Tapia Grimaldo, Julissa (2013) Aquatic Plant Diversity in Hardwater Streams Across Global and Local Scales

Total Page:16

File Type:pdf, Size:1020Kb

Tapia Grimaldo, Julissa (2013) Aquatic Plant Diversity in Hardwater Streams Across Global and Local Scales Tapia Grimaldo, Julissa (2013) Aquatic plant diversity in hardwater streams across global and local scales. PhD thesis, University of Glasgow. http://theses.gla.ac.uk/4577 Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] “Aquatic plant diversity in hardwater streams across global and local scales” Julissa Tapia Grimaldo This thesis has been submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy. University of Glasgow in collaboration with the Centre for Ecology and Hydrology (Natural Environmental Research Council). May 2013 1 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognize that its copyright rests with its author and due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. And God said, “Behold, I have given you every plant yielding seed which is upon the face of all the earth, and every tree with seed in its fruit; you shall have them for food. And to every beast of the earth, and to every bird of the air, and to everything that creeps on the earth, everything that has the breath of life, I have given every green plant for food.” And it was so. (Gen 1:29-30). 2 ABSTRACT “Aquatic plant diversity in hardwater streams across global and local scales” The variety of life forms within a given species, ecosystem, biome or planet is known as biodiversity. Biodiversity can also be referred as species diversity and species richness. Understanding the drivers of biodiversity requires an understanding of intertwined biotic and abiotic factors, including climate patterns over the earth, primary productivity processes, e.g. photosynthetic pathways which change with climate and latitude; latitude, geology, soil science, ecology and behavioural science. Diversity of living organisms is not evenly distributed; instead it differs significantly across the globe as well as within regions. The aim of my study is to try to understand the diversity patterns of aquatic plants, using both information derived from previous studies and by collecting new data across the globe, allowing me to examine the underlying mechanisms driving biodiversity at regional and local scales. Both geographical location and local environmental factors were found to contribute to variation in macrophyte assemblage and alpha diversity (i.e. number of species in a locality), with important roles being played by local biotic interactions and abiotic environmental factors. Overall aquatic plants, or macrophytes, play a significant role in the ecology of large numbers of freshwater ecosystems worldwide. For the purpose of my study only calcareous steams, located in both temperate and tropical/subtropical regions were included. Such streams are common in catchments throughout the world because approximately one fifth of the earth’s surface is underlain by carbonate-containing rock. Overall my findings in Chapter 3 provide evidence that there is a high variation in macrophyte assemblages of calcareous rivers across the different countries included in my study, broadly agreeing with information from the literature. I found two large groups based on species assemblages across the different countries included, i.e. a subtropical/tropical and a temperate group. As demonstrated in different parts of Chapter 4, it is possible to identify different 3 diversity responses of macrophyte functional groups to environmental conditions, at local scale, in hardwater rivers. Width and flow were found to be significantly affecting the distribution patterns of diversity of free-floating and floating-leaved rooted species, whereas diversity of marginal species was significantly related to alkalinity and width, and floating-leaved rooted diversity was significantly related to alkalinity. Last but not least submerged species were related to shading. Chapter 5 shows that variation in richness and community structure for hardwater river macrophytes can be partly explained by environmental variation relative to spatial processes in the British Isles (temperate scenario) and in Zambia (tropical scenario). Among the environmental variables, climatic ones explained a great part of species richness and composition distribution for the British Isles. Conversely in Zambia spatial processes made the greatest contribution to variation in hardwater river macrophyte species richness and community structure. Moreover Chapter 6 illustrates how macrophyte species richness, measured as alpha-diversity in calcareous rivers, was at best only very weakly attributed to latitudinal gradient. This is most likely due to the effect of other physical, chemical and biotic variables overriding broader-scale influences on species richness, at more local scales. 4 LIST OF CONTENTS Copyright statement…………….…………………………………………………………………………..….2 Abstract.………………………………………………………………………………………………………………..3 List of contents……………………………………………………………………………………………………..5 List of figures………………………………………………………………………………………………….…….7 List of tables………………………………………………………….…..………………………………….……10 Acknowledments…………………………………………………………………………………………………..12 Declaration……………………………………………………………………………………………………………14 CHAPTER 1 . THE ROLE OF AQUATIC PLANTS IN THEIR ENVIRONMENT. ............ 15 1.1 THE IMPORTANCE OF AQUATIC PLANTS IN ECOSYSTEMS ................................... 15 1.2 MACROPHYTE DISTRIBUTION ............................................................ 16 1.3 BIODIVERSITY OF AQUATIC MACROPHYTES ON A TAXONOMIC BASIS ........................ 17 1.4 BIODIVERSITY OF AQUATIC MACROPHYTES ON A HABITAT BASIS ........................... 18 1.5 PLANT ECOLOGY OF HARDWATER RIVERS ................................................ 23 1.6 OVERALL AIMS .......................................................................... 24 CHAPTER 2 . METHODS ..................................................................... 26 2.1 INTRODUCTION ......................................................................... 26 2.2 SITE SELECTION ......................................................................... 27 2.3 VEGETATION ........................................................................... 54 2.3.1 Sampling method .............................................................. 54 2.3.2 Taxonomy ....................................................................... 55 2.4 WATER PHYSICO-CHEMISTRY ............................................................ 57 2.5 PRE-EXISTING DATA ..................................................................... 58 2.6 SAMPLING EFFORT ...................................................................... 59 2.7 DATA PROCESSING AND ANALYSIS ....................................................... 66 CHAPTER 3 . AQUATIC MACROPHYTE ASSEMBLAGES OF HARDWATER RIVERS AT GLOBAL AND NATIONAL SCALES .......................................................... 68 3.1 INTRODUCTION ..................................................................... 68 3.2 METHODS .............................................................................. 71 3.2.1 Analysis procedures............................................................ 71 3.3 RESULTS ............................................................................... 74 3.4 DISCUSSION .......................................................................... 108 CHAPTER 4 . THE INFLUENCE OF LOCAL ENVIRONMENTAL VARIABLES ON HARDWATER RIVER MACROPHYTE FUNCTIONAL GROUPS ........................... 113 4.1 INTRODUCTION ....................................................................... 113 4.2 METHODS ............................................................................ 123 4.3 ANALYSIS PROCEDURES ............................................................... 123 5 4.4 RESULTS ............................................................................. 125 4.5 DISCUSSION .......................................................................... 136 CHAPTER 5 . TESTING REGIONAL VERSUS LOCAL FACTORS AS DRIVERS OF CALCAREOUS RIVER DIVERSITY OF MACROPHYTES: CASE STUDY OF THE BRITISH ISLES AND ZAMBIA ......................................................................... 143 5.1 INTRODUCTION ................................................................... 143 5.2 GENERAL METHODS ............................................................... 148 5.2.1 Data analysis .................................................................. 148 5.3 RESULTS ............................................................................ 149 5.4 DISCUSSION .......................................................................... 164 CHAPTER 6 . A MACROECOLOGICAL APPROACH TO STUDY AQUATIC PLANT DISTRIBUTION PATTERNS IN CALCAREOUS RIVERS: A LATITUDINAL GRADIENT ANALYSIS. .................................................................................. 170 6.1 INTRODUCTION ................................................................... 170 6.2 METHODS ...........................................................................
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Macrophyte Structure in Lotic-Lentic Habitats from Brazilian Pantanal
    Oecologia Australis 16(4): 782-796, Dezembro 2012 http://dx.doi.org/10.4257/oeco.2012.1604.05 MACROPHYTE STRUCTURE IN LOTIC-LENTIC HABITATS FROM BRAZILIAN PANTANAL Gisele Catian2*, Flávia Maria Leme2, Augusto Francener2, Fábia Silva de Carvalho2, Vitor Simão Galletti3, Arnildo Pott4, Vali Joana Pott4, Edna Scremin-Dias4 & Geraldo Alves Damasceno-Junior4 2Master, Program in Plant Biology, Federal University of Mato Grosso do Sul, Center for Biological Sciences and Health, Biology Department. Cidade Universitária, s/no – Caixa Postal: 549 – CEP: 79070-900, Campo Grande, MS, Brazil. 3Master, Program in Ecology and Conservation, Federal University of Mato Grosso do Sul, Center for Biological Sciences and Health, Biology Department. Cidade Universitária, s/no – Caixa Postal: 549 – CEP: 79070-900, Campo Grande, MS, Brazil. 4Lecturer, Program in Plant Biology, Federal University of Mato Grosso do Sul, Center for Biological Sciences and Health, Biology Department. Cidade Universitária, s/no – Caixa Postal: 549 – CEP: 79070-900, Campo Grande, MS, Brazil. E-mail: [email protected]*, [email protected], [email protected], [email protected], [email protected], arnildo. [email protected], [email protected], [email protected], [email protected] ABSTRACT The goal of this study was to compare the vegetation structure of macrophytes in an anabranch-lake system. Sampling was carried out at flood in three types of aquatic vegetation, (wild-rice, floating meadow and Polygonum bank) in anabranch Bonfim (lotic) and in lake Mandioré (lentic) in plots along transects, to estimate the percent coverage and record life forms of species. We collected 59 species in 50 genera and 28 families.
    [Show full text]
  • SPRING 2017 a Publication of the Florida Aquatic Plant Management Society
    SPRING 2017 A Publication of the Florida Aquatic Plant Management Society Spring 2017 Aquatics | 1 2017-2018 Board of Directors Officers President Andy Fuhrman Allstate Resource Management, Inc. 6900 SW 21st Court, Unit #9 Davie, FL 33317 954-382-9766 [email protected] SPRING 2017 AVolume Publication of 39, the Florida Number Aquatic Plant 1 Management Society President-Elect Keith Mangus Applied Aquatic Management (O) 863.533.8882 [email protected] Past-President Angie Huebner Invasive Plant Management 701 San Marco Blvd Jacksonville, FL 32207-8175 904-894-3648 [email protected] Secretary Stephanie Walters Winfield Solutions 2601 W. Orange Blossom Trail, Apopka, FL 32712 407-466-8360, 407-884-0111 fax [email protected] Treasurer COVER Jennifer Myers Applied Aquatic Management, Inc. Red root floater (Phyllanthus P.O. Box 1469, Eagle Lake, FL 33839-1469 863-533-8882, 863-534-3322 fax fluitans) plants covering a backwater [email protected] area of the Peace River. Photo by Editor Karen Brown Michael Sowinski, Florida Fish and University of Florida/IFAS Center for Aquatic & Invasive Plants Wildlife Conservation Commission. 7922 NW 71st Street Gainesville FL 32653 See story on page 5. 352-273-3667 [email protected] Directors Third Year Linda Defree Aquatic Vegetation Control Contents 1860 W. 10th St., Riviera Beach, FL 33404 561-845-5525 4 From the President [email protected] BY ANDY FUHRMAN Kelli Gladding SePRO Corporation 38 Cunnimham Dr., New Smyrna Beach, FL 32168 5 Red Root Floater Update 386-409-1175 BY MICHAEL SOWINSKI [email protected] Jeremy Slade United Phosphorus 8 In Memorium—Gary R.
    [Show full text]
  • Parallel Loss of Introns in the ABCB1 Gene in Angiosperms Rajiv K
    Parvathaneni et al. BMC Evolutionary Biology (2017) 17:238 DOI 10.1186/s12862-017-1077-x RESEARCHARTICLE Open Access Parallel loss of introns in the ABCB1 gene in angiosperms Rajiv K. Parvathaneni1,5†, Victoria L. DeLeo2,6†, John J. Spiekerman3, Debkanta Chakraborty4 and Katrien M. Devos1,3,4* Abstract Background: The presence of non-coding introns is a characteristic feature of most eukaryotic genes. While the size of the introns, number of introns per gene and the number of intron-containing genes can vary greatly between sequenced eukaryotic genomes, the structure of a gene with reference to intron presence and positions is typically conserved in closely related species. Unexpectedly, the ABCB1 (ATP-Binding Cassette Subfamily B Member 1) gene which encodes a P-glycoprotein and underlies dwarfing traits in maize (br2), sorghum (dw3) and pearl millet (d2) displayed considerable variation in intron composition. Results: An analysis of the ABCB1 genestructurein80angiospermsrevealedthatthenumberofintrons ranged from one to nine. All introns in ABCB1 underwent either a one-time loss (single loss in one lineage/ species) or multiple independent losses (parallel loss in two or more lineages/species) with the majority of losses occurring within the grass family. In contrast, the structure of the closest homolog to ABCB1, ABCB19, remained constant in the majority of angiosperms analyzed. Using known phylogenetic relationships within the grasses, we determined the ancestral branch-points where the losses occurred. Intron 7, the longest intron, was lost in only a single species, Mimulus guttatus, following duplication of ABCB1. Semiquantitative PCR showed that the M. guttatus ABCB1 gene copy without intron 7 had significantly lower transcript levels than the gene copy with intron 7.
    [Show full text]
  • Low Risk Aquarium and Pond Plants
    Plant Identification Guide Low-risk aquarium and pond plants Planting these in your pond or aquarium is environmentally-friendly. Glossostigma elatinoides, image © Sonia Frimmel. One of the biggest threats to New Zealand’s waterbodies is the establishment and proliferation of weeds. The majority of New Zealand’s current aquatic weeds started out as aquarium and pond plants. To reduce the occurrence of new weeds becoming established in waterbodies this guide has been prepared to encourage the use of aquarium and pond plants that pose minimal risk to waterbodies. Guide prepared by Dr John Clayton, Paula Reeves, Paul Champion and Tracey Edwards, National Centre of Aquatic Biodiversity and Biosecurity, NIWA with funding from the Department of Conservation. The guides will be updated on a regular basis and will be available on the NIWA website: www.niwa.co.nz/ncabb/tools. Key to plant life-forms Sprawling marginal plants. Grow across the ground and out over water. Pond plants Short turf-like plants. Grow in shallow water on the edges of ponds and foreground of aquariums. Includes very small plants (up to 2-3 cm in height). Most species can grow both submerged (usually more erect) and emergent. Pond and aquarium plants Tall emergent plants. Can grow in water depths up to 2 m deep depending on the species. Usually tall reed-like plants but sometimes with broad leaves. Ideal for deeper ponds. Pond plants Free floating plants. These plants grow on the water surface and are not anchored to banks or bottom substrates. Pond and aquarium plants Floating-leaved plants. Water lily-type plants.
    [Show full text]
  • Inorganic Constituents of Two Bolbitis Fern Species from South Western Ghats
    Kale RJLBPCS 2015 www.rjlbpcs.com Life Science Informatics Publications Original Research Article DOI - 10.26479/2015.0104.01 INORGANIC CONSTITUENTS OF TWO BOLBITIS FERN SPECIES FROM SOUTH WESTERN GHATS Manisha V Kale Department of Botany, Jaysingpur College, Jaysingpur 416 101, Maharashtra, India ABSTRACT: Objective: The estimation of inorganic constituents in two Bolbitis species of ferns such as B. virens, B. presliana collected from different localities of South Western Ghats. Methods: For the estimation of inorganic constituents an acid digest method from the oven dried plant material was used as well as the solution was used for estimation of elements & these elements were estimated by using atomic absorption spectrophotometer. Results: In this two Bolbitis species studied Ca, Na and K substances are discover to be determined than the other elements. Mg contents are associated with their chlorophyll contents. Fe, Mn, Zn and Cu substances are in trace quantity as these are the micronutrients. Conclusion: The two Bolbitis species are particular members of the genus are often grown as immersed water plants in aquaria terrestrial but there is no definite correlation amongst these constituents. This may be due to the seasonal variation, age of the plant at the time of collection, nature of soil. KEYWORDS: Inorganic constituents, Bolbitis species, Ca, Na, K, Fe, Mn, Zn and Cu substances. *Corresponding Author: Dr. Manisha V Kale Ph.D. Department of Botany, Jaysingpur College, Jaysingpur 416 101, Maharashtra, India *Email Address: [email protected] 1.INTRODUCTION Pteridophytes also recognized as ferns and Fern-allies as well as it’s the midpoint of fascination to botanist, horticulturist and fern lovers since earliest times.
    [Show full text]
  • Guidelines for Using the Checklist
    Guidelines for using the checklist Cymbopogon excavatus (Hochst.) Stapf ex Burtt Davy N 9900720 Synonyms: Andropogon excavatus Hochst. 47 Common names: Breëblaarterpentyngras A; Broad-leaved turpentine grass E; Breitblättriges Pfeffergras G; dukwa, heng’ge, kamakama (-si) J Life form: perennial Abundance: uncommon to locally common Habitat: various Distribution: southern Africa Notes: said to smell of turpentine hence common name E2 Uses: used as a thatching grass E3 Cited specimen: Giess 3152 Reference: 37; 47 Botanical Name: The grasses are arranged in alphabetical or- Rukwangali R der according to the currently accepted botanical names. This Shishambyu Sh publication updates the list in Craven (1999). Silozi L Thimbukushu T Status: The following icons indicate the present known status of the grass in Namibia: Life form: This indicates if the plant is generally an annual or G Endemic—occurs only within the political boundaries of perennial and in certain cases whether the plant occurs in water Namibia. as a hydrophyte. = Near endemic—occurs in Namibia and immediate sur- rounding areas in neighbouring countries. Abundance: The frequency of occurrence according to her- N Endemic to southern Africa—occurs more widely within barium holdings of specimens at WIND and PRE is indicated political boundaries of southern Africa. here. 7 Naturalised—not indigenous, but growing naturally. < Cultivated. Habitat: The general environment in which the grasses are % Escapee—a grass that is not indigenous to Namibia and found, is indicated here according to Namibian records. This grows naturally under favourable conditions, but there are should be considered preliminary information because much usually only a few isolated individuals.
    [Show full text]
  • Alien Vs. Native Plants in a Patagonian Wetland: Elemental Ratios and Ecosystem Stoichiometric Impacts
    Biol Invasions (2012) 14:179–189 DOI 10.1007/s10530-011-9995-9 ORIGINAL PAPER Alien vs. native plants in a Patagonian wetland: elemental ratios and ecosystem stoichiometric impacts Florencia Cuassolo • Esteban Balseiro • Beatriz Modenutti Received: 19 November 2010 / Accepted: 4 April 2011 / Published online: 19 April 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Wetlands are subject to invasion by exotic of the invasive plant can modify the stoichiometry of plant species, especially during the dry season when the environment. they resemble terrestrial systems; therefore, terrestrial plants could exploit this situation to colonize this Keywords Invasion ecology Á Wetland Á environment. We analyzed P. anserina invading Mycorrhizal fungi Á Stoichiometric strategies Á Patagonian wetlands in terms of elemental ratios that Leachates Á Dissolved organic matter release would modify wetland stoichiometry due to organic matter inputs. We studied the elemental relationship (carbon/nitrogen/phosphorus) of P. anserina in com- parison with native emergent macrophytes (Eleochar- is pachicarpa and Carex aematorrhyncha). These Introduction plant species are common and dominant in the wetland. Additionally, we analyzed the presence of Wetlands are characterized by seasonal fluctuations mycorrhizal fungi in the roots and their proportion of in water level, with alternating wet and dry periods. root infection. Our study reveals that the invasive These ecosystems are especially vulnerable to alien species presented nutrient (especially phosphorus) weed invasions (Zedler and Kercher 2004); therefore, allocation in roots and differences in mycorrhizal many wetland plants fit the definition of invasive infection, with a predominance of arbuscular mycor- plants, which are species or strains that rapidly rhiza, compared with native species.
    [Show full text]
  • Stalmans Banhine.Qxd
    Plant communities, wetlands and landscapes of the Parque Nacional de Banhine, Moçambique M. STALMANS and M. WISHART Stalmans, M. and M. Wishart. 2005. Plant communities, wetlands and landscapes of the Parque Nacional de Banhine, Moçambique. Koedoe 48(2): 43–58. Pretoria. ISSN 0075- 6458. The Parque Nacional de Banhine (Banhine National Park) was proclaimed during 1972. It covers 600 000 ha in Moçambique to the east of the Limpopo River. Until recently, this park, originally and popularly known as the ‘Serengeti of Moçambique’, was char- acterised by neglect and illegal hunting that caused the demise of most of its large wildlife. New initiatives aimed at rehabilitating the park have been launched within the scope of the Greater Limpopo Transfrontier Park. A vegetation map was required as input to its management plan. The major objectives of the study were firstly to under- stand the environmental determinants of the vegetation, secondly to identify and describe individual plant communities in terms of species composition and structure and thirdly to delineate landscapes in terms of their plant community and wetland make-up, environmental determinants and distribution. A combination of fieldwork and analysis of LANDSAT satellite imagery was used. A total of 115 sample plots were surveyed. Another 222 sample points were briefly assessed from the air to establish the extent of the different landscapes. The ordination results clearly indicate the overriding impor- tance of moisture availability in determining vegetation composition in the Parque Nacional de Banhine. Eleven distinct plant communities were recognised. They are described in terms of their structure, composition and distribution. These plant commu- nities have strong affinities to a number of communities found in the Limpopo Nation- al Park to the west.
    [Show full text]
  • RESPOSTAS MORFOLÓGICAS DE Ludwigia Helminthorrhiza (MART.) H.HARA (ONAGRACEAE) À SAZONALIDADE HÍDRICA DO PANTANAL
    Oecologia Australis 23(4):874-890, 2019 https://doi.org/10.4257/oeco.2019.2304.12 RESPOSTAS MORFOLÓGICAS DE Ludwigia helminthorrhiza (MART.) H.HARA (ONAGRACEAE) À SAZONALIDADE HÍDRICA DO PANTANAL Maria Aparecida Cavichioli de Santana1*, Gisele Catian2,3 & Edna Scremin-Dias3 1 Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, Faculdade de Ciências Biológicas, Cidade Universitária, s/n, Caixa Postal 549, CEP 79070-900, Campo Grande, MS, Brasil. 2 Universidade Federal de Mato Grosso, Departamento de Ciências Biológicas, Cidade Universitária, Av. dos Estudantes, 5055, CEP 78735-901, Rondonópolis, MT, Brasil. 3 Universidade Federal de Mato Grosso do Sul, Instituto de Biociências, Programa de Pós-Graduação Biologia Vegetal, Cidade Universitária, s/n, CP 549, CEP 79070-900, Campo Grande, MS, Brasil. E-mails: [email protected] (*autor correspondente); [email protected]; [email protected] Resumo: Em planícies de inundação, espécies de macrófitas respondem à sazonalidade hídrica por meio de alteração morfológica. Órgãos vegetativos de Ludwigia helminthorrhiza (Myrtales, Onagraceae) podem desenvolver-se em ambiente aquático e em solo livre de inundação. Acreditamos que órgãos vegetativos de plantas do segundo ambiente não apresentem adaptações típicas (e.g., aerênquima, redução de lignificação, desenvolvimento de raízes adventícias) de ambientes aquáticos. Mediu-se o comprimento, largura e espessura do limbo; espessura do caule; comprimento dos entrenós; e comprimento das raízes de indivíduos dos dois ambientes. Analisou-se a anatomia das porções medianas dos órgãos e quantificou-se os estômatos. Órgãos vegetativos foram maiores nas plantas desenvolvidas na água; densidade de estômatos semelhante nas faces do limbo nos dois ambientes, entretanto maior no solo seco.
    [Show full text]
  • Echinodorus Tenellus (Martius) Buchenau Dwarf Burhead
    New England Plant Conservation Program Echinodorus tenellus (Martius) Buchenau Dwarf burhead Conservation and Research Plan for New England Prepared by: Donald J. Padgett, Ph.D. Department of Biological Sciences Bridgewater State College Bridgewater, Massachusetts 02325 For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, May 2003 1 SUMMARY The dwarf burhead, Echinodorus tenellus (Mart.) Buch. (Alismataceae) is a small, aquatic herb of freshwater ponds. It occurs in shallow water or on sandy or muddy pond shores that experience seasonal drawdown, where it is most evident in the fall months. Overall, the species is widely distributed, but is rare (or only historical or extirpated) in almost every United States state in its range. This species has been documented from only four stations in New England, the northern limits of its range, with occurrences in Connecticut and Massachusetts. Connecticut possesses New England’s only extant population. The species is ranked globally as G3 (rare or uncommon), regionally by Flora Conservanda as Division 1 (globally rare) and at the regional State levels as endangered (Connecticut) or historic/presumed extirpated (Massachusetts). Threats to this species include alterations to the natural water level fluctuations, sedimentation, invasive species and their control, and off-road vehicle traffic. The conservation objectives for dwarf burhead are to maintain, protect, and study the species at its current site, while attempting to relocate historic occurrences. Habitat management, regular surveys, and reproductive biology research will be utilized to meet the overall conservation objectives.
    [Show full text]
  • INTRODUCTION Echinodorus Is a Genus That Belongs to Alismataceae
    Naturalia (eISSN:2177 -0727) Rio Claro, v.3 3, p. 8-19 , 20 10 Year season on epicuticular waxes in leaves of Echinodorus grandiflorus (Cham. & Schltdl.) Micheli (Alismataceae) Walderez Moreira Joaquim 2, Elizabeth Orika Ono 3, Maria Luiza Faria Salatino4, João Domingos Rodrigues 3 2 Universidade do Vale do Paraíba - UNIVAP, 11244-000, São José dos Campos, SP, Brazil. 3 Instituto de Biociências, UNESP - Univ Estadual Paulista, Departamento de Botânica, , C.P. 510, 18618-000, Botucatu, SP, Brazil. E-mail: [email protected] 4 Universidade de São Paulo – USP, Departamento de Botânica, Instituto de Biociências, C.P. 11461, 05422-970, São Paulo, SP, Brazil. ABSTRACT The paper aimed to study the influence of different seasons of the year on epicuticular waxes in Echinodorus grandiflorus plants and to analyze the profile of n- alkanes in epicuticular waxes. The experiment used adventitious plantlets from the flower stem and approximately 10-cm-tall adventitious plantlets with an average of 4 to 5 leaves, planted in 10-liter pots containing a 40% soil, 40% rice hulls, and 20% vermicompost mixture. E. grandiflorus presented an intermediary profile between terrestrial and aquatic plants, with a main homologue C27 (heptacosane), followed by C25 (pentacosane) and C29 (nonacosane). The studies presented here provide information about ecological aspects and chemical and mechanical defenses of Echinodorus grandiflorus. Key words: phenology, n-alkanes, aquatic plants RESUMO Este trabalho objetivou estudar a influência das estações do ano sobre o conteúdo de ceras epicuticulares e a análise dos perfis dos n-alcanos da cera em folhas de Echinodorus grandiflorus . No experimento foram utilizadas mudas adventícias com aproximadamente 10 cm de altura e 4 a 5 folhas, que foram plantadas em vasos de 10 L, tendo como substrato a mistura de 40% de terra, 40% de palha de arroz e 20% de húmus de minhoca.
    [Show full text]