The Evolutionary History of Sawtail Surgeonfishes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Estado Actual Y Monitoreo De Las Áreas Arrecifales En El Pacífico De
PASO PACÍFICO NICARAGUA Proyecto ATN/ME-13732-NI ARTURO AYALA BOCOS Estado actual y monitoreo de las áreas arrecifales en el Pacífico de Nicaragua 2015 VERSIÓN: 01 PÁGINA 1 de 62 Managua, octubre de 2015. PASO PACÍFICO NICARAGUA Proyecto ATN/ME-13732-NI ARTURO AYALA BOCOS Elaborado por: Arturo Ayala Bocos Fecha de Elaboración 5/11/2015 Revisado por: Para uso del Proyecto Fecha de Revisión 12/10/2015 Aprobado por: Para uso del Proyecto Fecha de Aprobación 12/10/2015 CUADRO DE REVISIONES VERSIÓN: 01 PÁGINA 2 de 62 PASO PACÍFICO NICARAGUA Proyecto ATN/ME-13732-NI ARTURO AYALA BOCOS VERSIÓN: 01 PÁGINA 3 de 62 PASO PACÍFICO NICARAGUA Proyecto ATN/ME-13732-NI ARTURO AYALA BOCOS Tabla de contenido i. Introducción ................................................................................................................................ 8 ii. Antecedentes .............................................................................................................................. 1 iii. Objetivo general .......................................................................................................................... 3 iv. Objetivos específicos ................................................................................................................... 3 v. Área de estudio ........................................................................................................................... 4 6.1 Composición íctica de los arrecifes ............................................................................................ -
Pacific Plate Biogeography, with Special Reference to Shorefishes
Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. -
Fishes from Complex a Offerings of Templo Mayor of Tenochtitlan (Mexico City, Mexico)
Archaeofauna 27 (2018): 21-36 Fishes from Complex A offerings of Templo Mayor of Tenochtitlan (Mexico City, Mexico) ANA FABIOLA GUZMÁN Subdirección de laboratorios y Apoyo Académico, Instituto Nacional de Antropología e Historia, Moneda 16, Col. Centro, Ciudad de México, CP 06060, México, e-mail: [email protected], and Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Ciudad de México, CP 11340, México. (Received 1 September 2016; Revised 25 January 2017; Accepted 10 February 2017) RESUMEN: El presente trabajo aborda los restos de peces encontrados en las once ofrendas que integran el Complejo A, depositadas alrededor del Templo Mayor de Tenochtitlán, el cual fuera el principal edificio ceremonial de la cultura mexica. El estudio de más de 35,000 restos muestra que se usaron 391 individuos de 63 especies y 35 familias. Siete especies fueron particularmen- te importantes por la cantidad de individuos y su frecuencia de uso, aunque el único atributo en común a las 11 ofrendas, es el pez sierra (Pristis). Sólo fueron ofrendados peces marinos, predominando las formas del Atlántico. La mayoría de los peces fueron depositados con una preparación taxidérmica para eliminar la columna vertebral. Las ofrendas colocadas en el relleno constructivo fueron marcadamente menos diversas respecto de las otras ofrendas colocadas en cistas. Aunque se pudieron relacionar algunas especies mencionadas por Sahagún con las ofren- dadas, las fuentes etnohistóricas proporcionan poca información de los peces y su uso, de ahí la importancia de un apropiado rescate y estudio de los restos de peces como fuente primaria y casi exclusiva de las relaciones entre el hombre mesoamericano y este recurso. -
Genomic, Ecological, and Morphological Approaches to Investigating Species Limits: a Case Study in Modern Taxonomy from Tropical Eastern Pacific Surgeonfishes
Received: 28 November 2018 | Revised: 13 February 2019 | Accepted: 13 February 2019 DOI: 10.1002/ece3.5029 ORIGINAL RESEARCH Genomic, ecological, and morphological approaches to investigating species limits: A case study in modern taxonomy from Tropical Eastern Pacific surgeonfishes William B. Ludt1 | Moisés A. Bernal2 | Erica Kenworthy3 | Eva Salas4 | Prosanta Chakrabarty3 1National Museum of Natural History, Smithsonian Institution, Abstract Washington, District of Columbia A wide variety of species are distinguished by slight color variations. However, mo- 2 Department of Biological Sciences, 109 lecular analyses have repeatedly demonstrated that coloration does not always cor- Cooke Hall, State University of New York at Buffalo, Buffalo, New York respond to distinct evolutionary histories between closely related groups, suggesting 3Ichthyology Section, 119 Foster Hall, that this trait is labile and can be misleading for species identification. In the present Museum of Natural Science, Department of Biological Sciences, Louisiana State study, we analyze the evolutionary history of sister species of Prionurus surgeon- University, Baton Rouge, Louisiana fishes in the Tropical Eastern Pacific (TEP), which are distinguished by the presence 4 FISHBIO, Santa Cruz, California or absence of dark spots on their body. We examined the species limits in this system Correspondence using comparative specimen‐based approaches, a mitochondrial gene (COI), more William B. Ludt, National Museum of than 800 nuclear loci (Ultraconserved Elements), and abiotic niche comparisons. The Natural History, Smithsonian Institution, Washington, DC. results indicate there is a complete overlap of meristic counts and morphometric Email: [email protected] measurements between the two species. Further, we detected multiple individuals Funding information with intermediate spotting patterns suggesting that coloration is not diagnostic. -
Larvae of the Moorish Idol, Zanclus Cornutus, Including a Comparison with Other Larval Acanthuroids
BULLETIN OF MARINE SCIENCE. 40(3): 494-511. 1987 CORAL REEF PAPER LARVAE OF THE MOORISH IDOL, ZANCLUS CORNUTUS, INCLUDING A COMPARISON WITH OTHER LARVAL ACANTHUROIDS G. David Johnson and Betsy B. Washington ABSTRACT The larvae of Zane/us carnutus are described and illustrated based on one postflexion and several preflexion specimens. In addition to general morphology and pigmentation, bony ornamentation ofthe head bones and other osteological features are described in detail. Head bones and the associated ornamentation are illustrated for larval Zane/us, Siganus. Luvarus and Nasa. These and other aspects of the morphology of larval acanthuroids are compared and discussed within the context of a phylogenetic hypothesis proposed in other current work. Larval characters corroborate the monophyly of the Acanthuroidei and the phyletic sequence, Siganidae, Luvaridae, Zanc1idae, Acanthuridae. The Acanthuridae is represented by three distinct larval forms. The moorish idol, Zane/us cornutus (Linnaeus), Family Zanclidae, occurs in tropical waters of the Indo-Pacific and eastern Pacific. Like the closely related Acanthuridae, adult Zane/us are reef-associated fishes, but the young are spe- cialized for a relatively prolonged pelagic existence. The specialized pelagic pre- juvenile is termed the "acronurus" stage, and, at least in acanthurids, may reach a length of 60 mm or more before settling (Leis and Rennis, 1983). Strasburg (1962) briefly described 13.4 and 16.0-mm SL specimens ofthe monotypic Zan- e/us and illustrated the larger specimens. Eggs, preflexion larvae and small post- flexion larvae of Zane/us have not been described (Leis and Richards, 1984). The primary purposes of this paper are to describe a 9.S-mm SL postflexion larva of Zane/us and to compare its morphology to that of postflexion larvae of other acanthuroids in a phylogenetic context. -
Fishery Ecosystem Plan for the Mariana Archipelago
Fishery Ecosystem Plan for the Mariana Archipelago Western Pacific Regional Fishery Management Council 1164 Bishop Street, Suite 1400 Honolulu, Hawaii 96813 December 1, 2005 Cover Artwork Courtesy of: So Jung Song Saipan Community School Susupe, Saipan, Northern Mariana Islands EXECUTIVE SUMMARY This Mariana Archipelago Fishery Ecosystem Plan (FEP) was developed by the Western Pacific Regional Fishery Management Council and represents the first step in an incremental and collaborative approach to implement ecosystem approaches to fishery management in Guam and the Commonwealth of the Northern Mariana Islands (CNMI). Since the 1980s, the Council has managed fisheries throughout the Western Pacific Region through separate species-based fishery management plans (FMP) – the Bottomfish and Seamount Groundfish FMP, the Crustaceans FMP, the Precious Corals FMP, the Coral Reef Ecosystems FMP and the Pelagic FMP. However, the Council is now moving towards an ecosystem-based approach to fisheries management and is restructuring its management framework from species-based FMPs to place-based FEPs. Recognizing that a comprehensive ecosystem approach to fisheries management must be initiated through an incremental, collaborative, and adaptive management process, a multi-step approach is being used to develop and implement the FEPs. To be successful, this will require increased understanding of a range of issues including, biological and trophic relationships, ecosystem indicators and models, and the ecological effects of non-fishing activities on the marine environment. This FEP, in conjunction with the Council's American Samoa Archipelago, Hawaii Archipelago, Pacific Remote Island Areas and Pacific Pelagic FEPs, reorganizes and amends the Council's existing Bottomfish and Seamount Groundfish, Coral Reef Ecosystems, Crustaceans, Precious Corals and Pelagic Fishery Management Plans. -
Monitoring Functional Groups of Herbivorous Reef Fishes As Indicators of Coral Reef Resilience a Practical Guide for Coral Reef Managers in the Asia Pacifi C Region
Monitoring Functional Groups of Herbivorous Reef Fishes as Indicators of Coral Reef Resilience A practical guide for coral reef managers in the Asia Pacifi c Region Alison L. Green and David R. Bellwood IUCN RESILIENCE SCIENCE GROUP WORKING PAPER SERIES - NO 7 IUCN Global Marine Programme Founded in 1958, IUCN (the International Union for the Conservation of Nature) brings together states, government agencies and a diverse range of non-governmental organizations in a unique world partnership: over 100 members in all, spread across some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. The IUCN Global Marine Programme provides vital linkages for the Union and its members to all the IUCN activities that deal with marine issues, including projects and initiatives of the Regional offices and the six IUCN Commissions. The IUCN Global Marine Programme works on issues such as integrated coastal and marine management, fisheries, marine protected areas, large marine ecosystems, coral reefs, marine invasives and protection of high and deep seas. The Nature Conservancy The mission of The Nature Conservancy is to preserve the plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive. The Conservancy launched the Global Marine Initiative in 2002 to protect and restore the most resilient examples of ocean and coastal ecosystems in ways that benefit marine life, local communities and economies. -
Venom Evolution Widespread in Fishes: a Phylogenetic Road Map for the Bioprospecting of Piscine Venoms
Journal of Heredity 2006:97(3):206–217 ª The American Genetic Association. 2006. All rights reserved. doi:10.1093/jhered/esj034 For permissions, please email: [email protected]. Advance Access publication June 1, 2006 Venom Evolution Widespread in Fishes: A Phylogenetic Road Map for the Bioprospecting of Piscine Venoms WILLIAM LEO SMITH AND WARD C. WHEELER From the Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027 (Leo Smith); Division of Vertebrate Zoology (Ichthyology), American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Leo Smith); and Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Wheeler). Address correspondence to W. L. Smith at the address above, or e-mail: [email protected]. Abstract Knowledge of evolutionary relationships or phylogeny allows for effective predictions about the unstudied characteristics of species. These include the presence and biological activity of an organism’s venoms. To date, most venom bioprospecting has focused on snakes, resulting in six stroke and cancer treatment drugs that are nearing U.S. Food and Drug Administration review. Fishes, however, with thousands of venoms, represent an untapped resource of natural products. The first step in- volved in the efficient bioprospecting of these compounds is a phylogeny of venomous fishes. Here, we show the results of such an analysis and provide the first explicit suborder-level phylogeny for spiny-rayed fishes. The results, based on ;1.1 million aligned base pairs, suggest that, in contrast to previous estimates of 200 venomous fishes, .1,200 fishes in 12 clades should be presumed venomous. -
Essential Fish Habitat Assessment Revised Final Report
MARIANA ISLANDS TRAINING AND TESTING ESSENTIAL FISH HABITAT ASSESSMENT FINAL REPORT MAY 2014 Submitted By: Commander,, United States Pacific Fleet Department of the Navy 250 Makalapa Drive Pearl Harbor,, Hawaii 96860-3131 Mariana Islands Training and Testing Final Report Essential Fish Habitat Assessment LIST OF ACRONYMS AND ABBREVIATIONS µPa micropascal(s) EIS Environmental Impact Statement μPa2-s micropascal squared second EMATT Expendable Mobile ASW Training Target A-A Air-to-Air EOD Explosive Ordnance Disposal AAV Amphibious Assault Vehicle EW Electronic Warfare A-S Air-to-Surface EW OPS Electronic Warfare Operations AAW Anti-Air Warfare EXTORP Exercise Torpedo ac. acre(s) F Fahrenheit ACM Air Combat Maneuver FDM Farallon de Medinilla ADEX Air Defense Exercise FEP Fishery Ecosystem Plan AG airgun FFG Frigate AIC Air Intercept Control FIREX Fire Support Exercise ALMDS Airborne Laser Mine Detection System FLAREX Flare Exercise AMNS Airborne Mine Neutralization System fm fathom(s) AMW Amphibious Warfare FMC Fishery Management Council AS submarine tender FMP Fishery Management Plan ASUW Anti-Surface Warfare F.R. Federal Register ASW Anti-Submarine Warfare ft. foot/feet 2 BaCrO4 barium chromate ft. square foot/feet BAMS Broad Area Maritime Surveillance G gauss BMUS Bottomfish Management Unit Species GUNEX Gunnery Exercise BOMBEX Bombing Exercise h depth C Celsius ha hectare(s) C.F.R. Code of Federal Regulations HAPC Habitat Area of Particular Concern CG cruiser HF High-Frequency CHAFFEX Chaff Exercise Hg(CNO)2 Fulminate of Mercury CHCRT Currently Harvested Coral Reef Taxa HRC Hawaii Range Complex cm centimeter(s) Hz Hertz CMUS Crustacean Management Unit Species IEER Improved Extended Echo Ranging CNMI Commonwealth of the Northern Mariana Islands IMPASS Integrated Maritime Portable Acoustic Scoring COMNAVMAR Commander, Naval Forces Marianas and Simulation CRE Coral Reef Ecosystems in. -
Anilocra Prionuri (Isopoda: Cymothoidae), a Marine Fish Ectoparasite, from the Northern Ryukyu Islands, Southern Japan, with a Note on a Skin Wound of Infected Fish
Crustacean Research 2018 Vol.47: 29–33 ©Carcinological Society of Japan. doi: 10.18353/crustacea.47.0_29 Anilocra prionuri (Isopoda: Cymothoidae), a marine fish ectoparasite, from the northern Ryukyu Islands, southern Japan, with a note on a skin wound of infected fish Kazuya Nagasawa, Masaya Fujimoto Abstract.̶ Anilocra prionuri Williams & Bunkley-Williams, 1986, is reported based on a female specimen collected from the skin below the nostril of a scalpel saw- tail, Prionurus scalprum Valenciennes, 1835, in the southern East China Sea off Kuchinoerabu-jima Island, one of the northern Ryukyu Islands, southern Japan. Anilo- cra prionuri was previously reported only from off the Pacific coast of central Hon- shu, Japan, but the present collection extends the geographical distribution range of the species from central Honshu southwest to the northern Ryukyu Islands and repre- sents its first record from the East China Sea. The fish had a wound with heavily dam- aged epidermis at the attachment site of A. prionuri. It was a rare parasite of P. scal- prum at the collection site. Key words: cymothoid, new locality, pathology The Ryukyu Islands are a chain of islands & Smit, 2017), also occur off the southern extending ca. 1,100 km from Kyushu, the Ryukyu Islands, these species have not been southernmost major island of Japan, south- reported from the region but other Japanese westward to Taiwan. The cymothoid fauna of waters (see Williams & Bunkley-Williams, the southern Ryukyu Islands has been well 1986). Contrary to the well-studied cymothoid studied, currently consisting of six nominal fauna of the southern Ryukyu Islands, that of species: Cterissa sakaii Bunkley-Williams & the northern Ryukyu Islands is poorly under- Williams, 1986; Cymothoa pulchra Lanchester, stood with only one record of C. -
Prionurus Chrysurus, a New Species of Surgeonfish (Acanth- Uridae) from Cool Upwelled Seas of Southern Indonesia
J. South Asian Nat. Hist., ISSN 1022-0828. May, 2001. Vol. 5, No. 2, pp. 159-165,11 figs., 1 tab. © 2001, Wildlife Heritage Trust of Sri Lanka, 95 Cotta Road, Colombo 8, Sri Lanka. Prionurus chrysurus, a new species of surgeonfish (Acanth- uridae) from cool upwelled seas of southern Indonesia JohnE. Randall* * Bishop Museum, 1525 Bernice St., Honolulu, Hawaii 96817-2704, USA; e-mail: [email protected] Abstract Prionurus chrysurus is described as a new species of acanthurid fish from two specimens taken inshore off eastern Bali. It is also known from a videotape taken of a school off Komodo. It is distinctive in having IX, 23 dorsal rays, III, 22 anal rays, 17 pectoral rays, 8-10 keeled midlateral bony plates posteriorly on the body, numerous small bony plates dorsoposteriorly on the body, and in color: brown with narrow orange-red bars on side of body and a yellow caudal fin. It has been observed only inshore in areas of upwelling where the sea temperature averaged about 23°C. This species is believed to be a glacial relic that had a broader distribution during an ice age but is now restricted to areas of upwelling. Introduction The genus Prionurus of the surgeonfish family synonyms). Gill (1862) described the fourth valid Acanthuridae is known from three western Pacific species as P. punctatus from Cabo San Lucas, Baja species, two from the eastern Pacific, and one from California, and Ogilby (1887) the fifth, P. maculatus, the Gulf of Guinea in the eastern Atlantic. All are from New South Wales. Blache and Rossignol (1964) shallow-water fishes, moderate to large size for the named the one Atlantic species of the genus, P. -
Scatophagus Tetracanthus (African Scat)
African Scat (Scatophagus tetracanthus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, June 2014 Revised, December 2017 Web Version, 11/4/2019 Image: D. H. Eccles (1992). Creative Commons (CC BY-NC 3.0). Available: http://www.fishbase.org/photos/PicturesSummary.php?StartRow=0&ID=7915&what=species&T otRec=3. (December 2017). 1 Native Range, and Status in the United States Native Range From Froese and Pauly (2017): “Indo-West Pacific: Somalia [Sommer et al. 1996] and Kenya to South Africa, Australia and Papua New Guinea. Also found in the rivers and lagoons of East Africa.” 1 According to Froese and Pauly (2019), S. tetracanthus is native to Kenya, Madagascar, Mozambique, Somalia, South Africa, Tanzania, Australia, and Papua New Guinea. Ganaden and Lavapie-Gonzales (1999) include S. tetracanthus in their list of marine fishes of the Philippines. Status in the United States This species has not been reported as introduced or established in the wild in the United States. It is in trade in the United States: From Aqua-Imports (2019): “AFRICAN TIGER SCAT (SCATOPHAGUS TETRACANTHUS) $224.99” “A true rarity for collectors and serious hobbyists, these fish are only rarely imported and availability is extremely seasonal.” According to their website, Aqua-Imports is based in Boulder, Colorado, and only ships within the continental United States. Means of Introductions in the United States This species has not been reported as introduced or established in the wild in the United States. Remarks From Eschmeyer et al. (2017): “Chaetodon tetracanthus […] Current Status: Valid as Scatophagus tetracanthus” Froese and Pauly (2017) list the following invalid species as synonyms for Scatophagus tetracanthus: Chaetodon tetracanthus, Cacodoxus tetracanthus, Ephippus tetracanthus, Scatophagus fasciatus.