CV July 2013

Total Page:16

File Type:pdf, Size:1020Kb

CV July 2013 (October 2013) CURRICULUM VITAE NAME Jelle Atema e-mail: [email protected] ADDRESS Boston University Telephone 617-358-4392 (office) Biology Department 617-353-2432 (dept) Marine Program 617-358-4588 (lab) 5, Cummington Street Boston MA 02215 EDUCATION Candidate University of Utrecht, Netherlands 1962 Biology Doctorandus University of Utrecht, Netherlands 1966 Sensory Biology and Physics Ph.D. University of Michigan 1969 Sensory Biology ACADEMIC AND RESEARCH EXPERIENCE 1984- Professor, Biology Department and Marine Science Program, Boston University. 2007- Adjunct Scientist, Biology Dept., Woods Hole Oceanographic Institution. 2006- 2010 Adjunct Senior Scientist, Marine Biological Laboratory, Woods Hole 1994-2010 Research Fellow, Department of Cognitive and Neural Systems, Boston University. 1990-2004 Director, Boston University Marine Program, Woods Hole. 1974-1984 Associate Professor, Marine Program, Biology Department, Boston University. 1970-1974 Assistant Scientist, Woods Hole Oceanographic Institution, Chemistry Department. 1966-1970 Research Associate, University of Michigan, School of Natural Resources and Medical School. 1960-1966 Research and Teaching Assistant, University of Utrecht. AWARDS AND HONORS Fellow, Alexander Von Humboldt Foundation (Senior Research Prize), 1996 Fellow, John Simon Guggenheim Foundation, 1987 Fellow, American Association for the Advancement of Science, 1976 Manheimer Lecture, Monell Chemical Senses Center, Philadelphia, 1986 Friday Evening Lecture, Marine Biological Laboratory, Woods Hole, 1982 First Annual Distinguished Lecture in Marine Neurosciences, University of Miami, FL, 2000 OTHER PROFESSIONAL EXPERIENCE 1998 Faculty, Workshop on Aquatic Chemical Ecology, Lund, Sweden. 1997 Guest Professor, University of Konstanz, Germany. 1996 Guest Professor, University of New South Wales, Sydney, Australia. 1990 Co-Director, Short Course in Chemical Signals, Marine Biological Laboratory, Woods Hole. 1984 Faculty Instructor, Shanghai, China. UNESCO International Training Course, Chemoreception in Aquatic Organisms. 1982 Faculty Instructor, Kotor, Yugoslavia. UNESCO International Training Course, Chemoreception in Aquatic Organisms. 1979-1980 Guest Professor, University of Regensburg, West Germany. Chemoreception and behavior of crayfish. 1976-1977 Research Associate, University of Hawaii. Chemoreception and behavior of tuna. 1974-1983 Instructor-in-Chief, Behavior Course, Marine Biological Laboratory, Woods Hole. PROFESSIONAL SOCIETIES American Association for the Advancement of Science Society for Neuroscience International Society for Chemical Ecology International Society for Neuroethology Society for Integrative and Comparative Biology (American Society of Zoologists) Animal Behavior Society (Co-Chairman, N.E. Regional Meeting) Association for Chemoreception Sciences (Freeman Award Committee 1982, 1985; Program Chair 1986; Awards Committee 2006) Crustacean Society (1980-1985) European Chemoreception Research Organization Marine Biological Laboratory, Member of the Corporation (1974- ) OTHER PROFESSIONAL ACTIVITIES Current: Editorial Board, Primary Sensory Neuron, 1996- Editorial Board, Marine and Freshwater Behavior and Physiology, 1995- MIT Sea Grant, Advisory Board, 1996- Past: Editorial Board, Journal of Experimental Marine Biology & Ecology, 1988-1992 Editorial Board, Physiological Zoology, 1988-1992 Editorial Board, Sensory Processes, 1980-1982 Editorial Board, Behavioral Processes, 1978-1984 Guest Editor, OCEANUS Magazine, "Senses of the Sea", Fall 1980 Co-Editor, Sensory Biology of Aquatic Animals, Springer Verlag, 1987-1988 Co-Editor, Proceedings International Symposium on Olfaction and Taste IX, 1987 Editor, Abstracts Chemical Senses, 1986 Co-Organizer, Northeast Animal Behavior Society Meetings, Woods Hole, 1979 Organizer, Symposium "Search Image", October 1979 Co-Organizer, Symposium on "Sensory Biology of Aquatic Animals", Sarasota, June 1985 Co-Organizer, International Symposium on Olfaction and Taste, Snowmass,Colorado, July 1986 Organizer, Winter Animal Behavior Conference, January 1990 Organizer, Mini-symposium on Temporal Processing of Chemical Signals, AChemS 1994 National Science Foundation, Review Panel, Animal Sensation and Movement, 2006 National Science Foundation, Review Panel, Psychobiology Program, 1983-1985 National Science Foundation, Review Panel, Experimental Program to Stimulate Competitive Research, 1983 National Science Foundation, Task Group on Invertebrate Zoology Teaching, 1992 National Research Council, Committee on Improved Models for Toxicity Testing for Human Health Hazard Assessment, 1983 International Union of Physiologists, Glossary Committee, Chemical Senses, 1977-1980 Sea Education Association (SEA), Academic Advisory Council Doreen Grace Brain Center, Scientific Advisory Board, 1989-2006 Northeast Marine Environmental Institution, Board of Directors Masschusetts Bay Community College, Biotechnology Advisory Board Boston University: Marine Program Director, 1990-2004 Neurobiology Search Committee, 1990 (Chair) 2 Ecology Search Committee, 1990 (Chair) Marine Biology Search Committee, 1993 (Chair) Marine Program Director Search Committee, 1986 Biology Department Curriculum committee 1987-1990; 2010- Chairman’s Advisory Committee, 1989-2003, 2006-2007 Graduate Committee, 1983-1987, 1990 –1996, 2000-2003 Promotion and Tenure Committee, 1986-1987, 1998-2003, 2012 Merit Review Committee, 1988-1998 Neurobiology Search Committee, 1979 (Chair), 1986 Ad-hoc Performance Review Committee, 1986-1988 College of Liberal Arts IACUC committee 2012- Ad-hoc Tenure Committee, 1979 Neuroscience Director Search Committee, 1993 Marine Biological Laboratory: BUMP Director 1990-2004 Science Council, 1999-2004 (elected for two consecutive terms) Interim Science Council, 1993 Trustee, 1985-1993 (elected for two 4-year terms) Trustees Nominating Committee, 1990, Chair 1991 Trustees Facilities & Capital Equipment Committee, 1993-1996 Year Round Scientists Council (Co-Chair), 1988-1990 (elected) Education Task Force 2001-2002 Research Services Committee, 1980-1984 Housing, Day Care and Food Services Committee (Chair), 1983-1989 Day Care Committee 1996-2000 Ad-Hoc Trustees Housing Committee, 1984-1985 Centennial Committee, Subcommittee on Cultural Events (Chair), 1986-88 Advisor, Futures-in-Science Program for High School Students, 1986 Pre-college Science Education, 1993 Computer Advisory Committee, 1993-1998 Seminar Committee (Chair), 1988-1989 COMMUNITY ACTIVITIES Performer: MBL Centennial Concert with J.-P. Rampal and Colorado Quartet, 1988 Cape & Islands Music Festival, 1988 Soundfest (Colorado Quartet), 1991 Cape Cod Symphony Orchestra, First Prize Music Competition, 1974, Flute Soloist with Orchestra, 1974, 1988 BUMP-MBL Concert with Samuel Baron and Colorado Quartet, 1996 BUMP-MBL Concert with the Miro String Quartet, 1998 BUMP-MBL Concert and CD recording, 2001 Woods Hole Library Chamber Music Society: Annual concerts 1980-2002 MBL Annual Summer Concerts 1970-2005 Falmouth Chamber Orchestra, Conductor 1980-1985 Committee for Performing Arts Center, Falmouth, Chairman, 1982-1984 Massachusetts Council on Arts and Humanities, Panel Review, Judge Falmouth Music Association, President, 1972-1973, 1982-1984 Falmouth Academy, Commencement speaker 1983 Falmouth Academy, Science Fair Judge, 1990- Mullen-Hall Elementary School, Falmouth, guest lecturer and performer 1997-8 Winsor School, Boston, guest lecturer 1990 Cambridge School, Weston, guest lecturer 1993, panelist 2007 Beaver Country Day School, Chestnut Hill, guest lecturer 2005 3 (list not continued) OTHER RESEARCH The roots of human culture: Reconstruction of the world's oldest musical instruments: a 53,000-year-old Neanderthal flute from Slovenia made from a cave bear femur, a 30,000-year-old deer bone flute from the Les Eyzies region and a 4,000-year-old vulture bone flute from the Ardeche region, both in France. Recordings on paleo- and neolithic flute reconstructions are in permanent exhibits at the American Museum of Natural History, New York and the Archaeological Museum of Florac, France. A lecture and press conference at the AAAS-2000 meetings in Washington, DC and a paper in SCIENCE magazine (Jan 5, 2001) resulted in world-wide press coverage in all the media. A book and museum exhibit on the subject are underway. BioMusic: The sounds of Nature and the Nature of Sound. A national initiative to explore the roots of music in Nature's Sounds and to bring the information into the Middle School Curriculum. Wild Music: A 2007-2008 exhibit at the Minnesota Science Museum in which the flute reconstructions play an important role. The exhibit is in the Boston Science Museum 2009-2010. MAJOR RESEARCH GRANTS AWARDED (since 1984) (from 1970-1983 uninterrupted research funding of about $100,000 annually from U.S. Government Agencies and Private Foundations) 1982-85 Whitehall Foundation Resolving power of narrowly tuned chemoreceptor $123,000 cells: signal detection in a noisy environment 1985-87 Whitehall Foundation Resolving power of narrowly tuned chemoreceptor $84,400 cells: signal detection in a noisy environment 1984-86 NSF BNS 84-13661 Sex pheromones and courtship in lobsters $36,760 1984-86 NSF BNS 84-11969 Chemical signal detection: physiological and behavioral $90,000 functions of chemoreceptors in a noisy environment 1985-88 NSF BNS 85-12585 Chemical signal detection: functions of $274,000 chemoreceptors in a noisy environment 1985-87 EPA Acid stress on chemically mediated behavior in crayfish $111,165 1987-88
Recommended publications
  • First Chromosome Analysis of the Humpback Cardinalfish, Fibramia
    © 2017 The Japan Mendel Society Cytologia 82(1) Special Issue: 9–15 First Chromosome Analysis of the Humpback Cardinalfish, Fibramia lateralis (Perciformes, Apogonidae) Wannapa Kasiroek1,2, Chantra Indananda3, Nattawut Luangoon2, Krit Pinthong4, Weerayuth Supiwong5 and Alongklod Tanomtong6* 1 Department of Aquatic Science, Faculty of Science, Burapha University, Muang, Chonburi 20131, Thailand 2 Institute of Marine Science, Burapha University, Muang, Chonburi 20131, Thailand 3 Department of Biology, Faculty of Science, Burapha University, Muang, Chonburi 20131, Thailand 4 Department of Fundamental Science, Faculty of Science and Technology, Surindra Rajabhat University, Muang, Surin 32000, Thailand 5 Faculty of Applied Science and Engineering, Khon Kaen University, Nong Khai Campus, Muang, Nong Khai 43000, Thailand 6 Toxic Substances in Livestock and Aquatic Animals Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand Received July 27, 2015; accepted November 23, 2015 Summary The first chromosome analysis and nucleolar organizer region (NOR) pattern of the humpback car- dinalfish (Fibramia lateralis) were studied. Samples from 10 male and 10 female fish were collected from the Andaman Sea and Gulf of Thailand. Mitotic chromosome preparations were prepared directly from kidney tis- sues. Conventional and Ag-NOR staining techniques were applied to stain the chromosomes. The results showed that the diploid chromosome number of F. lateralis was 2n=46, and the fundamental numbers (NF) were 54 in both sexes. The karyotype consisted of 8 large acrocentric, 12 large telocentric, 24 medium telocentric and 2 small telocentric chromosomes. Moreover, the results indicated that the region adjacent to the telomere of the short arm of the second acrocentric chromosome pair showed clearly observable nucleolar organizer regions (NORs).
    [Show full text]
  • Interacting Effects of Elevated Temperature and Ocean Acidification on the Aerobic Performance of Coral Reef Fishes
    Vol. 388: 235–242, 2009 MARINE ECOLOGY PROGRESS SERIES Published August 19 doi: 10.3354/meps08137 Mar Ecol Prog Ser Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes Philip L. Munday1, 2,*, Natalie E. Crawley1, 2, Göran E. Nilsson3 1ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, Australia 2School of Marine and Tropical Biology, James Cook University, Townsville 4811, Australia 3Physiology Programme, Department of Molecular Biosciences, University of Oslo, PO Box 1041, 0316 Oslo, Norway ABSTRACT: Concerns about the impacts of ocean acidification on marine life have mostly focused on how reduced carbonate saturation affects calcifying organisms. Here, we show that levels of CO2-induced acidification that may be attained by 2100 could also have significant effects on marine organisms by reducing their aerobic capacity. The effects of temperature and acidification on oxygen consumption were tested in 2 species of coral reef fishes, Ostorhinchus doederleini and O. cyanosoma, from the Great Barrier Reef, Australia. The capacity for aerobic activity (aerobic scope) declined at temperatures above the summer average (29°C) and in CO2-acidified water (pH 7.8 and ~1000 ppm CO2) compared to control water (pH 8.15). Aerobic scope declined by 36 and 32% for O. doederleini and O. cyanosoma at temperatures between 29 to 32°C, whereas it declined by 33 and 47% for O. doederleini and O. cyanosoma in acidified water compared to control water. Thus, the declines in aerobic scope in acidified water were similar to those caused by a 3°C increase in water –1 –1 temperature.
    [Show full text]
  • Materials and Methods
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Woods Hole Open Access Server 1 2 3 Planktonic Larval Duration, Age and Growth of Ostorhinchus doederleini (Pisces: Apogonidae) on 4 the Southern Great Barrier Reef, Australia 5 6 M.J. Kingsford1* 7 M.D. Finn1† 8 M.D. O’Callaghan1 9 J. Atema2 10 G. Gerlach3 11 1 ARC Centre of Excellence for Coral Reef Studies, School of Marine and Tropical Biology, James 12 Cook University, Townsville, QLD, Australia 4811 13 14 2 University of Boston, and Woodshole Oceanographic Institute 15 3Carl von Ossietzky University of Oldenburg Carl von Ossietzky Str. 9-11, 26111 Oldenburg, Germany 16 *Corresponding Author. 17 Phone: +61 7 4781 4345 18 FAX: +61 7 4781 5511 19 E-mail: [email protected] 20 †Current address: School of Marine and Tropical Biology, James Cook University, Townsville, Qld 21 4811 Australia 22 Keywords: Apogonidae, otoliths, age, PLD, settlement, growth, mortality. 23 24 1 25 26 Abstract 27 Cardinalfishes (Apogonidae) are abundant on corals reefs, but there are few data on demography to 28 understand trophodynamics and population dynamics. Ostorhinchus doederleini is a small and abundant 29 apogonid on the Great Barrier Reef (GBR) and throughout the Western Pacific Ocean. We present key 30 demographic parameters for the entire life history from the southern GBR. Daily deposition of 31 increments in otoliths was validated. Fish had a Planktonic Larval Duration (PLD) of 16 to 26 days. 32 PLD was established from fish collected immediately prior to settlement as no settlement mark was 33 found.
    [Show full text]
  • Microhabitat Partitioning Correlates with Opsin Gene Expression in Coral Reef
    1 Microhabitat partitioning correlates with opsin gene expression in coral reef 2 cardinalfishes (Apogonidae) 3 4 Martin Luehrmann (ML) 1, Fabio Cortesi (FC) 1, Karen L. Cheney (KLC) 1,2, Fanny de Busserolles 5 (FbB)1, N. Justin Marshall (JM) 1 6 7 1Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, 8 Brisbane, QLD, Australia 9 2School of Biological Sciences, The University of Queensland, 4072, Brisbane, QLD, Australia 10 11 Corresponding Author: Dr Martin Luehrmann 12 Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane | 13 QLD 4072 | Australia, Fax number: +61 (0)7 33654522 14 Email: [email protected] 15 16 Keywords 17 Microhabitat partioning, opsin gene expression, fish, cardinalfish, LWS, RH2, SWS2, vertebrate 18 visual system evolution, eye size, retinal topography 19 20 Headline: Visual adaptation to microhabitats in reef fish Author Manuscript This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/1365-2435.13529 This article is protected by copyright. All rights reserved 1 2 DR MARTIN LUEHRMANN (Orcid ID : 0000-0002-4060-4592) 3 DR KAREN CHENEY (Orcid ID : 0000-0001-5622-9494) 4 5 6 Article type : Research Article 7 Editor : Christine Miller 8 Section : Evolutionary Ecology 9 10 11 Microhabitat partitioning correlates with opsin gene expression in coral reef 12 cardinalfishes (Apogonidae) 13 14 Martin Luehrmann (ML) 1, Fabio Cortesi (FC) 1, Karen L.
    [Show full text]
  • Complex Food Webs in Highly Diversified Coral Reefs
    Food Webs 8 (2016) 12–22 Contents lists available at ScienceDirect Food Webs journal homepage: www.journals.elsevier.com/food-webs Complex food webs in highly diversified coral reefs: Insights from δ13C and δ15N stable isotopes Marine J. Briand a,⁎, Xavier Bonnet b, Gaël Guillou c,YvesLetourneura a Université de la Nouvelle-Calédonie, Laboratoire LIVE, LABEX Corail, BP R4, 98851 Nouméa cedex, New Caledonia b Centre d'Etudes Biologiques de Chizé, CEBC-CNRS UPR 1934, 79360 Villers en Bois, France c Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France article info abstract Article history: We studied the trophic network architecture of the coral reef ecosystem of the New Caledonian lagoon. To en- Received 15 January 2016 compass the main tropic levels, we assayed carbon and nitrogen stable isotopes in various organic matter Received in revised form 1 July 2016 sources, intermediate consumers (invertebrates and fish), and 19 species of predatory fish (total of 1229 sam- Accepted 4 July 2016 ples). At each level, wide range of variations for δ13Candδ15N suggested multiple sources for the OM, and com- Available online 7 July 2016 plex trophic relationships among the different organisms. Despite this complexity, four trophic structures were identified. 1) The predominant reef benthic food web (R-BFW) based on the OM produced by algal turf supplies Keywords: fi Trophic networks most of intermediate consumers and all anguilliform sh studied. 2) The sedimentary benthic food web (S-BFW), Isotopic ratios and 3) the lagoon pelagic food web (L-PFW), respectively based on sedimentary OM (SOM) and particulate OM Organic matter sources (POM) involve a wide range of organisms and represent complementary food webs for most anguilliform fish.
    [Show full text]
  • (Percomorpha: Apogonidae) Based on Molecular Analyses and Comparative Reevaluation of Morphological Characters
    Zootaxa 3846 (2): 151–203 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3846.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:3844E8F1-A20C-44B4-9B47-B170F5A7C0C2 Revision of the systematics of the cardinalfishes (Percomorpha: Apogonidae) based on molecular analyses and comparative reevaluation of morphological characters KOHJI MABUCHI1, THOMAS H. FRASER2,3, HAYEUN SONG1, YOICHIRO AZUMA1 & MUTSUMI NISHIDA1,4 1Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan. E-mail: [email protected] 2Florida Museum of Natural History, University of Florida, Dickinson Hall, Museum Road, Gainesville, Florida, 32611, United States 3Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, Florida 34236, United States. E-mail: [email protected] 4University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan Table of contents Abstract . 152 Introduction . 152 Material and methods . 155 Results . 163 Discussion . 171 Family, subfamily and tribal morphological diagnoses, general distribution and remarks . 173 1. FAMILY . 173 Family Apogonidae Günther 1859 . 173 2. SUBFAMILIES . 174 Key to the subfamilies of Apogonidae . 174 Amioidinae new subfamily Fraser & Mabuchi . 175 Subfamily Apogoninae Günther 1859 . 175 Paxtoninae new subfamily Fraser & Mabuchi . 176 Subfamily Pseudamiinae Smith 1954 . 177 3. APOGONINAE TRIBES ALL NEW . 178 Tribe Apogonichthyini Snodgrass & Heller 1905 . 178 Tribe Apogonini Günther 1859 . 178 Tribe Archamiini new name Fraser & Mabuchi . 179 Tribe Cheilodipterini Bleeker 1856 . 180 Tribe Glossamiini new name Fraser & Mabuchi . 180 Tribe Gymnapogonini Whitley 1941 . 181 Tribe Lepidamiini new name Fraser & Mabuchi .
    [Show full text]
  • The Kagoshima University Museum No
    Bulletin of the Kagoshima University Museum No. 9 A total of 1,277 species, including 129 species that represent the first reliable records from the island on the basis of Annotated Checklist of Marine and Freshwater Fishes Yaku-shima Island ISSN-L 2188-9074 collected specimens and/or underwater photographs, are listed with citation of literature, registration numbers, sizes, ANNOTATED CHECKLIST OF MARINE AND FRESHWATER FISHES OF localities in the island, and nomenclatural, taxonomic, and ecological remarks. Color photographs of all the 129 YAKU-SHIMA ISLAND IN THE OSUMI ISLANDS, species newly recorded from the island are provided. KAGOSHIMA, SOUTHERN JAPAN, WITH 129 NEW RECORDS HIROYUKI MOTOMURA AND SHIGERU HARAZAKI Hiroyuki Motomura • Shigeru Harazaki February 2017 The Kagoshima University Museum Cover photograph: Cephalopholis sonnerati in a wreck off Isso, Yaku-shima island. Photo by S. Harazaki Back cover photograph: Males of Pseudanthias hypselosoma at 15 m depth off Isso, Yaku-shima island. Photo by S. Harazaki Bulletin of the Kagoshima University Museum No. 9 ISSN-L 2188-9074 Annotated checklist of marine and freshwater fishes of Yaku-shima island in the Osumi Islands, Kagoshima, southern Japan, with 129 new records Hiroyuki Motomura1, 3 and Shigeru Harazaki2 1The Kagoshima University Museum, 1–21–30 Korimoto, Kagoshima 890–0065, Japan E-mail: [email protected] 2Yakushima Diving Service “Mori to Umi”, 2473–294 Miyanoura, Yakushima, Kumage, Kagoshima 891–4205, Japan 3Corresponding author Abstract The second edition of an annotated checklist of marine and freshwater fishes of Yaku-shima island in the Osumi Group, Kagoshima Prefecture, southern Japan, was compiled from specimen and literature surveys.
    [Show full text]
  • Checklist of the Shore Fishes of New Caledonia
    Plates 15/1 & 15/2 Checklist of the shore fishes of New Caledonia Ronald FRICKE J & Michel KULBICKI 2 J Ichthyology, Staatliches Museumfiir Naturkunde, Rosenstein 1,70191 Stuttgart, Germany [email protected] 2IRD, UR128, Universite de Perpignan, 52, Avenue Paul Alduy, 66860 Perpignan Cedex, France michel.kulbicki@univ-perpJr The present checklist includes the fish species known from the upper 100 m of the New Caledonian seas. Some deep-sea fishes which are occasionally found in shallow water (e.g. Loyalty Islands), high sea species which only rarely enter coastal waters, or freshwater fish species which may be found in estuaries, are excluded from this list. The geographical distribution of the shore fishes of New Caledonia is discussed by Kulbicki (in press). A detailed annotated checklist of all New Caledonian fish species including distribution data, litera­ ture references and material lists is in preparation by R. Fricke. In the present checklist of shore fish species, all records which are verified either by museum specimens or by confirmation by revising authors, are included. Families are arranged systematically according to Nelson (2006), and species alphabetically under the family names. Doubtful records are discussed after the family name. The names which have been applied to New Caledonian shore fish species in the literature are either list­ ed as valid species, or as synonyms or misidentifications in parentheses behind the species name. In the checklist, reference is given to materials in the collections of the Australian Museum Sydney (AMS), the Museum National d'Histoire Naturelle Paris (MNHN), and the Staatliches Museum flir Naturkunde Stuttgart (SMNS), in order to document new records.
    [Show full text]
  • Revision of the Systematics of the Cardinalfishes (Percomorpha: Apogonidae) Based on Molecular Analyses and Comparative Reevaluation of Morphological Characters
    Zootaxa 3846 (2): 151–203 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3846.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:3844E8F1-A20C-44B4-9B47-B170F5A7C0C2 Revision of the systematics of the cardinalfishes (Percomorpha: Apogonidae) based on molecular analyses and comparative reevaluation of morphological characters KOHJI MABUCHI1, THOMAS H. FRASER2,3, HAYEUN SONG1, YOICHIRO AZUMA1 & MUTSUMI NISHIDA1,4 1Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan. E-mail: [email protected] 2Florida Museum of Natural History, University of Florida, Dickinson Hall, Museum Road, Gainesville, Florida, 32611, United States 3Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, Florida 34236, United States. E-mail: [email protected] 4University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan Table of contents Abstract . 152 Introduction . 152 Material and methods . 155 Results . 163 Discussion . 171 Family, subfamily and tribal morphological diagnoses, general distribution and remarks . 173 1. FAMILY . 173 Family Apogonidae Günther 1859 . 173 2. SUBFAMILIES . 174 Key to the subfamilies of Apogonidae . 174 Amioidinae new subfamily Fraser & Mabuchi . 175 Subfamily Apogoninae Günther 1859 . 175 Paxtoninae new subfamily Fraser & Mabuchi . 176 Subfamily Pseudamiinae Smith 1954 . 177 3. APOGONINAE TRIBES ALL NEW . 178 Tribe Apogonichthyini Snodgrass & Heller 1905 . 178 Tribe Apogonini Günther 1859 . 178 Tribe Archamiini new name Fraser & Mabuchi . 179 Tribe Cheilodipterini Bleeker 1856 . 180 Tribe Glossamiini new name Fraser & Mabuchi . 180 Tribe Gymnapogonini Whitley 1941 . 181 Tribe Lepidamiini new name Fraser & Mabuchi .
    [Show full text]
  • Materials and Methods
    1 2 3 Planktonic Larval Duration, Age and Growth of Ostorhinchus doederleini (Pisces: Apogonidae) on 4 the Southern Great Barrier Reef, Australia 5 6 M.J. Kingsford1* 7 M.D. Finn1† 8 M.D. O’Callaghan1 9 J. Atema2 10 G. Gerlach3 11 1 ARC Centre of Excellence for Coral Reef Studies, School of Marine and Tropical Biology, James 12 Cook University, Townsville, QLD, Australia 4811 13 14 2 University of Boston, and Woodshole Oceanographic Institute 15 3Carl von Ossietzky University of Oldenburg Carl von Ossietzky Str. 9-11, 26111 Oldenburg, Germany 16 *Corresponding Author. 17 Phone: +61 7 4781 4345 18 FAX: +61 7 4781 5511 19 E-mail: [email protected] 20 †Current address: School of Marine and Tropical Biology, James Cook University, Townsville, Qld 21 4811 Australia 22 Keywords: Apogonidae, otoliths, age, PLD, settlement, growth, mortality. 23 24 1 25 26 Abstract 27 Cardinalfishes (Apogonidae) are abundant on corals reefs, but there are few data on demography to 28 understand trophodynamics and population dynamics. Ostorhinchus doederleini is a small and abundant 29 apogonid on the Great Barrier Reef (GBR) and throughout the Western Pacific Ocean. We present key 30 demographic parameters for the entire life history from the southern GBR. Daily deposition of 31 increments in otoliths was validated. Fish had a Planktonic Larval Duration (PLD) of 16 to 26 days. 32 PLD was established from fish collected immediately prior to settlement as no settlement mark was 33 found. Fish grew at about 0.35 mm d-1 for the first 20 d after settlement.
    [Show full text]
  • Life History of the Symbiotically Luminous Cardinalfish Siphamia Tubifer (Perciformes: Apogonidae)
    Journal of Fish Biology (2016) 89, 1359–1377 doi:10.1111/jfb.13063, available online at wileyonlinelibrary.com Life history of the symbiotically luminous cardinalfish Siphamia tubifer (Perciformes: Apogonidae) A. L. Gould*, K. E. Dougan‡, S. T. Koenigbauer and P. V. Dunlap Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109, U.S.A. (Received 18 December 2015, Accepted 18 April 2016) Characteristics of the life history of the coral reef-dwelling cardinalfish Siphamia tubifer, from Oki- nawa, Japan, were defined. A paternal mouthbrooder, S. tubifer, is unusual in forming a bioluminescent symbiosis with Photobacterium mandapamensis. The examined S. tubifer (n = 1273) ranged in size from 9·5to43·5 mm standard length (LS), and the minimum size at sexual maturity was 22 mm LS. The number of S. tubifer associated during the day among the spines of host urchins was 22·9 ± 16·1 (mean ± s.d.; Diadema setosum)and3·6 ± 3·2(Echinothrix calamaris). Diet consisted primarily of crustacean zooplankton. Batch fecundity (number of eggs; FB) was related to LS by the equations: males (fertilized eggs) FB = 27·5LS − 189·46; females (eggs) FB = 31·3LS − 392·63. Individual mass −5 2·68 (M; g) as a function of LS was described by the equation: M = 9·74 × 10 LS . Growth, determined from otolith microstructure analysis, was described with the von Bertalanffy growth function with −1 the following coefficients: L∞ = 40·8mmLS, K = 0·026 day and t0 = 23·25 days. Planktonic larval duration was estimated to be 30 days. The age of the oldest examined individual was 240 days.
    [Show full text]
  • Annotated Checklist of the Marine Flora and Fauna of the Kermadec Islands Marine Reserve and Northern Kermadec Ridge, New Zealand
    www.aucklandmuseum.com Annotated checklist of the marine flora and fauna of the Kermadec Islands Marine Reserve and northern Kermadec Ridge, New Zealand Clinton A.J. Duffy Department of Conservation & Auckland War Memorial Museum Shane T. Ahyong Australian Museum & University of New South Wales Abstract At least 2086 species from 729 families are reported from the insular shelf and upper slope of the Kermadec Islands Marine Reserve and north Kermadec Ridge. The best known groups are benthic Foraminifera, benthic macroalgae, Cnidaria, Mollusca, Crustacea, Bryozoa, Echinodermata, fishes and sea birds. However knowledge of the region’s biota remains superficial and even amongst these groups new species records are commonplace. Bacteria, most planktonic groups, sessile invertebrates (particularly Porifera and Ascidiacea), infaunal and interstitial invertebrates, and parasites are largely unstudied. INTRODUCTION is a relatively large, shallow area (50–500 m depth) of complex topography located c. 105 km southwest of The Kermadec Islands are located between 636 km L’Esperance Rock in the northern part of the Central (L’Esperance and Havre Rocks) and 800 km (Raoul domain. Volcanism in this and the Southern domain is Island) NNE of New Zealand. They are large, active located west of the ridge (Smith & Price 2006). South volcanoes that rise more than 1000 m above the Kermadec of 33.3° S the ridge crest is largely located below 1000 Ridge (Ewart et al. 1977; Smith & Price 2006). The oldest m depth, eventually dipping below the sediments of the known shallow water marine sedimentary sequences Raukumara Basin at more than 2400 m depth (Smith & reported from the Kermadec Islands date from the early Price 2006).
    [Show full text]