Summer 2007 Gems & Gemology

Total Page:16

File Type:pdf, Size:1020Kb

Summer 2007 Gems & Gemology G EMS & G VOLUME XLIII SUMMER 2007 EMOLOGY S UMMER 2007 P AGES 95–196 Global Rough Diamond Production V Durability Testing of Filled Emeralds OLUME Chinese Freshwater Pearl Culture 43 N O. 2 THE QUARTERLY JOURNAL OF THE GEMOLOGICAL INSTITUTE OF AMERICA ® Summer 2007 VOLUME 43, NO. 2 95 LETTERS _____________ FEATURE ARTICLES _____________ 98 Global Rough Diamond Production since 1870 Carat Points A. J. A. (Bram) Janse Reports and analyzes annual production statistics (by carat weight and value) for the world’s most significant diamond sources, through 2005. 120 Durability Testing of Filled Emeralds Mary L. Johnson A long-term, systematic study of the stability and durability of nine common pg. 99 emerald-filling substances. NOTES AND NEW TECHNIQUES ________ 138 Continuity and Change in Chinese Freshwater Pearl Culture Doug Fiske and Jeremy Shepherd Reviews recent developments in China’s freshwater cultured pearl production, including the new “fireball” cultured pearls. RAPID COMMUNICATIONS ________ 146 Yellowish Green Diopside and Tremolite from Merelani, Tanzania Eric A. Fritz, Brendan M. Laurs, Robert T. Downs, and Gelu Costin pg. 140 149 Polymer-Impregnated Turquoise Kyaw Soe Moe, Thomas M. Moses, and Paul Johnson REGULAR FEATURES _____________________ 153 Lab Notes Diamond with bimineralic inclusions • HPHT-treated type Ia diamond with a green compo- nent caused by the H2 defect • Diamond with intense “rainbow graining” • Natural color hydrogen-rich blue-gray diamond • Type IIa diamond with intense green color introduced by Ni-related defects • Diamond with zigzag cleavage • HPHT-grown synthetic diamond crystal with unusual morphology and negative trigons • Idocrase in jadeite • Opal with unusual structure 162 Gem News International Bar code technology applied to diamonds • U.S. Supreme Court ruling may affect viability of some diamond cut patents • First discovery of amazonite in Mexico • Astorite—A rhodonite-rich rock from Colorado • Color-change bastnäsite-(Ce) from Pakistan • Citrine pg. 154 with pyrite inclusions • Unusual danburite pair • Fluorite from Ethiopia • Heliodor and other beryls from Connecticut • Cat’s-eye K-feldspar and other chatoyant gems from Tanzania • Green opal • Chinese akoya cultured pearls • Pyrope-almandine from Tanzania • Pink-to-red tourmaline from Myanmar • Glass object with circular bands • Heat-treated Kashan flux-grown synthetic ruby • Synthetic star sapphire with hexagonal features • Pink synthetic spinel colored by iron • A new imitation of Imperial topaz • KPMG report on the global jewelry industry 184 Thank You, Donors 185 Book Reviews 188 Gemological Abstracts pg. 170 ® EDITORIAL Editor-in-Chief Editor Editors, Lab Notes STAFF Alice S. Keller Brendan M. Laurs Thomas M. Moses [email protected] The Robert Mouawad Campus Shane F. McClure Managing Editor 5345 Armada Drive Editor, Gem News International Thomas W. Overton Carlsbad, CA 92008 Brendan M. Laurs [email protected] (760) 603-4503 [email protected] Technical Editor Editors, Book Reviews Associate Editor Sally Magaña Susan B. Johnson Stuart Overlin [email protected] Jana E. Miyahira-Smith [email protected] Thomas W. Overton Consulting Editor Circulation Coordinator Carol M. Stockton Debbie Ortiz Editors, Gemological Abstracts Contributing Editor (760) 603-4000, ext. 7142 Brendan M. Laurs James E. Shigley [email protected] Thomas W. Overton PRODUCTION Art Director Production Assistant Website: STAFF Karen Myers Allison DeLong www.gia.edu EDITORIAL Shigeru Akamatsu Jaroslav Hyr`´sl Thomas M. Moses REVIEW BOARD Tokyo, Japan Prague, Czech Republic New York, New York Edward W. Boehm A. J. A. (Bram) Janse Mark Newton Solana Beach, California Perth, Australia Coventry, United Kingdom James E. Butler Alan Jobbins George Rossman Washington, DC Caterham, United Kingdom Pasadena, California Alan T. Collins Mary L. Johnson Kenneth Scarratt London, United Kingdom San Diego, California Bangkok, Thailand John Emmett Anthony R. Kampf James E. Shigley Brush Prairie, Washington Los Angeles, California Carlsbad, California Emmanuel Fritsch Robert E. Kane Christopher P. Smith Nantes, France Helena, Montana New York, New York Henry A. Hänni Lore Kiefert Christopher M. Welbourn Basel, Switzerland New York, New York Reading, United Kingdom Subscriptions to addresses in the U.S. are priced as follows: $74.95 for one year (4 issues), $194.95 for three years (12 issues). SUBSCRIPTIONS Subscriptions sent elsewhere are $85.00 for one year, $225.00 for three years. Canadian subscribers should add GST. Special rates are available for GIA alumni and current GIA students. One year: $64.95 to addresses in the U.S., $75.00 elsewhere; three years: $179.95 to addresses in the U.S., $210.00 elsewhere. Please have your student or Alumni number ready when order- ing. Go to www.gia.edu or contact the Circulation Coordinator. Single copies of this issue may be purchased for $19.00 in the U.S., $22.00 elsewhere. Discounts are given for bulk orders of 10 or more of any one issue. A limited number of back issues are also available for purchase. Please address all inquiries regarding subscriptions and single copy or back issue purchases to the Circulation Coordinator (see above) or visit www.gia.edu. To obtain a Japanese translation of Gems & Gemology, contact GIA Japan, Okachimachi Cy Bldg., 5-15-14 Ueno, Taitoku, Tokyo 110, Japan. Our Canadian goods and service registration number is 126142892RT. DATABASE Gems & Gemology’s impact factor is 1.762 (ranking 5th out of the 25 journals in the Mineralogy category), according to Thomson Scientific’s 2005 Journal Citation Reports (issued June 2006). Gems & Gemology is abstracted by the following: COVERAGE Cambridge Scientific Abstracts, CSA Illumina, Chemical Abstracts Service, GEOBASE, Elsevier Scopus, GeoRef, Ingenta, Mineralogical Abstracts, and Thomson Scientific products (Current Contents: Physical, Chemical & Earth Sciences and Science Citation Index–Expanded, including the Web of Science). For a complete list, see www.gia.edu/gemsandgemology. MANUSCRIPT Gems & Gemology welcomes the submission of articles on all aspects of the field. Please see the Guidelines for Authors on our SUBMISSIONS Website, or contact the Managing Editor. Letters on articles published in Gems & Gemology are also welcome. Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of U.S. copyright law for private use of patrons. Instructors are permitted to photocopy isolated articles for noncommercial classroom use without fee. COPYRIGHT Copying of the photographs by any means other than traditional photocopying techniques (Xerox, etc.) is prohibited without the AND REPRINT express permission of the photographer (where listed) or author of the article in which the photo appears (where no photographer is listed). For other copying, reprint, or republication permission, please contact the Managing Editor. PERMISSIONS Gems & Gemology is published quarterly by the Gemological Institute of America, a nonprofit educational organization for the gem and jewelry industry, The Robert Mouawad Campus, 5345 Armada Drive, Carlsbad, CA 92008. Postmaster: Return undeliverable copies of Gems & Gemology to The Robert Mouawad Campus, 5345 Armada Drive, Carlsbad, CA 92008. Any opinions expressed in signed articles are understood to be the opinions of the authors and not of the publisher. ABOUT For centuries, emeralds have been oiled to mask their abundant inclusions and improve their apparent clarity. A wide range of emerald-filling substances are used today, with varying effectiveness. In this issue, Dr. Mary Johnson compares the stabili- THE OVER C ty and durability of nine common emerald-filling substances. Shown here is a pair of emerald and diamond earrings; the emeralds range from 4 to 18 ct. Courtesy of H. Stern, New York and Rio de Janeiro. Photo © Harold & Erica Van Pelt. Color separations for Gems & Gemology are by Pacific Plus, Carlsbad, California. Printing is by Allen Press, Lawrence, Kansas. © 2007 Gemological Institute of America All rights reserved. ISSN 0016-626X Letters ANNOUNCING GEMS & GEMOLOGY “RAPID COMMUNICATIONS” The current issue marks the beginning of a new feature for G&G. “Rapid Communications” are short articles (2–3 pages) that provide brief descriptions of notable gem materials, localities, and identification or treatment tech- niques—as well as related topics such as museum exhibits and historical jewelry—as quickly as possible and in a readily accessible format. If a manuscript is submitted for Rapid Communications no later than eight weeks before the print date of an issue, and is deemed publishable by the editors and the reviewers, every effort will be made to include it in that issue. We feel that readers and authors alike will benefit from the expedited publication of brief, high-quality research results in Gems & Gemology. For more information, visit www.gia.edu/gemsandgemology and click on “Publishing in G&G.” Brendan M. Laurs, Editor CULTURED PEARL TERMINOLOGY For clarity’s sake, I proposed several changes that appear When dealing with gemologists, students, and people in the in the new CIBJO Pearl Book: pearl trade, I find that most—despite their education about • Omission of the terms nucleus, nucleation, bead nucleat- pearls—have incorrect and misleading ideas about how a cul- ed, tissue nucleated tured pearl is formed and the meaning of certain terms. • Use of the term grafting for the introduction of mantle- In Gems & Gemology, the terms bead nucleated and tis- tissue cells (with
Recommended publications
  • Information Review for Protected Deep-Sea Coral Species in the New Zealand Region
    INFORMATION REVIEW FOR PROTECTED DEEP-SEA CORAL SPECIES IN THE NEW ZEALAND REGION NIWA Client Report: WLG2006-85 November 2006 NIWA Project: DOC06307 INFORMATION REVIEW FOR PROTECTED DEEP-SEA CORAL SPECIES IN THE NEW ZEALAND REGION Authors Mireille Consalvey Kevin MacKay Di Tracey Prepared for Department of Conservation NIWA Client Report: WLG2006-85 November 2006 NIWA Project: DOC06307 National Institute of Water & Atmospheric Research Ltd 301 Evans Bay Parade, Greta Point, Wellington Private Bag 14901, Kilbirnie, Wellington, New Zealand Phone +64-4-386 0300, Fax +64-4-386 0574 www.niwa.co.nz © All rights reserved. This publication may not be reproduced or copied in any form without the permission of the client. Such permission is to be given only in accordance with the terms of the client's contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system. Contents Executive Summary iv 1. Introduction 1 2. Corals 1 3. Habitat 3 4. Corals as a habitat 3 5. Major taxonomic groups of deep-sea corals in New Zealand 5 6. Distribution of deep-sea corals in the New Zealand region 9 7. Systematics of deep-sea corals in New Zealand 18 8. Reproduction and recruitment of deep-sea corals 20 9. Growth rates and deep-sea coral ageing 22 10. Fishing effects on deep-sea corals 24 11. Other threats to deep-sea corals 29 12. Ongoing research into deep-sea corals in New Zealand 29 13. Future science and challenges to deep-sea coral research in New Zealand 30 14.
    [Show full text]
  • Geological Sukvey
    DEPABTMENT OF THE IHTERIOE BULLETIN OF THE UNITED STATES GEOLOGICAL SUKVEY No. 148 WASHINGTON' G-OVEKNMENT PRINTING OFFICE 1897 UNITED STATES GEOLOGICAL SUEYEY CHARLES D. WALCOTT, 'DIRECTOR ANALYSES OF ROCKS ANALYTICAL METHODS LABORATORY OF THE UNITED STATES GEOLOGICAL SURVEY 1880 to 1896 BY F. W. CLAEKE AND W. F. HILLEBEAND WASHINGTON GOVERNMENT PRINTING OFFICE 1897 CONTENTS. Pago. Introduction, by F. W. Clarke ....'.......................................... 9 Some principles and methods of analysis applied to silicate rocks; by W. F. Hillebrand................................................................ 15 Part I. Introduction ................................................... 15 Scope of the present paper .......................................... 20 Part II. Discussion of methods ..................................i....... 22 Preparation of sample....................:.......................... 22 Specific gravity. ............................: ......--.........--... 23 Weights of sample to be employed for analysis....................... 26 Water, hygroscopic ................................ ................. 26 Water, total or combined....... ^.................................... 30 Silica, alumina, iron, etc............................................ 34 Manganese, nickel, cobalt, copper, zinc.............................. 41 Calcium and strontium...................................... ........ 43 Magnesium......................................................... 43 Barium and titanium............... .... ............................
    [Show full text]
  • Lightning Strikes As a Major Facilitator of Prebiotic Phosphorus Reduction on Early Earth ✉ Benjamin L
    ARTICLE https://doi.org/10.1038/s41467-021-21849-2 OPEN Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth ✉ Benjamin L. Hess 1,2,3 , Sandra Piazolo 2 & Jason Harvey2 When hydrated, phosphides such as the mineral schreibersite, (Fe,Ni)3P, allow for the synthesis of important phosphorus-bearing organic compounds. Such phosphides are com- mon accessory minerals in meteorites; consequently, meteorites are proposed to be a main 1234567890():,; source of prebiotic reactive phosphorus on early Earth. Here, we propose an alternative source for widespread phosphorus reduction, arguing that lightning strikes on early Earth potentially formed 10–1000 kg of phosphide and 100–10,000 kg of phosphite and hypo- phosphite annually. Therefore, lightning could have been a significant source of prebiotic, reactive phosphorus which would have been concentrated on landmasses in tropical regions. Lightning strikes could likewise provide a continual source of prebiotic reactive phosphorus independent of meteorite flux on other Earth-like planets, potentially facilitating the emer- gence of terrestrial life indefinitely. 1 Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA. 2 School of Earth and Environment, Institute of Geophysics and Tectonics, The University of Leeds, Leeds, UK. 3 Department of Geology and Environmental Science, Wheaton College, Wheaton, IL, USA. ✉ email: [email protected] NATURE COMMUNICATIONS | (2021) 12:1535 | https://doi.org/10.1038/s41467-021-21849-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21849-2 ife on Earth likely originated by 3.5 Ga1 with carbon isotopic Levidence suggesting as early as 3.8–4.1 Ga2,3.
    [Show full text]
  • Guide to the Identification of Precious and Semi-Precious Corals in Commercial Trade
    'l'llA FFIC YvALE ,.._,..---...- guide to the identification of precious and semi-precious corals in commercial trade Ernest W.T. Cooper, Susan J. Torntore, Angela S.M. Leung, Tanya Shadbolt and Carolyn Dawe September 2011 © 2011 World Wildlife Fund and TRAFFIC. All rights reserved. ISBN 978-0-9693730-3-2 Reproduction and distribution for resale by any means photographic or mechanical, including photocopying, recording, taping or information storage and retrieval systems of any parts of this book, illustrations or texts is prohibited without prior written consent from World Wildlife Fund (WWF). Reproduction for CITES enforcement or educational and other non-commercial purposes by CITES Authorities and the CITES Secretariat is authorized without prior written permission, provided the source is fully acknowledged. Any reproduction, in full or in part, of this publication must credit WWF and TRAFFIC North America. The views of the authors expressed in this publication do not necessarily reflect those of the TRAFFIC network, WWF, or the International Union for Conservation of Nature (IUCN). The designation of geographical entities in this publication and the presentation of the material do not imply the expression of any opinion whatsoever on the part of WWF, TRAFFIC, or IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership are held by WWF. TRAFFIC is a joint program of WWF and IUCN. Suggested citation: Cooper, E.W.T., Torntore, S.J., Leung, A.S.M, Shadbolt, T. and Dawe, C.
    [Show full text]
  • Ise-Shima National Park Lies on the Shima Peninsula, Located in the Center of Mie Prefecture in Western Japan
    A scared landscape featuring the historical site of Ise Jingu Grand Shrine, as well as a picturesque coastal route and bountiful seascape 12 Ise-Shima Ise-Shima National Park lies on the Shima Peninsula, located in the center of Mie prefecture in Western Japan. Ise-Shima National Park includes the municipalities of Ise, Toba, Shima, and Minami-Ise, occupying a vast area of National Park nearly 60,000 hectares. The park is broadly divided into two areas: the inland area which is home to Ise Jingu and its surrounding forests; and the coastal area which is characterized by an archipelagic landscape with intricate ria coasts. The interaction between people and nature is very profound in the region, and the essence of this relationship can be observed in the ancient tradition of ama, female diver, fishing, among other traditional cultural practices that have developed around Ise Jingu over the millennia. The wisdom to enjoy the bounties of nature in a sustainable manner is figured prominently in Ise Jinguʼs Shikinen Sengu, a ritual held once every 20 years whereby the shrine is rebuilt in its entirety. The region has a long history of providing seafood to the Imperial Court and Ise Jingu, and the Manyoshu (Japanʼs oldest poetry compilation) refers to the region as Miketsu Kuni or the "land of divine off erings". Thus, the region boasts a rich marine environment home to diverse aquatic life, including Japanese spiny lobster, abalones, turban shells, oysters, tunas, red sea breams, and various types of seaweed. The Kuroshio sea current has blessed the region with a warm climate, which has led to the development of Ise Jinguʼs lush forest and dense evergreen forests that cling to the foothills of the mountainous regions.
    [Show full text]
  • Okeanos Explorer ROV Dive Summary
    Okeanos Explorer ROV Dive Summary Dive Information Dive Map Site Name Carondelet Reef Expedition Coordinator(s) Brian RC Kennedy, Nick Pawlenko ROV Lead(s) Karl McLetchie Science Team Lead(s) Amanda Demopoulos and Steven Auscavitch General Area Descriptor Phoenix Islands Protected Area ROV Dive Name Cruise EX-17-03 Leg 0 Dive Number 03 Equipment Deployed ROV Deep Discoverer (D2) Camera Platform Seirios CTD Depth Altitude Scanning Sonar USBL Position Heading ROV Measurements Pitch Roll HD Camera 1 HD Camera 2 Low Res Cam 1 Low Res Cam 2 Low Res Cam 3 Low Res Cam 4 Low Res Cam 5 Equipment Malfunctions Dive Summary: EX1703_DIVE03 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ In Water: 2017-03-10T18:25:08.463000 05°, 38.029' S ; 173°, 50.379' W Out Water: 2017-03-11T02:34:14.648000 05°, 37.629' S ; 173°, 50.105' W Off Bottom: 2017-03-11T01:37:19.059000 ROV Dive Summary 05°, 37.685' S ; 173°, 50.365' W (from processed ROV data) On Bottom: 2017-03-10T19:36:06.783000 05°, 37.936' S ; 173°, 50.260' W Dive duration: 8:9:6 Bottom Time: 6:1:12 Max. depth: 1842.3 m Special Notes Name Affiliation Email Address Scientists Involved University of (please provide name, Abby Lapointe Hawaii [email protected] location, affiliation, email) NOAA Fisheries Allen Andrews - PIFSC [email protected] 2 Amanda Demopoulos USGS [email protected] Amanda Netburn NOAA OER [email protected] FLorida State Amy Baco-Taylor University [email protected] UnderWater Andrea Pierce World Guam [email protected] Chiba Institute Asako of Technology Matsumoto
    [Show full text]
  • Tigers Eye Free
    FREE TIGERS EYE PDF Karen Robards | 400 pages | 11 May 2010 | HarperCollins Publishers Inc | 9780380755554 | English | New York, United States Tigers Eye Stone Meaning & Uses: Aids Harmonious Balanced Action Tiger's eye also called tiger eye is a Tigers Eye gemstone that is usually a metamorphic rock with a golden to red-brown colour and a silky lustre. As members of the quartz group, tiger's eye and the related blue-coloured mineral hawk's eye gain their silky, lustrous appearance from the parallel intergrowth of quartz crystals and altered amphibole fibres that have mostly turned into limonite. Tiger iron is an altered rock composed chiefly of tiger's eye, red jasper and black hematite. The undulating, contrasting bands of colour and lustre make for an attractive motif and it is Tigers Eye used for Tigers Eye and ornamentation. Tiger iron is a popular ornamental material Tigers Eye in a variety of applications, from beads to knife hilts. Tiger iron is mined primarily in South Africa and Western Australia. Tiger's eye is composed chiefly of silicon dioxide SiO 2 and is coloured mainly by Tigers Eye oxide. The specific gravity ranges from 2. Serpentine deposits in which are occasionally found chatoyant bands of chrysotile fibres have been found in the US states of Arizona and California. These have been cut and sold as "Arizona tiger-eye" and "California tiger's eye" gemstones. In some parts of the world, the stone is believed to ward off the evil eye. Gems are usually given a cabochon cut to best display their chatoyance.
    [Show full text]
  • Charlotte Verity
    The Magazine of the Association for Contemporary Jewellery £5.00 findings Free to members Issue 71 Autumn 2020 Members' Gallery Charlotte Verity: Inspired by Light Maud Traon in Conversation Jil Koehn: Distant Worlds and Earthly Moments Yinglong Li: Plique-à-jour JHH Gillespie OBE Colour for Jewellers Colouring titanium and reactive metals Marion Lebouteiller: Non-toxic patination Kerstin Haigh: Beaks and Feathers Ian Nicholson: Sustainability in the Workshop Emma the Hallmarking Agony Aunt Angela Mann: Craft says something Kassandra Gordon: Black Jewellers’ Experiences Goldsmiths’ Fair Review glasshouses Book Reviews Competition CONTENTS LETTER FROM THE CHAIR FINDINGS Autumn 2020 On each occasion I write this letter I have to resist the initial impetus to reflect on my own experience and that of my immediate environment. Our Association is more 3 Introduction and Members' Gallery than that; it's humbling for me to recall that our members live 5 Charlotte Verity: Inspired by Light and work across the world. We are bound together by our interest in jewellery: that 6 An Explosion of Colour: physical evidence of the desire (need?) to ornament the body. Maud Traon in Conversation This is a wonderful, precious bond; one that, like jewellery itself, should be timeless. 8 Jil Koehn: Distant Worlds and Across the globe we now have another common bond – the Earthly Moments virus which has by now affected the economy and lifestyle of all countries. So, my personal experience will be even less typical. I’m aware that, as the 10 Yinglong Li: second ‘spike’ takes hold here in the UK, my social isolation may be frustrating but Plique-à-jour is nothing compared to those across continents, as well as here, who have lost jobs, careers and loved ones.
    [Show full text]
  • Gem Crystal Surface Features Spherical Cultured Pearls Aquamarine
    Gems&Jeweller y Spring 2012 / Volume 21 / No. 1 Gem crystal Spherical Aquamarine- surface features cultured pearls coloured glass The Gemmological Association of Great Britain MARCUS MCCALLUM FGA PRECIOUS STONES, BEADS & PEARLS A wide range of precious and semi-precious stones, beads and freshwater pearls, personally selected from around the world. Unusual stones a speciality. ROOM 27-31, NEW HOUSE 67-68 HATTON GARDEN, LONDON EC1N 8JY TELEPHONE: +44(0)20 7405 2169 FACSIMILE: +44(0)20 7405 9385 email:[email protected] www.marcusmccallum.com Gems&Jewellery / Spring 2012 / Volume 21 / No. 1 Gem-A CalendarEditorial Gems&Jewellery Winds of change This year is turning in to a busy one for Gem-A. As reported in Gem-A News and Views (page Spring 40), we have a lease renewal on our Greville Street premises which will lead to a thorough refurbishment — something which those of you who know the building will agree is much needed. This will provide an excellent opportunity to reinvigorate both our onsite teaching facilities and the services we can offer members. How can we afford this you may ask, when only a very few years 12 ago the Association was in poor health financially? The fact is that over the last few years we have run a very tight ship knowing we had these costs looming. We have focused on what we are good Contents at and the things which are the core aspects of our business. This has led to the ceasing of loss- making operations, such as the laboratory, and an increase in students and thus revenue from our education, though it must be qualified that this increase is from overseas rather than the UK.
    [Show full text]
  • Petrified Lightning
    PETRIFIED LIGHTNING by PETER E. VIEMEISTER ORIGINALLY PUBLISHED IN THE LIGHTNING BOOK THE MIT PRESS, 1983 ORIGINALLY PUBLISHED IN THE LIGHTNING BOOK THE MIT PRESS, 1983 PETRIFIED LIGHTNING by PETER E. VIEMEISTER If lightning strikes sand of the proper composition, the high temperature of the stroke may fuse the sand and convert it to silica glass. “Petrified lightning” is a permanent record of the path of lightning in earth, and is called a fulgurite, after fulgur, the Latin word for lightning. Fulgurites are hollow, glass-lined tubes with sand adhering to the outside. Although easily pro- duced in the laboratory in an electric furnace, silica glass is very rare in nature. The glass lining of a fulgurite is naturally pro- duced silica glass1, formed from the fusion of quartzose sand at a temperature of about 1800° centigrade. Most people have never seen a fulgurite and if they have they might not have recognized it for what it was. A fulgurite is a curious glassy tube that usually takes the shape of the roots of a tree (see illustration). In effect it gives us a picture of the forklike 1The geological name for this natural silica glass is lechatelierite, in honor of the French chemist Henry Le Chatelier. a) When lightning strikes the earth, electrons flow outward in all directions. (b) Petrified lightning or fulgurite is sometimes made when lightning strikes and fuses certain types of sand. When formed on beaches or shores, a fulgurite is usually covered with shifting sand and goes undiscovered. Eroding sand may expose a fulgurite. (diagram by Read Viemeister) routes taken by lightning after striking sand.
    [Show full text]
  • Deep-Sea Life Issue 14, January 2020 Cruise News E/V Nautilus Telepresence Exploration of the U.S
    Deep-Sea Life Issue 14, January 2020 Welcome to the 14th edition of Deep-Sea Life (a little later than anticipated… such is life). As always there is bound to be something in here for everyone. Illustrated by stunning photography throughout, learn about the deep-water canyons of Lebanon, remote Pacific Island seamounts, deep coral habitats of the Caribbean Sea, Gulf of Mexico, Southeast USA and the North Atlantic (with good, bad and ugly news), first trials of BioCam 3D imaging technology (very clever stuff), new deep pelagic and benthic discoveries from the Bahamas, high-risk explorations under ice in the Arctic (with a spot of astrobiology thrown in), deep-sea fauna sensitivity assessments happening in the UK and a new photo ID guide for mesopelagic fish. Read about new projects to study unexplored areas of the Mid-Atlantic Ridge and Azores Plateau, plans to develop a water-column exploration programme, and assessment of effects of ice shelf collapse on faunal assemblages in the Antarctic. You may also be interested in ongoing projects to address and respond to governance issues and marine conservation. It’s all here folks! There are also reports from past meetings and workshops related to deep seabed mining, deep-water corals, deep-water sharks and rays and information about upcoming events in 2020. Glance over the many interesting new papers for 2019 you may have missed, the scientist profiles, job and publishing opportunities and the wanted section – please help your colleagues if you can. There are brief updates from the Deep- Ocean Stewardship Initiative and for the deep-sea ecologists amongst you, do browse the Deep-Sea Biology Society president’s letter.
    [Show full text]
  • Astronomy Astrophysics
    A&A 447, 133–144 (2006) Astronomy DOI: 10.1051/0004-6361:20052838 & c ESO 2006 Astrophysics Structure and dynamics of the Shapley Supercluster Velocity catalogue, general morphology and mass D. Proust1,H.Quintana2, E. R. Carrasco3, A. Reisenegger2, E. Slezak4,H.Muriel5, R. Dünner2, L. Sodré Jr.6,M.J.Drinkwater7,Q.A.Parker8, and C. J. Ragone5 1 GEPI, Observatoire de Paris-Meudon, 92195 Meudon Cedex, France e-mail: [email protected] 2 Departamento de Astronomía y Astrofisica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile 3 Gemini Observatory, Southern Operations Center c/o AURA, Casilla 603, La Serena, Chile 4 Observatoire de Nice, 06304 Nice Cedex 4, France 5 Grupo de Investigaciones en Astronomía Teórica y Experimental, Observatorio Astrónomico, Laprida 854, 5000 Córdoba, Argentina, and CONICET, Buenos Aires, Argentina 6 Instituto de Astronomia, Geofísica e Ciências Atmosféricas, R. do Matão 1226, CEP 05508-090 São Paulo/SP Brazil 7 Department of Physics, University of Queensland, QLD 4072, Australia 8 Department of Physics, Macquarie University, NSW 2109, Australia, and Anglo-Australian Observatory, PO Box 296, Epping NSW 1710, Australia Received 8 February 2005 / Accepted 28 September 2005 ABSTRACT We present results of our wide-field redshift survey of galaxies in a 285 square degree region of the Shapley Supercluster (SSC), based on a set of 10 529 velocity measurements (including 1201 new ones) on 8632 galaxies obtained from various telescopes and from the literature. Our data reveal that the main plane of the SSC (v ≈ 14 500 km s−1) extends further than previous estimates, filling the whole extent of our survey region of 12 degrees by 30 degrees on the sky (30 × 75 h−1 Mpc).
    [Show full text]