Opioid Withdrawal ��������������������������������������������������������������������������������������������������� 15 Mark S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pharmacogenetics of Ketamine Metabolism And
Pharmacogenetics of Ketamine Metabolism and Immunopharmacology of Ketamine Yibai Li B.HSc. (Hons) Discipline of Pharmacology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide September 2014 A thesis submitted for the Degree of PhD (Medicine) Table of contents TABLE OF CONTENTS .............................................................................................. I LIST OF FIGURES ....................................................................................................IV LIST OF TABLES ......................................................................................................IV ABSTRACT ............................................................................................................... V DECLARATION .......................................................................................................VIII ACKNOWLEDGEMENTS ..........................................................................................IX ABBREVIATIONS .....................................................................................................XI CHAPTER 1. INTRODUCTION .................................................................................. 1 1.1 A historical overview of ketamine ........................................................................................ 1 1.2 Structure and Chemistry ....................................................................................................... 3 1.3 Classical analgesic mechanisms of ketamine ................................................................... -
Covering the Receiver
PERCUTANEOUS RADIOFREQUENCY THERMAL LUMBAR SYMPATHECTOMY AND ITS CLINICAL USE PERCUTANEOUS RADIOFREQUENCY THERMAL LUMBAR SYMPATHECTOMY AND ITS CLINICAL USE Thermische Iurn bale sympathectomie door mid del van· percutane radiofrequency en zijn klinische toepassing PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof. Dr. A.H.G. Rinnooy Kan en volgens besluit van het College van Dekanen. De openbare verdediging zal plaatsvinden op vrijdag 23 september 1988 om 15.00 uur door JANINA PERNAK geboren te Polen Eburon Delft 1988 PROMOTIECOMMISSIE: Promotor: Prof. Dr. W. Erdmann Overige !eden: Prof. Dr. P. Scherpereel (Lille) Prof. Dr. O.T. Terpstra Prof. Dr. B.D.· Bangma CONTENTS ABBREVIATIONS I INTRODUCTION 1 II AIMS OF STUDY 2 PART ONE: LITERATURE REVIEW Chapter 1 DIFFERENT THERAPIES IN THE REFLEX SYMPATHETIC DYSTROPHY 5 I Introduction 5 II Reflex Sympathetic Dystrophy and its treatment 7 1 Physical therapy 9 2 Pharmacological intervention 9 3 Transcutaneous electrostimulation 10 4 Dorsal spinal cord stimulation 11 5 Acupuncture 13 6 Laser 13 7 Cryoanalgesia 15 8 Percutaneous facet joints denervation 17 9 Epidural blocks 17 10 Sympathetic blocks 19 11 Intravenous sympathetic blocks 20 12 Sympathectorp.y 20 Chapter 2 SYMPATHECTOMY 21 I Historical Review 21 II Lumbar sympathectomy: 21 a. surgical - technique 21 b. chemical - technique 23 III Comparison between surgical and chemical sympathectomy 25 IV Summary and conclusions 25 PART TWO : OWN INVESTIGATION AND FINDINGS -
Question of the Day Archives: Monday, December 5, 2016 Question: Calcium Oxalate Is a Widespread Toxin Found in Many Species of Plants
Question Of the Day Archives: Monday, December 5, 2016 Question: Calcium oxalate is a widespread toxin found in many species of plants. What is the needle shaped crystal containing calcium oxalate called and what is the compilation of these structures known as? Answer: The needle shaped plant-based crystals containing calcium oxalate are known as raphides. A compilation of raphides forms the structure known as an idioblast. (Lim CS et al. Atlas of select poisonous plants and mushrooms. 2016 Disease-a-Month 62(3):37-66) Friday, December 2, 2016 Question: Which oral chelating agent has been reported to cause transient increases in plasma ALT activity in some patients as well as rare instances of mucocutaneous skin reactions? Answer: Orally administered dimercaptosuccinic acid (DMSA) has been reported to cause transient increases in ALT activity as well as rare instances of mucocutaneous skin reactions. (Bradberry S et al. Use of oral dimercaptosuccinic acid (succimer) in adult patients with inorganic lead poisoning. 2009 Q J Med 102:721-732) Thursday, December 1, 2016 Question: What is Clioquinol and why was it withdrawn from the market during the 1970s? Answer: According to the cited reference, “Between the 1950s and 1970s Clioquinol was used to treat and prevent intestinal parasitic disease [intestinal amebiasis].” “In the early 1970s Clioquinol was withdrawn from the market as an oral agent due to an association with sub-acute myelo-optic neuropathy (SMON) in Japanese patients. SMON is a syndrome that involves sensory and motor disturbances in the lower limbs as well as visual changes that are due to symmetrical demyelination of the lateral and posterior funiculi of the spinal cord, optic nerve, and peripheral nerves. -
08. Serdar Erdine.Indd
AĞRI 2009;21(4):133-140 REVIEW - DERLEME Neurolytic blocks: When, How, Why Nörolitik bloklar: Ne zaman, Nasıl, Niçin Serdar ERDİNE1 Summary Interventional techniques are divided into two categories: neuroablative and neuromodulatory procedures. Neuroablation is the physical interruption of pain pathways either surgically, chemically or thermally. Neuromodulation is the dynamic and functional inhibition of pain pathways either by administration of opioids and other drugs intraspinally or intraventricularly or by stimulation. Neuroablative techniques for cancer pain treatment have been used for more than a century. With the de- velopment of imaging facilities such as fl uoroscopy, neuroablative techniques can be performed more precisely and effi ciently. Key words: Neuroablative techniques; neurolytic blocks; radiofrequency thermocoagulation. Özet Girişimsel teknikler nöroablatif ve nöromodülatör işlemler olarak iki gruba ayrılırlar. Nöroablasyon, cerrahi, kimyasal veya ısı uy- gulamalarıyla ağrı yolaklarında fi ziksel iletinin kesilmesidir. Nöromodülasyon, stimülasyon uygulamasıyla veya intraventriküler ya da intraspinal uygulanan opioidler ve diğer ajanlarla ağrı yolaklarının dinamik ve fonksiyonel inhibisyonudur. Nöroablatif teknik- ler kanser tedavisinde yüzyıldan fazla zamandır kullanılmaktadır. Fluroskopi gibi görüntüleme araçlarındaki gelişmelerle nöroabla- tif uygulamalar daha doğru ve etkili bir şekilde gerçekleştirilmektedir. Anahtar sözcükler: Nöroablatif teknikler; nörolitik bloklar; radyofrekans termokoagulasyon. 1Department of -
Fundamentals of C.R.P.S
FUNDAMENTALS OF C.R.P.S. PHILIP GETSON, D.O. SEPTEMBER 11, 2015 R.S.D. Association National Conference I DON’T KNOW ! Philip Getson, D.O. October 22, 1999 Third National RSD Association Conference Atlantic City N.J. HISTORY The first mention of CRPS dates back to the 17th Century when surgeon Ambrose Pare reported that King Charles IX suffered from persistent pain and contracture of his arm following a bloodletting procedure During the Civil War Mitchell described soldiers suffering from burning pain due to gunshot wounds. He termed this Causalgia In 1900 Sudek described complications of trauma to the limbs with swelling, limitation of motor function and resistance to treatment The term Reflex Sympathetic Dystrophy was first used by Evans in 1946 NOMENCLATURE Causalgia Sudek’s Atrophy Post traumatic Pain Syndrome Post traumatic Painful Arthrosis Sudek’s Dystrophy Post Traumatic Edema Reflex Dystrophy Shoulder Hand Syndrome Chronic Traumatic Edema Algodystrophy Peripheral Trophoneurosis Sympathalgia Reflex Sympathetic Dystrophy Reflex Neurovascular dystrophy DEFINITION Complex Regional Pain is a neuropathic/inflammatory pain disorder characterized by: 1. Severe pain that extends beyond the injured area and is disproportionate to the inciting event. 2. Autonomic dysregulation 3. Edema – usually neuropathic in nature 4. Movement disorders 5. Atrophy and/or dystrophy CAUSE There is no single cause of CRPS Some more common are: sprain, contusion, surgery, fracture, infections, myocardial infarctions, carpel tunnel syndrome, -
Modulation of NMDA Receptor Activity During Physiological and Pathophysiological Events Christine Marie Emnett Washington University in St
Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Winter 12-15-2014 Modulation of NMDA Receptor Activity During Physiological and Pathophysiological Events Christine Marie Emnett Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Biology Commons Recommended Citation Emnett, Christine Marie, "Modulation of NMDA Receptor Activity During Physiological and Pathophysiological Events" (2014). Arts & Sciences Electronic Theses and Dissertations. 347. https://openscholarship.wustl.edu/art_sci_etds/347 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Neurosciences Dissertation Examination Committee: Steven Mennerick, Chair James Huettner Daniel Kerschensteiner Peter D. Lukasiewicz Joseph Henry Steinbach Modulation of NMDA Receptor Activity During Physiological and Pathophysiological Events by Christine Marie Emnett A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2014 -
Neurotransmission Product Guide | Edition 1
Neurotransmission Product Guide | Edition 1 Delphinium Delphinium A source of Methyllycaconitine Contents by Research Area: • Dopaminergic Transmission • Glutamatergic Transmission • Opioid Peptide Transmission • Serotonergic Transmission • Chemogenetics Tocris Product Guide Series Neurotransmission Research Contents Page Principles of Neurotransmission 3 Dopaminergic Transmission 5 Glutamatergic Transmission 6 Opioid Peptide Transmission 8 Serotonergic Transmission 10 Chemogenetics in Neurotransmission Research 12 Depression 14 Addiction 18 Epilepsy 20 List of Acronyms 22 Neurotransmission Research Products 23 Featured Publications and Further Reading 34 Introduction Neurotransmission, or synaptic transmission, refers to the passage of signals from one neuron to another, allowing the spread of information via the propagation of action potentials. This process is the basis of communication between neurons within, and between, the peripheral and central nervous systems, and is vital for memory and cognition, muscle contraction and co-ordination of organ function. The following guide outlines the principles of dopaminergic, opioid, glutamatergic and serotonergic transmission, as well as providing a brief outline of how neurotransmission can be investigated in a range of neurological disorders. Included in this guide are key products for the study of neurotransmission, targeting different neurotransmitter systems. The use of small molecules to interrogate neuronal circuits has led to a better understanding of the under- lying mechanisms of disease states associated with neurotransmission, and has highlighted new avenues for treat- ment. Tocris provides an innovative range of high performance life science reagents for use in neurotransmission research, equipping researchers with the latest tools to investigate neuronal network signaling in health and disease. A selection of relevant products can be found on pages 23-33. -
FSU ETD Template
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2018 Sex Differences in the Effects of Low- Dose Ketamine in Rats: A Behavioral, Pharmacokinetic and Pharmacodynamic Analysis Samantha K. Saland Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF MEDICINE SEX DIFFERENCES IN THE EFFECTS OF LOW-DOSE KETAMINE IN RATS: A BEHAVIORAL, PHARMACOKINETIC AND PHARMACODYNAMIC ANALYSIS By SAMANTHA K. SALAND A Dissertation submitted to the Department of Biomedical Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2018 Samantha Saland defended this dissertation on April 18, 2018. The members of the supervisory committee were: Mohamed Kabbaj Professor Directing Dissertation Thomas Keller University Representative James Olcese Committee Member Branko Stefanovic Committee Member Zuoxin Wang Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii I dedicate this work to my loving husband and to my parents—without their endless encouragement and unconditional support throughout the years, this would not have been possible. iii ACKNOWLEDGEMENTS I would like to acknowledge all those in the Department of Biomedical Sciences here at Florida State University who have made it possible for me to succeed, not only through financial and research support, but by providing an environment of opportunity, understanding and encouragement time and again during my time in the graduate program. I would also like to express my gratitude to my committee members for their continued guidance and support throughout all these years—thank you for challenging me and expanding my continuous search for knowledge. -
WO 2013/056229 Al 18 April 2013 (18.04.2013) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/056229 Al 18 April 2013 (18.04.2013) P O P C T (51) International Patent Classification: Marc C. [US/US]; 1120 Deer Run Court, Southampton, C07C 225/20 (2006.01) A61P 25/28 (2006.01) Pennsylvania 18966 (US). GOLDBERG, Michael E. C07C 237/02 (2006.01) A61P 25/00 (2006.01) [US/US]; 113 North Bread Street, Unit 9E, Philadelphia, C07D 295/155 (2006.01) A61K 31/133 (2006.01) Pennsylvania 19106 (US). C07D 295/145 (2006.01) A61K 31/122 (2006.01) (74) Agent: MAXWELL, Leslie-Anne; Cantor Colburn LLP, A61P 25/04 (2006.01) 20 Church Street, 22nd Floor, Hartford, Connecticut 06103 (21) International Application Number: (US). PCT/US2012/060256 (81) Designated States (unless otherwise indicated, for every (22) International Filing Date: kind of national protection available): AE, AG, AL, AM, 15 October 2012 (15.10.2012) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, English (25) Filing Language: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (26) Publication Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 61/547,336 14 October 201 1 (14. 10.201 1) US NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (71) Applicants: THE UNITED STATES OF AMERICA, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, AS REPRESENTED BY THE SECRETARY, DE¬ TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, PARTMENT OF HEALTH AND HUMAN SERVICES ZM, ZW. -
(R,S)-Ketamine, (2R,6R)-Hydroxynorketamine, and (2S,6S)-Hydroxynorketamine
www.nature.com/npp ARTICLE Sex-specific neurobiological actions of prophylactic (R,S)-ketamine, (2R,6R)-hydroxynorketamine, and (2S,6S)-hydroxynorketamine Briana K. Chen 1, Victor M. Luna2,3, Christina T. LaGamma2,9, Xiaoming Xu4,5, Shi-Xian Deng4,5, Raymond F. Suckow3,6, Thomas B. Cooper3,6, Abhishek Shah 7, Rebecca A. Brachman3, Indira Mendez-David8, Denis J. David8, Alain M. Gardier8, Donald W. Landry4,5 and Christine A. Denny 2,3 Enhancing stress resilience in at-risk populations could significantly reduce the incidence of stress-related psychiatric disorders. We have previously reported that the administration of (R,S)-ketamine prevents stress-induced depressive-like behavior in male mice, perhaps by altering α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated transmission in hippocampal CA3. However, it is still unknown whether metabolites of (R,S)-ketamine can be prophylactic in both sexes. We administered (R,S)-ketamine or its metabolites (2R,6R)-hydroxynorketamine ((2R,6R)-HNK) and (2S,6S)-hydroxynorketamine ((2S,6S)- HNK) at various doses 1 week before one of a number of stressors in male and female 129S6/SvEv mice. Patch clamp electrophysiology was used to determine the effect of prophylactic drug administration on glutamatergic activity in CA3. To examine the interaction between ovarian hormones and stress resilience, female mice also underwent ovariectomy (OVX) surgery and a hormone replacement protocol prior to drug administration. (2S,6S)-HNK and (2R,6R)-HNK protected against distinct stress- 1234567890();,: induced behaviors in both sexes, with (2S,6S)-HNK attenuating learned fear in male mice, and (2R,6R)-HNK preventing stress- induced depressive-like behavior in both sexes. -
Appendix - Preparation of Solutions
Appendix - Preparation of Solutions PREPARATION OF NEUROLYTIC SOLUTIONS - PHENOL (HYDROXYBENZENE) At 20 0 e one part phenol dissolves in 12 parts of water. Accordingly, phenol may be prepared in aqueous solution only in lower con centrations. If a stronger preparation is required a water-glycerin mixture is used as the solvent. Product: phenol injection 5% in glycerin Formula: phenol crystals 5 g glycerin (previously dried at 120 0 e and cooled) to 100 g Method o/preparation: Dissolve the phenol in glycerin with the aid of gentle heat. Whilst still warm pass through a No.3 sintered glass filter. Packaging: Pack in 2 ml or 5 ml ampoules. Protect from light. Store in a cool place. Sterilization: Dry heat at 1500 e for 1 h. Stability: 1 year from date of manufacture. 185 186 Appendix Product: aqueous phenol 5% phenol injection 7% Formula: phenol crystals 5 g phenol crystals 7 g water for injections glycerin 50% v/v in water for injec to 100ml tions to 100 ml Method of preparation: Pass through sintered glass filter, pack in ampoules and sterilize by autoclaving at U5°e for 30 min. Packaging: 2 ml or 5 ml ampoules. Protect from light. Store in a cool place. Precautions: Avoid prolonged contact with rubber or plastics. Stability: 1 year from date of sterilization. INJECTION ABSOLUTE ALCOHOL Method ofpreparation: In order to avoid absorption of moisture, the infiltration procedure is best carried out under positive pressure, using solvent inert membrane filters. The preparation is then packed in 2 ml or 5 ml ampoules. Sterilization: Autoclave at 155°e for 30 min. -
Relative Potency and Duration of Analgesia Following Palmar Digital Intra-Neural Alcohol Injection for Heel Pain in Horses
Relative potency and duration of analgesia following palmar digital intra-neural alcohol injection for heel pain in horses THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Christine Pariseau Schneider Graduate Program in Veterinary Clinical Sciences The Ohio State University 2013 Master's Examination Committee: Alicia Bertone, Advisor Michael Oglesbee Lisa Zekas Copyrighted by Christine Pariseau Schneider 2013 Abstract Objective: To determine the potency (percent analgesia), duration of action (up to four months), and clinical and histological effects of surgical exposure and intra-neural injection of 98% dehydrated medical-grade ethyl alcohol compared to no treatment (negative control), sham operation (surgical control), or formaldehyde injection (positive control) to decrease experimentally-induced palmar heel pain in horses. Animals: Six horses Procedures: The horses were fitted with a custom pressure-inducing shoe and had outcome measurements for each heel performed before and after nerve treatments. Outcomes included induced lameness grade and vertical peak force with pressure applied to each heel, thermal and touch sensation for each heel, and pastern circumference. Outcomes were followed serially for 112 days when nerves were harvested for histology. Results: Alcohol and formaldehyde reduced all measures of heel pain which progressed toward return, but persisted over the 112 days of the study (P<0.05). Pastern circumference was not different for alcohol than sham treatment, but was greater in formaldehyde than alcohol or baseline (P<0.05). Histological evaluation showed preservation of nerve fiber alignment with an intact epineurium, loss of axons (axon drop out), axon degeneration, fibrosis and inflammation in alcohol- and formaldehyde-injected ii nerves compared to control nerves.