Amorphous Silica
Total Page:16
File Type:pdf, Size:1020Kb
Silicon: from periodic table to biogenic silica C. Bonhomme, Professor Sorbonne University 1 General properties 2 Silicon Z = 14 Si: 1s2 2s2 2p6 3s2 3p2 Si4+: 1s2 2s2 2p6 (Si) = 1.8 second natural abundance on earth (28%) -1 atomic mass: 28.085 g.mol J. J. Berzelius (1823) 28Si (92.27 %) silica (SiO2) 29Si (4.68 %) silicates (aluminosilicates...) 30Si (3.05 %) 3 From SiO2 to Si electronic Si «diamond» like structure SiO2 cubic structure a= 5.4307 Å HCl SiCl4,SiHCl3 reduction 1000°C Si (98-99 %) Si > 99.9999 % metallurgical Si 0.5 to 1 million tons FP: 1410°C per year! BP: 2680°C wafer (100-300 mm) 4 Si: chemical bonding Si – H 1.48 Å Si – Si 2.35 Å SiO2 Si – N 1.74 Å Si – O 1.61 Å Si – F 1.55 Å Si –Cl 2.01 Å three Si tetrahedra Si –Br 2.15 Å Si – C 1.80 Å (NH4)2SiF6 SiF4 silicones 5 Crystalline and amorphous silica 6 SiO2 polymorphs Stishovite Coesite synthetic quartz High High Cristobalite quartz 7 Tridymite X-Ray diffraction l ≈ 10-10 m = 1 Å X-rays are waves: 1913 Polymorph (density) Low Quartz (2.65) trigonal High Tridymite (2.28) hexagonal High Cristobalite (2.21) cubic Coesite (2.93) monoclinic W. Röntgen Stishovite (4.30) tetragonal (1845-1923) M. von Laue (1879-1960) in: Phys. Rev., 1923 W. H. Bragg (1862-1942) W. L. Bragg (1890-1971) 8 «Other» quartz Amethyst Citrine Agate Rose quartz Smoky quartz 9 Various crystallographic structures Quartz Cristobalite Tridymite SiO6 octahedra! Stishovite (6-fold coordination!) Coesite 10 Amorphous silica mineraloids Lechatelierite a pure silica glass (rare) Obsidian Newbury Crater, Oregon Fulgurite obsidian arrows lightning on sand! Trinitite: start july 16, 1945! and scalpels 11 Hydrated silica: Opals close-packed array of SiO2 spheres 0.15 to 0.4 mm colloidal crystals silica nanoparticles in an amorphous hydrated silica matrix SiO2,nH2O 12 Other opals J.V. Sanders, 1980 spheres of two different sizes! concoidal fracture (like glass) 13 Nuclear Magnetic Resonance (NMR) W. Pauli, Physique 1945 "for the discovery of the F. Bloch, E. M. Purcell, Exclusion Principle, also called Physique 1952 K. Wüthrich, Chimie 2002 the Pauli Principle" "for his development of NMR "for the development of new spectroscopy for determining methods for nuclear magnetic G. Uhlenbeck, S. Goudsmit the three dimensional structure precision measurements and of biological macromolecules in "pères du spin" discoveries in connection solution" therewith" I. I. Rabi, Physique 1944 "for his resonance method for recording the magnetic properties of atomic nuclei" R. R. Ernst, Chimie 1991 "for his contribution to the development of the methodology of high resolution NMR spectroscopy" P. C. Lauterbur, P. Mansfield, Médecine 2003 "for their discoveries concerning 14 magnetic resonance imaging" NMR basics B (~15T) 0 DmI = 1 ^m = g h Î mI=-1/2 DE = ghB0 / 2p magnetic spin angular momentum m =+1/2 n0=gB0/2p moment I gyromagnetic ratio Larmor frequency! E = - m . B Boltzmann equation My Curie law M 2 2 N g h B0 I(I+1) M= 12 p2 kT B (RF): on resonance! Man, Encyclopedia of analytical 1 chemistry, 2000, 12228. 15 8H 8H a) CPMAS, R=12kHz, T b) CPLGMAS, R=12kHz, T DCP=5,20,1kHz DCPLG=3,10,1kHz 29Si chemical shifts 29Si chemical shift -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 M Dfrequency (kHz) T frequency (kHz) Q (ppm) 20 R 0 R - 20 - 40 R - 60 - 80 O -110 R-Si-R R-Si-O O-Si-O O-Si-O O O O O B0 signe des valeurs propres ! Si1 rotor axis m= 54,7° Si2 Si1 Si1 Si2 silsesquioxane Si1 rHSi2,5150,002Å rHSi=4,725 or 6,270 or 5,1020,002Å silsesquioxane modèle MAS 29Si NMR 16 silsesquioxane fonctionnalisé 4- and 6-fold coordinated Si atoms SiP O an example: Si-O-P bonds 31 2 7 P tetragonal tetrahedron SiO4 Si2 O Si5O(PO4)6 SiP O O 5 2 7 Si3 4 monoclinic 1 Si P O 2 2 SiP O O3 SiP2O7 2 7 monoclinic 2 cubic Si1 -30 -40 -50 -60 -70 ppm octahedron SiO 6 6 Si 29 Si Si Si Si P 4 P Si -100 -120 -140 -160 -180 -200 -220 C. Coelho, Paris 6 ppm 17 Silica and biocompatibility 100 nm CHAp nano-crystalline CHAp Ca10 (PO4)6 (OH)2 Mg2+, Zn2+, Na+, K+ … 2- 2- SO4 , CO3 … 2- - - CO3 , F , Cl … bone Ca10 (PO4)6 (OH)2 SiO 4- 4 Ca [(PO ) (CO ) ] [(OH) (CO ) ] B A 10-x/2 4 6-x 3 x 2-2y 3 y 2- carbonated hydroxyapatite x 0 CO3 18 The role of silica towards biocompatibility 3ml/min, room temperature Ageing under stirring, 15h Washing 0.297~0.217M 0.500M Ca(OH)2 H PO + Drying, 80C 3 4 0~80mM 100ml Si(CH3COO)4 pH10.5 100ml silicate substituted HAp: a synthetic approach (4.8 wt. %) E. Carlisle, Science 1970 G. Gasquères S. Hayakawa 19 Structural characterization O1H edited 29Si MAS NMR! 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 (ppm) G = 125000 29Si MAS NMR Q0 Q3,Q4!? 29 4- SiO4 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 (ppm) 20 SiO2 applications «quartz clock»: piezoelectricity W. Morrison 1929! silica wire birefringency T ~ 1000°C tensorial properties 21 Glass 22 Glass structure crystalline phase glass colored glass Cyclotella meneghiniana 23 Devitrification of glasses microcrystals in glass devitrified glass (by heating) 24 Fibers optical fibers cladding glass core glass furnace bundle of fiberglass exchange zone cladding core fiber cladding acceptance core cone 25 Sol-Gel chemistry 26 Silicic acid 0 OH 100% Si 80 HO OH Si(OH)4 OH SiO(OH) 3- 60 a weak acid SiO 2(OH)22- 40 silica is soluble at 20 precipitation of high pH: silicates silica 6 8 10 12 pH speciation H+ Na2O.SiO2 water 27 Inorganic polymerization 3- SiO3(OH) - SiO(OH)3 Si(OH)4 2- SiO2(OH)2 silica drying molecules oligomers colloids powder nm 10 nm mm colloidal silica particles 28 Stabilization of colloids + stabilisation against aggregation by surface charges + + + + + + + H + + + + + + + + + electrostatic repulsion + + + + stabilisation by steric hindrance grafted polymers 29 Precipited silica ■ industrial product: charge, chromatography,... ■ amazing chemistry! silicates CuSO4 FeCl 3 Ni(NO3)2 metal salts 30 Silicon alcoxides molecular precursor water OR hydrolysis Si-OH bonds Si RO OR RO alcoxide R = CH3, C2H5, ... PZC condensation Si-O-Si bonds acid catalysis base catalysis 31 Sol-Gel chemistry inorganic polymerization O monomer O M O O solution hydrolysis O O dimer O M O M O OR OR O O + ROH RO Si OR + H2O RO Si OH OR OR O O O O oligomer O M O M O M O M O OR OR OR O O O O OR sol RO Si OH + RO Si OR RO Si O Si OR O O O OR OR OR OR O M O M O M O + ROH colloids O O O gel OR OR OR OR O M O M O M O O O O RO Si OH + HO Si OR RO Si O Si OR OR OR OR OR O O O O O O + HOH O M O M O M O M O M O M O condensation O O O O O O O M O M O M O M O M O M O oxide O O O O O O O M O M O M O M O M O M O solid chemistry of materials O O O O O O O M O M O M O M O M O M O oxides O O O O O O 32 The role of catalysis fibers nanoparticles 33 Control of the shape acid catalysis (pH < 3) – route A Gel route A chain polymers pH < 3 microporous gels (pores < 20Å) Sol (1-2 nm) base catalysis (pH >3) – route B pH > 3 route B spherical particles (Stöber silica) Sol (10-100 nm) mesoporous gels (pores > 20Å) 34 Stöber silica Stöber, 1968 monodispersed silica colloids 5-2000 nm interaction between Stöber silica and rubber Stöber silica monolayer 35 Silsesquioxanes [XSiO1.5]8 [ RSiO1.5 ]n Polyhedral Oligomeric SilSesquioxanes 36 Other silsesquioxanes [XSiO1.5]6 [XSiO1.5]10 Courtesy of F. Ribot [XSiO1.5]12 37 Incomplete POSS (RSi)7O9(OH)3 i R = c-C5H9, c-C6H11, c-C7H13, Bu (c-C6H11Si)8O11(OH)2 Courtesy of F. Ribot 38 Chemistry and silsesquioxanes F. Mammeri, 2005 39 Modified silsesquioxanes increasing complexity... ...obtained by hydrosilylation molecular modeling 40 Silsesquioxanes as NanoBuildingBlocks (NBB) NBB approach Z= H, -SiMe2H Pt/toluene/90°C Z’ = vinyl, -SiMe2vinyl R. Laine, 1998 HF HF dissolution 41 Starting from natural materials Rice hull ash 80-98 wt % amorphous silica! Rice hull ash + [R4N ]8 + - 8 R4N OH 42 Applications 43 Hybrid organic-inorganic materials organic component (molecules, polymers, …) inorganic component (M-O-M, …) intimate "mixture" (domain sizes from 1 to 100 nm) hybrid organic-inorganic materials (nano-composites) infinite range chemist‘s imagination and hability nanometric oxide particles in a polymer organic dyes in a glass 44 Organic dyes and laser materials ■ any organic dye can be embedded ■ more resistant than in solution ■ large pieces ■ materials can be polished (optical quality) © F. Chaput, PMC - Ecole polytechnique 45 Dip-coating: reflective coatings l (nm) 100 2 2N nL nH nL nH nL nH nL nH n H 1 n L R 2N 50 n H 1 n (SiO /AlOOH)16 L (%) Transmission 2 9 (SiO2/ZrO2-PVP) Tmin = 1.5 % Tmin = 1.0 % ZrO2 + PVP (20%) nH = 1.72 0 500 800 1100 1400 SiO2 nL = 1.22 ©CEA - France 46 Electrooptical switching encapsulation of liquid crystal microdroplets in a thin film neff ≠ nm Opaque (OFF state) Unpolarized light Scattered light Glass plate Transparent electrode (ITO) LC doplet - neff Silica gel-glass - nm n = n Transparent (ON state) no o m © Saint-Gobain - France 47 Sol-Gel coatings and long-term protection partially crosslinked art conservation: organic polymers vs inorganic coatings..