What Is the Difference Between a Mineral and a Mineraloid?

Total Page:16

File Type:pdf, Size:1020Kb

What Is the Difference Between a Mineral and a Mineraloid? What Is the Difference Between a Mineral and a Mineraloid? Mineraloids are most often placed with mineral specimens, or one does not know exactly how to classify them. They come up in conversations among rock-hounds and collecting enthusiasts without the knowledge that they are pseudo-minerals. They are not true minerals because they are missing key components of what defines a mineral, and those key components are in their structure and origin. A mineral is a naturally occurring chemical compound, usually of crystalline form and abiogenic in origin (not produced by life processes). A mineral has one specific chemical composition, whereas a rock can be an aggregate of different minerals or mineraloids. The study of minerals is called mineralogy. (How to Identify Common Minerals?) A mineraloid is a mineral-like substance that does not demonstrate crystallinity. Mineraloids possess chemical compositions that vary beyond the generally accepted ranges for specific minerals. For example, obsidian is an amorphous glass and not a crystal. Jet is derived from decaying wood under extreme pressure. Opal is another mineraloid because of its non-crystalline nature. Pearl, considered by some to be a mineral because of the presence of calcium carbonate crystals within its structure, would be better considered a mineraloid because the crystals are bonded by an organic material, and there is no definite proportion of the components. he following seemingly mineral-like specimens are not minerals at all. Some are more common than others. The list is inclusive. There are not that many of these on the planet, which for me, makes them very cool beyond words! -little puzzles adding to the diversity of Nature. Amber – fossilized tree resin Pearl – organically formed containing mostly calcium carbonate Mookaite/Radiolarite – Yes! It’s of organic origin (even though it’s seen more readily as a chalcedony) Opal – hydrated silica where the water amount within various from stone to stone Lechatelierite – silica lightning strike in sand commonly called a fulgurite Libyan Desert Glass – also formed from a lightning strike in sand Mercury – a liquid metal Coal – formed organically from plants Jet – a type of rare, hard, black coal and popular mineraloid in jewelry often confused as black onyx Obsidian – silica glass made from the rapid cooling of volcanic lava Pumice – igneous rock that cools and solidifies so quickly that the atoms are not definitively ordered Tektite – silica glass made of obsidian that is earth-origin but was launched into space outside of the atmosphere for a bit and returned Moldavite – a type of tektite prized for its green color Ebonite – organically formed natural rubber like substance lacking in uniform crystalline structure Limonite – hydrated iron oxide mixture – containing water with no definite crystal structure Petroleum – an organic liquid Pyrobitumen – amorphous fossilized petroleum (noncrystalline, organic) Water – Yes! water can be classified as a mineraloid, as it meets the definition of a mineraloid http://www.geologyin.com/2017/11/what-is-difference-between-mineral- and.html#v0MLcdFLggEvKxdA.99 Follow us: @GeologyTime on Twitter .
Recommended publications
  • Geological Sukvey
    DEPABTMENT OF THE IHTERIOE BULLETIN OF THE UNITED STATES GEOLOGICAL SUKVEY No. 148 WASHINGTON' G-OVEKNMENT PRINTING OFFICE 1897 UNITED STATES GEOLOGICAL SUEYEY CHARLES D. WALCOTT, 'DIRECTOR ANALYSES OF ROCKS ANALYTICAL METHODS LABORATORY OF THE UNITED STATES GEOLOGICAL SURVEY 1880 to 1896 BY F. W. CLAEKE AND W. F. HILLEBEAND WASHINGTON GOVERNMENT PRINTING OFFICE 1897 CONTENTS. Pago. Introduction, by F. W. Clarke ....'.......................................... 9 Some principles and methods of analysis applied to silicate rocks; by W. F. Hillebrand................................................................ 15 Part I. Introduction ................................................... 15 Scope of the present paper .......................................... 20 Part II. Discussion of methods ..................................i....... 22 Preparation of sample....................:.......................... 22 Specific gravity. ............................: ......--.........--... 23 Weights of sample to be employed for analysis....................... 26 Water, hygroscopic ................................ ................. 26 Water, total or combined....... ^.................................... 30 Silica, alumina, iron, etc............................................ 34 Manganese, nickel, cobalt, copper, zinc.............................. 41 Calcium and strontium...................................... ........ 43 Magnesium......................................................... 43 Barium and titanium............... .... ............................
    [Show full text]
  • Analytical Methods to Differentiate Romanian Amber and Baltic Amber for Archaeological Applications
    Cent. Eur. J. Chem. • 7(3) • 2009 • 560-568 DOI: 10.2478/s11532-009-0053-8 Central European Journal of Chemistry Analytical methods to differentiate Romanian amber and Baltic amber for archaeological applications Research Article Eugenia D. Teodor1*, Simona C. Liţescu1, Antonela Neacşu2, Georgiana Truică1 Camelia Albu1 1 National Institute for Biological Sciences, Centre of Bioanalysis, Bucharest, 060031, Romania 2 University of Bucharest, Faculty of Geology and Geophysics, Bucharest, 010041, Romania Received 27 August 2008; Accepted 02 March 2009 Abstract: The study aims to establish several definite criteria which will differentiate Romanian amber and Baltic amber to certify the local or Baltic origin of the materials found in archaeological sites on the Romanian territory, by using light microscopy and performing analytical methods, such as Fourier transform infrared spectroscopy-variable angle reflectance and liquid chromatography with mass spectrometry detection. Experiments especially by Fourier transformed infrared spectroscopy, were applied to a wide range of samples with controlled origin. The methods were optimised and resulted in premises to apply the techniques to analysis of the archaeological material. Keywords: Romanian amber • FTIR-VAR • LC-MS • Light microscopy © Versita Warsaw and Springer-Verlag Berlin Heidelberg. 1. Introduction (Oligocene). The resin-bearing strata are intercalated within the lower and medium part of the lower Kliwa Amber is a fossil resin originating from different types sandstone (0.20-1.40 m). They consist of siliceous clay of Conifers and certain flowering trees, especially in hot (0.20-1.40 m) always containing thin intercalations of climates. From the mineralogical point of view amber bituminous shales (2-5 cm) and of preanthracite coal could be considered a mineraloid.
    [Show full text]
  • Lightning Strikes As a Major Facilitator of Prebiotic Phosphorus Reduction on Early Earth ✉ Benjamin L
    ARTICLE https://doi.org/10.1038/s41467-021-21849-2 OPEN Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth ✉ Benjamin L. Hess 1,2,3 , Sandra Piazolo 2 & Jason Harvey2 When hydrated, phosphides such as the mineral schreibersite, (Fe,Ni)3P, allow for the synthesis of important phosphorus-bearing organic compounds. Such phosphides are com- mon accessory minerals in meteorites; consequently, meteorites are proposed to be a main 1234567890():,; source of prebiotic reactive phosphorus on early Earth. Here, we propose an alternative source for widespread phosphorus reduction, arguing that lightning strikes on early Earth potentially formed 10–1000 kg of phosphide and 100–10,000 kg of phosphite and hypo- phosphite annually. Therefore, lightning could have been a significant source of prebiotic, reactive phosphorus which would have been concentrated on landmasses in tropical regions. Lightning strikes could likewise provide a continual source of prebiotic reactive phosphorus independent of meteorite flux on other Earth-like planets, potentially facilitating the emer- gence of terrestrial life indefinitely. 1 Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA. 2 School of Earth and Environment, Institute of Geophysics and Tectonics, The University of Leeds, Leeds, UK. 3 Department of Geology and Environmental Science, Wheaton College, Wheaton, IL, USA. ✉ email: [email protected] NATURE COMMUNICATIONS | (2021) 12:1535 | https://doi.org/10.1038/s41467-021-21849-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21849-2 ife on Earth likely originated by 3.5 Ga1 with carbon isotopic Levidence suggesting as early as 3.8–4.1 Ga2,3.
    [Show full text]
  • Mineral: 1. Naturally Occurring 2. Solid
    MINERAL: 1. NATURALLY OCCURRING 2. SOLID (INORGANIC-?) 3. RESTRICTED OF SLIGHTLY VARYING COMPOSTION 4. DEFINITE INTERNAL ARRANGEMENT MINERALOID: 1. NATURALLY OCCURRING 2. SOLID (INORGANIC-?) 3. RESTRICTED OF SLIGHTLY VARYING COMPOSITION 4. NO DEFINITE INTERNAL ARRANGEMENT (AMORPHOUS) ROCK; ANY NATURALLY FORMED AGGREGATE OR MASS OF MINERAL MATTER, WHETHER COHERENT OR NOT, CONSTITUTING AN ESSENTIAL AND APPRECIABLE PART OF THE EARTH'S CRUST (STRICT DEFINITION); ORDINARILY CONSOLIDATED OR COHERENT AND RELATIVELY HARD. ORE: 1. MINERAL MATTER 2. YIELDS METALS OR METALS 3. YIELDS PROFITABLY OF ECONOMICALLY INDUSTRIAL MINERAL: NOT PRODUCED FOR METAL CONTENT, BUT FOR ITSELF EX: SULFUR, MICAS, CLAYS, HALITE GANGUE: THAT PORTION OF AN INDUSTRIAL MINERAL DEPOSIT OR ORE DEPOSIT WHICH DOESN'T YIELD MATERIAL IMMEDIATELY DESIRED, i. e. THE WASTE MATERIAL REASONS FOR STUDYING MINERALS: 1, WE USE MLNERALS LN OUR EVERYDAY LIFE. "IF IT CAN'T BE GROWN, THEN IT MUST BE MINED" 2. MINERALS ARE IMPORTANT COMPONENTS OF ROCKS. USE TO CLASSIFY ROCKS: A. COMPOSITION—WHAT MINERAL OR MINERALS ARE PRESENT B. TEXTURE—THE SIZE, SHAPE, AND RELATIONSHIP OF THE MINERAL GRAINS TO EACH OTHER Earth Scientists', Mineral Engineers', Prospectors', Periodic Chart H 1 H« 2 of Naturally Occurring Wiler (Air) te; Sources of LI 3 B« 4 6 C 6 N 7 0 B f 9 Nil 10 the Chemical Elements Bo... Krinilr Soda Niler (Air) Fluorite (Air) AmtlyQonne B»ryl Col*m.nite Gnphlll* Foi other alignment! of «l»mentxi»»Tailouir»ilodlcClictrts publixbvd by <Ht> , rUh»r, and P. I.I.I. .others.S»ealxoO.T.B«nleT'*SpljaJChartipxibliih»dlnlh«19iS4.'67."75.fc'82 <Ot> Cal»ndan.
    [Show full text]
  • E Buy Book 2017 Final
    Owner Company : R G e m s P v t . L t d . All the Gemstones Found in the world are available here Brand : Search & Win .com About us World's First Brand of Real Gems (Precious Stones) (1) Owner Company : R G e m s P v t . L t d . All the Gemstones Found in the world are available here Brand : Search & Win .com About us World's First Brand of Real Gems (Precious Stones) (2) Owner Company : R G e m s P v t . L t d . All the Gemstones Found in the world are available here Brand : Search & Win .com Why us World's First Brand of Real Gems (Precious Stones) 21 GREAT REASONS WHY WE ARE WORLD'S FIRST BRAND OF REAL GEMS STONE 1. G e m s P v t . L t d . is the first company of the world in the business of branded gems stones. 2. Company came with a wide range of stone products in the branded gems stones in the name of brand with the life time guarantee of Search & Win .com genuineness of its all branded gem stone products. 3. Company comes with its buyback scheme if someone proves about wrong certification of the genuineness of products of the company. 4. The above company is incorporated under the provision of companies Act 1956 in the year 2007. 5. Company's promoters are having very vast experience in the industry of branded gem stone. 6. Company’s promoters are doing business at large in this industry at pink city Jaipur since 1996 which is a city known for gems stone and for Jewellery made with use of gems stones.
    [Show full text]
  • Tigers Eye Free
    FREE TIGERS EYE PDF Karen Robards | 400 pages | 11 May 2010 | HarperCollins Publishers Inc | 9780380755554 | English | New York, United States Tigers Eye Stone Meaning & Uses: Aids Harmonious Balanced Action Tiger's eye also called tiger eye is a Tigers Eye gemstone that is usually a metamorphic rock with a golden to red-brown colour and a silky lustre. As members of the quartz group, tiger's eye and the related blue-coloured mineral hawk's eye gain their silky, lustrous appearance from the parallel intergrowth of quartz crystals and altered amphibole fibres that have mostly turned into limonite. Tiger iron is an altered rock composed chiefly of tiger's eye, red jasper and black hematite. The undulating, contrasting bands of colour and lustre make for an attractive motif and it is Tigers Eye used for Tigers Eye and ornamentation. Tiger iron is a popular ornamental material Tigers Eye in a variety of applications, from beads to knife hilts. Tiger iron is mined primarily in South Africa and Western Australia. Tiger's eye is composed chiefly of silicon dioxide SiO 2 and is coloured mainly by Tigers Eye oxide. The specific gravity ranges from 2. Serpentine deposits in which are occasionally found chatoyant bands of chrysotile fibres have been found in the US states of Arizona and California. These have been cut and sold as "Arizona tiger-eye" and "California tiger's eye" gemstones. In some parts of the world, the stone is believed to ward off the evil eye. Gems are usually given a cabochon cut to best display their chatoyance.
    [Show full text]
  • Petrified Lightning
    PETRIFIED LIGHTNING by PETER E. VIEMEISTER ORIGINALLY PUBLISHED IN THE LIGHTNING BOOK THE MIT PRESS, 1983 ORIGINALLY PUBLISHED IN THE LIGHTNING BOOK THE MIT PRESS, 1983 PETRIFIED LIGHTNING by PETER E. VIEMEISTER If lightning strikes sand of the proper composition, the high temperature of the stroke may fuse the sand and convert it to silica glass. “Petrified lightning” is a permanent record of the path of lightning in earth, and is called a fulgurite, after fulgur, the Latin word for lightning. Fulgurites are hollow, glass-lined tubes with sand adhering to the outside. Although easily pro- duced in the laboratory in an electric furnace, silica glass is very rare in nature. The glass lining of a fulgurite is naturally pro- duced silica glass1, formed from the fusion of quartzose sand at a temperature of about 1800° centigrade. Most people have never seen a fulgurite and if they have they might not have recognized it for what it was. A fulgurite is a curious glassy tube that usually takes the shape of the roots of a tree (see illustration). In effect it gives us a picture of the forklike 1The geological name for this natural silica glass is lechatelierite, in honor of the French chemist Henry Le Chatelier. a) When lightning strikes the earth, electrons flow outward in all directions. (b) Petrified lightning or fulgurite is sometimes made when lightning strikes and fuses certain types of sand. When formed on beaches or shores, a fulgurite is usually covered with shifting sand and goes undiscovered. Eroding sand may expose a fulgurite. (diagram by Read Viemeister) routes taken by lightning after striking sand.
    [Show full text]
  • Glossary of Gemstone and Crystal Correspondences
    GLOSSARY OF PRIMARY GEMSTONES USED IN METAPHYSICAL ENERGY WORK benebell wen Table of Contents Basics of Stone and Crystal Work .................. 2 R ........................................................................... 32 Clearing the Stone’s Qi ........................................ 2 S ............................................................................ 33 When Not to Clear a Stone’s Qi ...................... 4 T ........................................................................... 36 Glossary of Gemstones & Crystals ................. 6 U ........................................................................... 38 A .............................................................................. 6 V ........................................................................... 38 B ............................................................................ 10 W ......................................................................... 39 C ........................................................................... 12 X ........................................................................... 39 D ........................................................................... 14 Y............................................................................ 39 E ............................................................................ 15 Z ........................................................................... 40 F ............................................................................ 16 General Correspondences
    [Show full text]
  • Guide to Healing Uses of Crystals & Minerals
    Guide to Healing Uses of Crystals & Minerals Addiction- Iolite, amethyst, hematite, blue chalcedony, staurolite. Attraction – Lodestone, cinnabar, tangerine quartz, jasper, glass opal, silver topaz. Connection with Animals – Leopard skin Jasper, Dalmatian jasper, silver topaz, green tourmaline, stilbite, rainforest jasper. Calming – Aqua aura quartz, rose quartz, amazonite, blue lace agate, smokey quartz, snowflake obsidian, aqua blue obsidian, blue quartz, blizzard stone, blood stone, agate, amethyst, malachite, pink tourmaline, selenite, mangano calcite, aquamarine, blue kyanite, white howlite, magnesite, tiger eye, turquonite, tangerine quartz, jasper, bismuth, glass opal, blue onyx, larimar, charoite, leopard skin jasper, pink opal, lithium quartz, rutilated quartz, tiger iron. Career Success – Aqua aura quartz, ametrine, bloodstone, carnelian, chrysoprase, cinnabar, citrine, green aventurine, fuchsite, green tourmaline, glass opal, silver topaz, tiger iron. Communication – Apatite, aqua aura quartz, blizzard stone, blue calcite, blue kyanite, blue quartz, green quartz, larimar, moss agate, opalite, pink tourmaline, smokey quartz, silver topaz, septarian, rainforest jasper. www.celestialearthminerals.com Creativity – Ametrine, azurite, agatized coral, chiastolite, chrysocolla, black amethyst, carnelian, fluorite, green aventurine, fire agate, moonstone, celestite, black obsidian, sodalite, cat’s eye, larimar, rhodochrosite, magnesite, orange calcite, ruby, pink opal, blue chalcedony, abalone shell, silver topaz, green tourmaline,
    [Show full text]
  • Amorphous Silica
    Silicon: from periodic table to biogenic silica C. Bonhomme, Professor Sorbonne University 1 General properties 2 Silicon Z = 14 Si: 1s2 2s2 2p6 3s2 3p2 Si4+: 1s2 2s2 2p6 (Si) = 1.8 second natural abundance on earth (28%) -1 atomic mass: 28.085 g.mol J. J. Berzelius (1823) 28Si (92.27 %) silica (SiO2) 29Si (4.68 %) silicates (aluminosilicates...) 30Si (3.05 %) 3 From SiO2 to Si electronic Si «diamond» like structure SiO2 cubic structure a= 5.4307 Å HCl SiCl4,SiHCl3 reduction 1000°C Si (98-99 %) Si > 99.9999 % metallurgical Si 0.5 to 1 million tons FP: 1410°C per year! BP: 2680°C wafer (100-300 mm) 4 Si: chemical bonding Si – H 1.48 Å Si – Si 2.35 Å SiO2 Si – N 1.74 Å Si – O 1.61 Å Si – F 1.55 Å Si –Cl 2.01 Å three Si tetrahedra Si –Br 2.15 Å Si – C 1.80 Å (NH4)2SiF6 SiF4 silicones 5 Crystalline and amorphous silica 6 SiO2 polymorphs Stishovite Coesite synthetic quartz High High Cristobalite quartz 7 Tridymite X-Ray diffraction l ≈ 10-10 m = 1 Å X-rays are waves: 1913 Polymorph (density) Low Quartz (2.65) trigonal High Tridymite (2.28) hexagonal High Cristobalite (2.21) cubic Coesite (2.93) monoclinic W. Röntgen Stishovite (4.30) tetragonal (1845-1923) M. von Laue (1879-1960) in: Phys. Rev., 1923 W. H. Bragg (1862-1942) W. L. Bragg (1890-1971) 8 «Other» quartz Amethyst Citrine Agate Rose quartz Smoky quartz 9 Various crystallographic structures Quartz Cristobalite Tridymite SiO6 octahedra! Stishovite (6-fold coordination!) Coesite 10 Amorphous silica mineraloids Lechatelierite a pure silica glass (rare) Obsidian Newbury Crater, Oregon Fulgurite obsidian arrows lightning on sand! Trinitite: start july 16, 1945! and scalpels 11 Hydrated silica: Opals close-packed array of SiO2 spheres 0.15 to 0.4 mm colloidal crystals silica nanoparticles in an amorphous hydrated silica matrix SiO2,nH2O 12 Other opals J.V.
    [Show full text]
  • Lurraren Zientzien Oinarrizko Lexikoa
    Lurraren Zientzien Oinarrizko Lexikoa Euskaltzaindiaren Zientzia eta Teknika Hiztegia Biltzeko egitasmoaren (ZTHB) helburua da Euskaltzain- diaren Hiztegia zientzia eta teknologiaren arloetako kontzeptuez eta haiek adierazteko hitzez aberastea. Euskaltzaindiak erabaki du Euskaltzaindiaren Hiztegiaren uneko bertsioan sartu ez diren baina bi alderdi hauetatik begiratuta sartu behar liratekeen hitzak biltzea eta gizarteratzea: • Hezkuntzan irakasten den kontzeptua izatea: Bigarren Hezkuntza, Batxilergoa eta Unibertsitateko lehen mailak. • Zientzia eta teknologiaren dibulgazioan (komunikabideetan, liburuetan. ) erabilia izatea. Horretarako, arloka egiten da lan, eta, arlo bakoitzean, ZTHB lantaldeak arloko adituz osatutako berariazko talde baten laguntza du. Arloko testuetako tradizioa eta erabilera aztertu ondoren, eta Eus- kaltzaindiaren lexikorako irizpide orokorrak kontuan izanik, lantaldeak arloko oinarrizko kontzeptuetarako euskarazko adierazleak proposatzen dizkio Euskaltzaindiari. Helburu hori lortzeko, bi lan hauek egin behar izan ditu lantaldeak: • Lehenik, Euskaltzaindiaren Hiztegian onartu diren arloko hitzak bildu. • Bigarren, Euskaltzaindiaren Hiztegian ez dauden eta lantaldearen ustez hara biltzea merezi luketen arloko hitzak hautatu. Lan horien emaitzak bilduz, arlo bakoitzeko "oinarrizko lexikoa" osatzen da. Lan-prozedurak hiru urrats ditu: • Arloko materiala bildu eta lantzea, baliabide lexikalak eta testualak erabiliz. Horren emaitza arloko hautagai-zerrenda da. Erabilera-datuak eta hiztegietako informazioa ere bildu da.
    [Show full text]
  • C:\Documents and Settings\Alan Smithee\My Documents\MOTM
    Nbsnadq1/0/Lhmdq`knhcnesgdLnmsg9Narhch`m+ u `qhdsx @ o `bgdS d`qr This month we are featuring the mineraloid obsidian from a classic source in Arizona. Our write-up explains obsidian’s unusual volcanic origin, why it is not classified as a mineral, why its flaked edges are sharper than even those of surgical scalpels, the legend behind the name “Apache tears,” and much more. We invite you to enjoy this fascinating information! OVERVIEW PHYSICAL PROPERTIES Chemistry: Obsidian, which is not classified as a mineral, is a natural volcanic glass consisting of an indeterminate, noncrystalline mixture of silica with lesser amounts of feldspar minerals and ferromagnesian minerals. Class: Mineraloids Crystal System and Habits: None (amorphous) Color: Usually black, greenish-black, or smoky; also gray, reddish-brown, mahogany, and dark green; occasionally yellow, golden, or iridescent. Mixed colors can produce a mottled or banded appearance. Luster: Vitreous on fresh surfaces Transparency: Translucent; sometimes subtransparent along thin edges; thick pieces or nodules (Apache tears) can appear opaque. Streak: White Refractive Index: 1.48-1.51 Cleavage: None Fracture: Conchoidal Hardness: 6.0-7.0 Specific Gravity: 2.3-2.6 Luminescence: None Distinctive Features and Tests: Best field marks are occurrence in volcanic environments, especially rhyolitic lava flows or perlite (altered obsidian) formations; vitreous luster; and color banding. Sometimes confused with smoky quartz [silicon dioxide, SiO2]. Dana Classification Number: None NAME The name obsidian, pronounced Obb-SIH-dee-un, derives from the Latin obsianus lapis, literally “stone of Obsius,” after a Roman explorer who discovered an obsidian deposit in Ethiopia. Obsidian is also known as “lava glass,” “black lava glass,” “volcanic glass,” “mahogany glass,” “Bergmahogany,” and “xaga.” The term “Apache tears” refers to rounded obsidian nodules.
    [Show full text]