’s perceptions of rainforest biodiversity by comparing the relative numbers of the taxa drawn with the actual contributions made by these taxa to total rainforest biomass and global biodiversity. We found that children have a sophisticated view of the rainforest, incorporating many habitat features and a diverse range of animals. However, some taxa were over-represented (particularly mammals, birds and reptiles) and others under-represented (particularly insects and annelids) relative to their contribution to total biomass and species richness.
    [Show full text]
  • 510 & 510-1/2 Oak Street
    510 & 510-1/2 Oak Street 510 & 510-1/2 Oak Street Located between Third and Fourth Street on the east side of and fronting on In 1857, Ransom Jones had a tin shop at this address. Jones Oak Street. died at the county infirmary on Thursday, October 17, 1895 at the age Block 26, lot 7 & 8 of eighty-six. He was once a leading and influential citizen of Baraboo. Sanborn map location 710 Oak Street He conducted a Tin Shop and Hardware Store on Oak as early as 1857 where D. S. Holcombe had a livery and feed barn in 1895. This was probably in the 600 Block. Afterwards he was in partnership with another gentleman and the firm was near where C. E. Ryan had his jewelry store in 1895. He eventually met with financial failure and lost his property. In 1857, H. A. Peck & R. A. Orvis kept a Drug Store at approximately this address, probably moving from 133 Third Avenue. In 1861 Peck increased the depth of the building to 70 feet. It is believed that Peck was still here in 1864. In May of 1864, George H. Hall & H. T. Savage opened a clothing store formerly occupied by Peck & Orvis. In September of 1864, Mrs. J. Kennedy announced to the ladies of Baraboo and the vicinity that she had opened a Ladies Furnishing Store just north of Ryan’s Jewelry Store. In May of 1866, Doane & Barstow were busy remodeling the Oak Street circa 1903 building north of Ryan’s Jewelry Store. When completed they planned on stocking the store with dry goods and groceries.
    [Show full text]
  • INTRODUCTION Biodiversity of Agaricomycetes Basidiomes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital DARWINIANA, nueva serie 1(1): 67-75. 2013 Versión final, efectivamente publicada el 31 de julio de 2013 ISSN 0011-6793 impresa - ISSN 1850-1699 en línea BIODIVERSITY OF AGARICOMYCETES BASIDIOMES ASSOCIATED TO SALIX AND POPULUS (SALICACEAE) PLANTATIONS Gonzalo M. Romano1, Javier A. Calcagno2 & Bernardo E. Lechner1 1Laboratorio de Micología, Fitopatología y Liquenología, Departamento de Biodiversidad y Biología Experimental, Programa de Plantas Medicinales y Programa de Hongos que Intervienen en la Degradación Biológica (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, Piso 4, Laboratorio 7, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina; [email protected] (author for correspondence). 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico - Departamento de Ciencias Natu- rales y Antropológicas, Instituto Superior de Investigaciones, Hidalgo 775, C1405BCK Ciudad Autónoma de Buenos Aires, Argentina. Abstract. Romano, G. M.; J. A. Calcagno & B. E. Lechner. 2013. Biodiversity of Agaricomycetes basidiomes asso- ciated to Salix and Populus (Salicaceae) plantations. Darwiniana, nueva serie 1(1): 67-75. Although plantations have an artificial origin, they modify environmental conditions that can alter native fungi diversity. The effects of forest management practices on a plantation of willow (Salix) and poplar (Populus) over Agaricomycetes basidiomes biodiversity were studied for one year in an island located in Paraná Delta, Argentina. Dry weight and number of basidiomes were measured. We found 28 species belonging to Agaricomycetes: 26 species of Agaricales, one species of Polyporales and one species of Russulales.
    [Show full text]