Functional Niche Partitioning in Herbivorous Coral Reef Fishes
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Pacific Plate Biogeography, with Special Reference to Shorefishes
Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. -
Estimates of Sponge Consumption Rates on an Indo-Pacific Reef
Vol. 672: 123–140, 2021 MARINE ECOLOGY PROGRESS SERIES Published August 19 https://doi.org/10.3354/meps13786 Mar Ecol Prog Ser Estimates of sponge consumption rates on an Indo-Pacific reef Charlotte Mortimer1, Matthew Dunn2, Abdul Haris3, Jamaluddin Jompa3, James Bell1,* 1School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand 2The National Institute of Water and Atmospheric Research (NIWA), Wellington 6021, New Zealand 3Universitas Hasanuddin, Department of Marine Science, Makassar 90245, Indonesia ABSTRACT: Determining predator diets is essential for understanding the strength of top-down processes and how they cascade through food webs. This is especially important for sponges, key members of benthic communities, whose dominance has increased in recent years on some coral reefs. However, the diversity of spongivorous fishes and the sponges they consume are relatively unknown. Here, we estimated sponge consumption by spongivorous fishes in the Wakatobi Marine National Park, Indonesia. We deployed cameras to identify fish biting at the dominant reef sponge Xestospongia spp. and then used gut content analysis and fish abundance estimates to quantify sponge consumption. In total, 33 species from 10 families of reef fish were identified taking bites from Xestospongia spp.; however, the 2 most prolific sponge-grazers, Ctenochaetus binotatus and Chaetodon kleinii, had no sponge in their guts, showing that for some fish, bites on sponge surfaces are not reliable evidence of sponge consumption. Gut contents indicated that Pygoplites diacanthus was an obligate spongivore, while Pomacanthus imperator, P. xanthometo- pon, Zanclus cornutus and Siganus punctatus regularly consumed sponges. Sponge consumption by these 5 spongivores was estimated at 46.6 ± 18.3 g sponge 1000 m−2 d−1. -
Trait Decoupling Promotes Evolutionary Diversification of The
Trait decoupling promotes evolutionary diversification of the trophic and acoustic system of damselfishes rspb.royalsocietypublishing.org Bruno Fre´de´rich1, Damien Olivier1, Glenn Litsios2,3, Michael E. Alfaro4 and Eric Parmentier1 1Laboratoire de Morphologie Fonctionnelle et Evolutive, Applied and Fundamental Fish Research Center, Universite´ de Lie`ge, 4000 Lie`ge, Belgium 2Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland Research 3Swiss Institute of Bioinformatics, Ge´nopode, Quartier Sorge, 1015 Lausanne, Switzerland 4Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA Cite this article: Fre´de´rich B, Olivier D, Litsios G, Alfaro ME, Parmentier E. 2014 Trait decou- Trait decoupling, wherein evolutionary release of constraints permits special- pling promotes evolutionary diversification of ization of formerly integrated structures, represents a major conceptual the trophic and acoustic system of damsel- framework for interpreting patterns of organismal diversity. However, few fishes. Proc. R. Soc. B 281: 20141047. empirical tests of this hypothesis exist. A central prediction, that the tempo of morphological evolution and ecological diversification should increase http://dx.doi.org/10.1098/rspb.2014.1047 following decoupling events, remains inadequately tested. In damselfishes (Pomacentridae), a ceratomandibular ligament links the hyoid bar and lower jaws, coupling two main morphofunctional units directly involved in both feeding and sound production. Here, we test the decoupling hypothesis Received: 2 May 2014 by examining the evolutionary consequences of the loss of the ceratomandib- Accepted: 9 June 2014 ular ligament in multiple damselfish lineages. As predicted, we find that rates of morphological evolution of trophic structures increased following the loss of the ligament. -
The Genome of the Gulf Pipefish Enables Understanding of Evolutionary Innovations C
Small et al. Genome Biology (2016) 17:258 DOI 10.1186/s13059-016-1126-6 RESEARCH Open Access The genome of the Gulf pipefish enables understanding of evolutionary innovations C. M. Small1†, S. Bassham1†, J. Catchen1,2†, A. Amores3, A. M. Fuiten1, R. S. Brown1,4, A. G. Jones5 and W. A. Cresko1* Abstract Background: Evolutionary origins of derived morphologies ultimately stem from changes in protein structure, gene regulation, and gene content. A well-assembled, annotated reference genome is a central resource for pursuing these molecular phenomena underlying phenotypic evolution. We explored the genome of the Gulf pipefish (Syngnathus scovelli), which belongs to family Syngnathidae (pipefishes, seahorses, and seadragons). These fishes have dramatically derived bodies and a remarkable novelty among vertebrates, the male brood pouch. Results: We produce a reference genome, condensed into chromosomes, for the Gulf pipefish. Gene losses and other changes have occurred in pipefish hox and dlx clusters and in the tbx and pitx gene families, candidate mechanisms for the evolution of syngnathid traits, including an elongated axis and the loss of ribs, pelvic fins, and teeth. We measure gene expression changes in pregnant versus non-pregnant brood pouch tissue and characterize the genomic organization of duplicated metalloprotease genes (patristacins) recruited into the function of this novel structure. Phylogenetic inference using ultraconserved sequences provides an alternative hypothesis for the relationship between orders Syngnathiformes and Scombriformes. Comparisons of chromosome structure among percomorphs show that chromosome number in a pipefish ancestor became reduced via chromosomal fusions. Conclusions: The collected findings from this first syngnathid reference genome open a window into the genomic underpinnings of highly derived morphologies, demonstrating that de novo production of high quality and useful reference genomes is within reach of even small research groups. -
Reef Fishes of the Bird's Head Peninsula, West
Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT). -
Fishery Ecosystem Plan for the Mariana Archipelago
Fishery Ecosystem Plan for the Mariana Archipelago Western Pacific Regional Fishery Management Council 1164 Bishop Street, Suite 1400 Honolulu, Hawaii 96813 December 1, 2005 Cover Artwork Courtesy of: So Jung Song Saipan Community School Susupe, Saipan, Northern Mariana Islands EXECUTIVE SUMMARY This Mariana Archipelago Fishery Ecosystem Plan (FEP) was developed by the Western Pacific Regional Fishery Management Council and represents the first step in an incremental and collaborative approach to implement ecosystem approaches to fishery management in Guam and the Commonwealth of the Northern Mariana Islands (CNMI). Since the 1980s, the Council has managed fisheries throughout the Western Pacific Region through separate species-based fishery management plans (FMP) – the Bottomfish and Seamount Groundfish FMP, the Crustaceans FMP, the Precious Corals FMP, the Coral Reef Ecosystems FMP and the Pelagic FMP. However, the Council is now moving towards an ecosystem-based approach to fisheries management and is restructuring its management framework from species-based FMPs to place-based FEPs. Recognizing that a comprehensive ecosystem approach to fisheries management must be initiated through an incremental, collaborative, and adaptive management process, a multi-step approach is being used to develop and implement the FEPs. To be successful, this will require increased understanding of a range of issues including, biological and trophic relationships, ecosystem indicators and models, and the ecological effects of non-fishing activities on the marine environment. This FEP, in conjunction with the Council's American Samoa Archipelago, Hawaii Archipelago, Pacific Remote Island Areas and Pacific Pelagic FEPs, reorganizes and amends the Council's existing Bottomfish and Seamount Groundfish, Coral Reef Ecosystems, Crustaceans, Precious Corals and Pelagic Fishery Management Plans. -
Monitoring Functional Groups of Herbivorous Reef Fishes As Indicators of Coral Reef Resilience a Practical Guide for Coral Reef Managers in the Asia Pacifi C Region
Monitoring Functional Groups of Herbivorous Reef Fishes as Indicators of Coral Reef Resilience A practical guide for coral reef managers in the Asia Pacifi c Region Alison L. Green and David R. Bellwood IUCN RESILIENCE SCIENCE GROUP WORKING PAPER SERIES - NO 7 IUCN Global Marine Programme Founded in 1958, IUCN (the International Union for the Conservation of Nature) brings together states, government agencies and a diverse range of non-governmental organizations in a unique world partnership: over 100 members in all, spread across some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. The IUCN Global Marine Programme provides vital linkages for the Union and its members to all the IUCN activities that deal with marine issues, including projects and initiatives of the Regional offices and the six IUCN Commissions. The IUCN Global Marine Programme works on issues such as integrated coastal and marine management, fisheries, marine protected areas, large marine ecosystems, coral reefs, marine invasives and protection of high and deep seas. The Nature Conservancy The mission of The Nature Conservancy is to preserve the plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive. The Conservancy launched the Global Marine Initiative in 2002 to protect and restore the most resilient examples of ocean and coastal ecosystems in ways that benefit marine life, local communities and economies. -
Reef Fishes of the Bird's Head Peninsula, West Papua, Indonesia
Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT). -
Benthic Habitats and Biodiversity of Dampier and Montebello Marine
CSIRO OCEANS & ATMOSPHERE Benthic habitats and biodiversity of the Dampier and Montebello Australian Marine Parks Edited by: John Keesing, CSIRO Oceans and Atmosphere Research March 2019 ISBN 978-1-4863-1225-2 Print 978-1-4863-1226-9 On-line Contributors The following people contributed to this study. Affiliation is CSIRO unless otherwise stated. WAM = Western Australia Museum, MV = Museum of Victoria, DPIRD = Department of Primary Industries and Regional Development Study design and operational execution: John Keesing, Nick Mortimer, Stephen Newman (DPIRD), Roland Pitcher, Keith Sainsbury (SainsSolutions), Joanna Strzelecki, Corey Wakefield (DPIRD), John Wakeford (Fishing Untangled), Alan Williams Field work: Belinda Alvarez, Dion Boddington (DPIRD), Monika Bryce, Susan Cheers, Brett Chrisafulli (DPIRD), Frances Cooke, Frank Coman, Christopher Dowling (DPIRD), Gary Fry, Cristiano Giordani (Universidad de Antioquia, Medellín, Colombia), Alastair Graham, Mark Green, Qingxi Han (Ningbo University, China), John Keesing, Peter Karuso (Macquarie University), Matt Lansdell, Maylene Loo, Hector Lozano‐Montes, Huabin Mao (Chinese Academy of Sciences), Margaret Miller, Nick Mortimer, James McLaughlin, Amy Nau, Kate Naughton (MV), Tracee Nguyen, Camilla Novaglio, John Pogonoski, Keith Sainsbury (SainsSolutions), Craig Skepper (DPIRD), Joanna Strzelecki, Tonya Van Der Velde, Alan Williams Taxonomy and contributions to Chapter 4: Belinda Alvarez, Sharon Appleyard, Monika Bryce, Alastair Graham, Qingxi Han (Ningbo University, China), Glad Hansen (WAM), -
Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S. -
Changes in the Spear Fishery of Herbivores Associated with Closed Grouper Season in Palau, Micronesia
bs_bs_banner Animal Conservation. Print ISSN 1367-9430 Changes in the spear fishery of herbivores associated with closed grouper season in Palau, Micronesia S. Bejarano Chavarro1, P. J. Mumby1 & Y. Golbuu2 1 Marine Spatial Ecology Lab, University of Queensland, St Lucia Campus, Brisbane, Qld, Australia 2 Palau International Coral Reef Center, Koror, Palau Keywords Abstract coral reefs; herbivores; spearfishing; Micronesia; Palau; seasonal closures. Several species of coral reef herbivorous fish and groupers (Serranidae) are among the main targets of Micronesian spearfishers. Since 1994, a closed season (April– Correspondence July) protects spawning aggregations of five grouper species in Palau, and, Sonia Bejarano Chavarro, Central Caribbean although this regulation may affect fishers targeting behaviour towards herbivores Marine Institute, Little Cayman Research and increase their catch levels, the extent of these effects was previously unknown. Centre, North Coast Road, P.O. Box 37, This study conducted market surveys and interviews to examine if the closed Little Cayman KY3-2501, Cayman Islands. grouper season in 2009 had any effect on herbivore spearfishing catches, or caused Phone: (345) 948 1094 changes in the targeting behaviour of fishers. Catch volumes of the most desirable Email: [email protected] herbivores were unaffected by the grouper season, but the catch per unit effort of herbivores regularly caught opportunistically (i.e. if seen) or avoided raised by 45% Editor: Trevor Branch during the grouper closure. The size composition of the catch of the bluespine Associate Editor: Olaf Jensen unicornfish Naso unicornis during the grouper closure was significantly skewed to smaller sized fish due to the high proportion of immature individuals. -
CORDIO Status Report 2008
! ! ! COASTAL OCEANS RESEARCH AND DEVELOPMENT IN THE INDIAN OCEAN Status Report 2008 ! ! "#$%&$'!()*$+%!,*%*$-).!$+/!! 0*1*'#23*+&!4+!&.*!! 5+/4$+!()*$+! ! "#$#%&!'()*+#!,--.! ! EDITORS: DAVID OBURA, JERKER TAMELANDER & OLOF LINDEN ! COASTAL OCEANS RESEARCH AND DEVELOPMENT IN THE INDIAN OCEAN SSStatusStatus Report 2008 ©2008 CORDIO and the Authors ISBN 91-973959-5-1 Published by: COASTAL OCEANS RESEARCH AND DEVELOPMENT IN THE INDIAN OCEAN CORDIO East Africa #9 Kibaki Flats P.O.BOX 10135 Mombasa 80101 KENYA Layout/production: Boniface Munywoki, Sander D. den Haring Printed in Dubai 2008 by : M&M Graphics Citation: Obura, D.O., Tamelander, J., & Linden, O. (Eds) (2008) Ten years after bleaching – facing the consequences of climate change in the Indian Ocean. CORDIO Status Report 2008. CORDIO (Coastal Oceans Research and Development in the Indian Ocean)/Sida-SAREC. Mombasa. http//:www.cordioea.org. 489 pp. Cover photo credits: front – Jerker Tamelander; back – Jerker Tamelander, David Obura !"#$%"#&' Coral reefs and tropical Small Island States are among aspects and their relevance to management and policy the most vulnerable of the planet’s ecosystems and approaches to education and community-based societies to climate change. Since the coral bleaching activities. event in 1998 the Indian Ocean has had repeated The Seychelles is acutely aware of the vulnerability reminders of the specter of climate change and other of its coastline, marine and terrestrial habitats and planetary-scale events – cyclones and floods in population to climate change. With limited land area Mozambique and South Asia, repeated droughts in and high dependence on coastal resources we are East Africa, the tsunami of 2004 affecting Asian and indeed at the forefront of efforts to combat the island states.