INTRODUCTION Echinodorus Is a Genus That Belongs to Alismataceae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ethnobotany and Popular Culture in the Use of Plants in Settlements on the Southern Edge of Southern Pantanal Mato Grosso
193 Original Article ETHNOBOTANY AND POPULAR CULTURE IN THE USE OF PLANTS IN SETTLEMENTS ON THE SOUTHERN EDGE OF SOUTHERN PANTANAL MATO GROSSO ETNOBÔTANICA E A CULTURA POPULAR NO USO DE PLANTAS EM ASSENTAMENTOS NA BORDA SUL DO PANTANAL SUL-MATO-GROSSENSE Jorge de Souza PINTO 1,2 ; Ademir Kleber Morbeck de OLIVEIRA 3; Valtecir FERNANDES 2; Rosemary MATIAS 3 1. Federal University of Mato Grosso do Sul, Campus do Pantanal, Campo Grande, MS, Brazil; 2. Postgraduate Program in Environment and Regional Development, University Anhanguera-Uniderp, Campo Grande, MS, Brazil; 3. University Anhanguera- Uniderp, Campo Grande, MS, Brazil. [email protected] ABSTRACT: Popular culture and its relationship with plants has been the subject of scientific studies and brought significant contributions to science. In this assessment, developed in two settlements in Corumbá and Ladário, Mato Grosso do Sul, was evaluated the use of plants for medicinal purposes. A structured questionnaire was administered to 10 raizeiros , residents of the area, asking which plants were used by them, their methods of preparation and therapeutic indications. Fifty-five plants from 28 families were catalogued among plants native to the region and of exotic and/or external origin, only 40% were native. The predominant form of use is tea (41 citations), followed by infusion (16 citations). The most used parts are the leaves, with 43 citations, followed by flowers (6 citations). There is a predominance of the type of problem for which the plant is used, with 12 citations for problems in the respiratory system, followed by eight for kidney and liver problems and seven for the stomach. -
Aquatic Plant Propagation 8X5 Final Back-Up2a
Aquatic Plant Propagation Rooted floating leaved and Copyright ã 2003 marginal/emergent plants Use and reproduction of this information is not authorized for any purpose without prior written permission of the copyright holder. All information contained in this publication which is not original material has been included under fair use provisions, not being used for any commercial uses and contributors have been given full biographical credit. Compiled for the Colorado Water Garden Society by Rebecca Nash and Cyndie Thomas using the following sources: Nash, Helen, and Steve Stroupe, Aquatic Plants and Their Cultivation, New York: Sterling Publishing Company, Inc. 1998 Hartmann, Hudson T. and Dale E.Kester, Plant Propagation Principles and Practices, New Jersey: Prentice-Hall, Inc. 1983 Slocum, Perry D. and Peter Robinson, with Frances Perry, Water Gardening Water Lilies and Lotuses, Portland: Timberline Press 1996 Cover drawing an adaptation from illustrations presented by IFAS Center for Aquatic Plants, University of Florida, Gainsville. Colorado Water Garden Society 8 Aquatic Plant Propagation Planting Methods Tropical Water Lilies Propagation is the making of more plants to keep a plant variety going. Propagation Mexicana/upright type rhizomes should be prepared for and Upright type is also done to improve the health of a plant. Dividing and repotting a plant planting in the same way as other rhizomes. Placement of stimulates growth. Most aquatic plants need dividing every two years, some more Mexicana Hardy the plant in the new pot will be centered, with the growing tip above the soil level. often. Water Lilies. Planting Methods for small growing “eyes” Common Types of Propagation Small growing “eyes” should be potted in 4” pots in the same manner as larger rhizomes and grown to flowering size. -
Echinodorus Tenellus (Martius) Buchenau Dwarf Burhead
New England Plant Conservation Program Echinodorus tenellus (Martius) Buchenau Dwarf burhead Conservation and Research Plan for New England Prepared by: Donald J. Padgett, Ph.D. Department of Biological Sciences Bridgewater State College Bridgewater, Massachusetts 02325 For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, May 2003 1 SUMMARY The dwarf burhead, Echinodorus tenellus (Mart.) Buch. (Alismataceae) is a small, aquatic herb of freshwater ponds. It occurs in shallow water or on sandy or muddy pond shores that experience seasonal drawdown, where it is most evident in the fall months. Overall, the species is widely distributed, but is rare (or only historical or extirpated) in almost every United States state in its range. This species has been documented from only four stations in New England, the northern limits of its range, with occurrences in Connecticut and Massachusetts. Connecticut possesses New England’s only extant population. The species is ranked globally as G3 (rare or uncommon), regionally by Flora Conservanda as Division 1 (globally rare) and at the regional State levels as endangered (Connecticut) or historic/presumed extirpated (Massachusetts). Threats to this species include alterations to the natural water level fluctuations, sedimentation, invasive species and their control, and off-road vehicle traffic. The conservation objectives for dwarf burhead are to maintain, protect, and study the species at its current site, while attempting to relocate historic occurrences. Habitat management, regular surveys, and reproductive biology research will be utilized to meet the overall conservation objectives. -
Echinodorus Uruguayensis Arechav
Weed Risk Assessment for United States Echinodorus uruguayensis Arechav. Department of Agriculture (Alismataceae) – Uruguay sword plant Animal and Plant Health Inspection Service April 8, 2013 Version 1 Habit of E. uruguayensis in an aquarium (source: http://www.aquariumfish.co.za/pisces/plant_detail.php?details=10). Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Echinodorus uruguayensis Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use weed risk assessment (WRA)—specifically, the PPQ WRA model (Koop et al., 2012)—to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. Because the PPQ WRA model is geographically and climatically neutral, it can be used to evaluate the baseline invasive/weed potential of any plant species for the entire United States or for any area within it. -
From India with Implications for an East Gondwana Origin of Convolvulaceae
Paleocene Ipomoea (Convolvulaceae) from India with implications for an East Gondwana origin of Convolvulaceae Gaurav Srivastavaa, Rakesh C. Mehrotraa, and David L. Dilcherb,1 aBirbal Sahni Institute of Palaeosciences, Lucknow 226 007, India; and bDepartment of Geology, Indiana University, Bloomington, IN 47405 Contributed by David L. Dilcher, April 10, 2018 (sent for review January 17, 2018; reviewed by Nina Lucille Baghai-Riding and Gregory Retallack) The morning glory family, Convolvulaceae, is globally important in Materials and Methods medicine and food crops. The family has worldwide distribution in A collection of 200 angiosperm leaves has been made from the Tura For- a variety of habitats; however, its fossil record is very poorly mation exposed in Nangwalbibra (25° 26′ 47.4″ N; 90° 42′ 28.9″ E), East Garo documented. The current fossil record suggests an origin in North Hills District, Meghalaya (Fig. 1 A and B). Here we describe a fossil leaf America, which is in contrast to molecular data that indicate an morphotype based upon 17 specimens, 2 of which have counterparts. The East Gondwana origin. We report Ipomoea leaves from the late specimens are impressions/compressions. They were prepared with the help Paleocene (Thanetian; 58.7–55.8 million years ago) of India, which of a fine chisel and hammer and then photographed in natural low-angled was a part of East Gondwana during this time. This is the earliest light using a 10-megapixel digital camera (Canon SX110). An attempt was fossil record for both the family Convolvulaceae and the order made to extract cuticle with no success. -
T 1. Alismatales.Indd
Iheringia Série Botânica Museu de Ciências Naturais ISSN ON-LINE 2446-8231 Fundação Zoobotânica do Rio Grande do Sul Lista de Alismatales do estado de Mato Grosso do Sul, Brasil Vali Joana Pott1,3, Suzana Neves Moreira2, Ana Carolina Vitório Arantes1 & Arnildo Pott1 1,3Universidade Federal de Mato Grosso do Sul, Laboratório de Botânica, Herbário, Caixa Postal 549, CEP 79070-900, Campo Grande, MS, Brasil. [email protected] 2Universidade Federal de Minas Gerais, Departamento de Botânica, Avenida Antônio Carlos 6627, Pampulha, CEP 31270-901, Belo Horizonte, MG Recebido em 27.XI.2014 Aceito em 21.X.2015 DOI 10.21826/2446-8231201873s117 RESUMO – A presente lista de Alismatales engloba quatro famílias: Alismataceae, Araceae (Lemnoideae), Hydrocharitaceae e Potamogetonaceae. O estudo considerou coletas nos Herbários do Mato Grosso do Sul (CGMS, CPAP), além do R para Alismataceae. O número total de espécies mencionadas para o estado é de 41, sendo duas introduzidas (Egeria densa Planch. e Vallisneria spiralis L.), já citadas e coletadas no Mato Grosso do Sul. A família mais rica é Alismataceae, e o gênero mais numeroso Echinodorus Rich. ex Engelm. (12 espécies), ca. 24% do total. Echinodorus cordifolius (L.) Griseb. no Pantanal é uma ocorrência disjunta. Sagittaria planitiana G. Agostini é a primeira citação para o estado. Palavras-chave: Alismataceae, Araceae-Lemnoideae, Hydrocharitaceae, Potamogetonaceae ABSTRACT – Checklist of Alismatales of Mato Grosso do Sul state, Brazil. The present list contains Alismatales, with four families: Alismataceae, Araceae (Lemnoideae), Hydrocharitaceae and Potamogetonaceae. Our study included collections of the herbaria of Mato Grosso do Sul (CGMS, CPAP), beside R for Alismataceae. The total number of species cited for the state is 41, two being introduced (Egeria densa Planch. -
Alismataceae)
Acta Rer. Natur. Mus. Nat. Slov. Vol. LXIII Bratislava, 2017 NOTES ON SOME RATAJ’S NAMES IN THE GENUS ECHINODORUS (ALISMATACEAE) Jozef Somogyi Abstract: Notes on the nomenclature and taxonomy of some taxa of the genus Echinodorus described by Karel Rataj (1925–2014) are given. Many of them have lacked a type specimen and their supposed types have never been deposited in the herbarium PR, even if that was so stated in the protologues. Unfortunately, as the types are cited in the protologues, the names have to be treated as valid according to the Code. The specimens labelled as “holotypes” of the names E. africanus, E. gabrielii, E. janii, E. pseudohorizontalis, E. schlueteri, E. veronikae and E. viridis appeared in the herbarium PR only lately. However, none of these specimens can be considered as a holotype. The true holotypes of E. africanus and E. schlueteri have already existed before. The names E. gabrielii, E. heikobleheri, E. opacus, E. osiris, E. pseudohorizontalis and E. viridis are typified here. It is impossible to typify the names E. janii, E. multiflorus and E. veronikae. One previously published information on E. densinervis is corrected in the appendix of this article. Key words: Echinodorus, typification, nomenclature, taxonomy, Karel Rataj Abstrakt: Poznámky k niektorým Ratajovým menám v rode Echinodorus (Alismataceae). Mnohým druhom rodu Echinodorus, ktoré opísal Karel Rataj (1925 – 2014), chýbajú typové herbárové položky, aj keď v protológoch je uvedené, že boli deponované v herbári PR. Žiaľ, keďže tieto neexistujúce typy sú citované v protológoch, je nutné takto publikované mená považovať za platné v zmysle Kódu. -
Research, Society and Development, V. 9, N. 10, E8719109199, 2020 (CC
Research, Society and Development, v. 9, n. 10, e8719109199, 2020 (CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v9i10.9199 Characterization of the volatile compounds and anatomical features in commercial samples of Echinodorus plant species Caracterização dos compostos voláteis e características anatômicas em amostras comerciais de espécies de plantas Echinodorus Caracterización de compuestos volátiles y características anatómicas en muestras comerciales de especies de plantas Echinodorus Received: 10/10/2020 | Reviewed: 10/18/2020 | Accept: 10/21/2020 | Published: 10/23/2020 Hebert Vinícius Pereira ORCID: https://orcid.org/0000-0002-7893-7333 Centro Federal de Educação Tecnológica de Minas Gerais, Brazil E-mail: [email protected] Fernando Augusto Gouvêa Reis ORCID: https://orcid.org/0000-0002-32740-0850 Centro Federal de Educação Tecnológica de Minas Gerais, Brazil E-mail: [email protected] Ana Maria de Resende Machado* ORCID: https://orcid.org/0000-0002-1587-5024 Centro Federal de Educação Tecnológica de Minas Gerais, Brazil E-mail: [email protected] Andréa Rodrigues Marques ORCID: https://orcid.org/0000-0001-5658-3012 Centro Federal de Educação Tecnológica de Minas Gerais, Brazil E-mail: [email protected] Cleverson Fernando Garcia ORCID: https://orcid.org/0000-0001-9354-1401 Centro Federal de Educação Tecnológica de Minas Gerais, Brazil E-mail: [email protected] Fátima de Cássia Oliveira Gomes ORCID: https://orcid.org/0000-0001-7358-7154 Centro Federal de Educação Tecnológica de Minas Gerais, Brazil E-mail: [email protected] 1 Research, Society and Development, v. 9, n. 10, e8719109199, 2020 (CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v9i10.9199 David Lee Nelson ORCID: https://orcid.org/0000-0001-7435-3675 Universidade Federal dos Vales de Jequitinhonha e Mucuri, Brazil E-mail: [email protected] Abstract Echinodorus grandiflorus and Echinodorus macrophyllus are medicinal plants that are widely used in Brazilian folk medicine. -
O GÊNERO ECHINODORUS (ALISMATACEAE) NO DOMÍNIO DA CAATINGA BRASILEIRA1 Lígia Queiroz Matias1
O GÊNERO ECHINODORUS (ALISMATACEAE) NO DOMÍNIO DA CAATINGA BRASILEIRA1 Lígia Queiroz Matias1 RESUMO (O gênero Echinodorus (Alismataceae) do domínio da Caatinga brasileira) A família Alismataceae está representada por doze gêneros de plantas aquáticas. Existem apenas dois gêneros naturalmente encontrados na região neotropical: Echinodorus e Sagittaria. Este estudo analisa as espécies de Echinodorus do domínio da caatinga brasileira, uma região caracterizada pelo clima semi-árido e pelos sistemas aquáticos intermitentes. Foram identificados os seguintes táxons específicos e infra-específicos: E. tenellus, E. glandulosus, E. pubescens, E. subalatus subsp. subalatus, Echinodorus subalatus subsp. andrieuxii, E. palaefolius, E. macrophyllus subsp. scaber, E. grandiflorus subsp. aureus, E. reticulatus, E. lanceolatus e E. paniculatus. Descrições, observações, mapas de distribuição geográfica, ilustrações e a chave de identificação de espécies são apresentadas. Palavras-chave: Macrófita aquática, região semi-árida, lagoas temporárias, monocotiledôneas. ABSTRACT (The genus Echinodorus (Alismataceae) from Brazilian Caatinga dominium) The family Alismataceae comprises twelve genera of herbaceos aquatic plants. There are only two genera which are naturally found in neotropical regions. Echinodorus and Sagittaria. This study reports the Echinodorus species from Brazilian “caatinga” dominium, a region which is mainly characterized by semiarid climate and intermittent aquatic ecosystems. The following taxa have been identified: E. tenellus, E. glandulosus, -
Creeping Burhead (Echinodrus Cordifolius) Plant Fact Sheet
Plant Fact Sheet Weed information is also available from the PLANTS CREEPING BURHEAD Web site at http://plants.usda.gov. Please consult the Related Web Sites on the Plant Profile for this species for Echinodorus cordifolius further information. (L.) Griseb. Plant Symbol = ECCO3 Description and Adaptation Creeping burhead is a creeping annual or short-lived Contributed by: USDA NRCS Jamie L. Whitten Plant perennial. The leaves are broadly heart shaped, 2-7 Materials Center, Coffeeville, MS inches long and almost as wide. The principal veins are conspicuous and impressed on the upper surface of the leaf blade. The petioles are 4-20 inches long, enlarged and spongy towards the base. The flowering shoot (scape) can reach 3 feet or more in length; scapes are upright when young, often drooping and rooting at the tips to produce new plantlets. Numerous whorls of flowers with white petals and greenish centers are located along the scape. Flowering begins in June and continues until frost. The fruiting heads are round, bur like clusters of small brown seeds. The native range of the species is from Maryland south to Florida, west to Missouri and the panhandle of Texas. It is usually found growing in swamps, wet woodlands, marshes, and ditches. There are some indications that it prefers a slightly shaded location. Best growth is generally on wetland soils with fairly high organic matter. Figure 1 Creeping burhead Alternate Names None listed. Uses Creeping burhead is an attractive aquatic plant that is recommended for use in shallow ponds and pools. It may also be suitable for use in constructed wetlands. -
Plant Pathology Circular No. 144 Fla. Dept. Agr. & Consumer Serv. July
Plant Pathology Circular No. 144 Fla. Dept. Agr. & Consumer Serv. July 1974 Division of Plant Industry APHANOMYCES BLIGHT OF AMAZON SWORD PLANTS F. W. Zettler¹, and W. H. Ridings Florida is the leading supplier of aquarium plants in the United States. In 1968, this industry was conservatively valued at 2 million dollars (1). The amazon sword plant (Echinodorus brevipedicellatus Buch.) is considered to be the "queen of aquatics" and serves prominently as a center plant for large aquariums. The amazon sword plant and its relatives are susceptible to several diseases, few of which have been adequately described. One pathogenic fungus, Aphanomyces euteiches Drechs., in particular, can cause serious losses in commercial plantings. This fungus has been collected from several locations in Florida since 1970 when it was first encountered. HOST RANGE. The amazon sword plant appears to be the only aquarium plant sus- ceptible to this fungus (2). The following related species appear to be resistant: dwarf amazon sword (E. grisebachii Small), melon sword (E. longistylis Such.), ruffled sword (E. martii Micheli), broadleaf sword (Echinodorus 'Rangerii'), Sagittaria lorata Small, and S. sinensis Sims. The fungus (A. euteiches) is a serious pathogen of peas and other legumes in the North, but it has been recovered only from amazon sword plants in Florida. In laboratory experiments, however, this organism incited root rot and damping-off of pea, bean, cowpea, broadbean, beet, and radish seedlings (2). Fig. 1. Amazon sword plants infected with Aphanomyces euteiches: A) Submersed healthy (left) and infected (right) plants. B) Leaves with symptoms typical of early stages of blight; note the basal water-soaked tissues which ultimately become skeletonized. -
Tropical Aquatic Plants: Morphoanatomical Adaptations - Edna Scremin-Dias
TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol. I - Tropical Aquatic Plants: Morphoanatomical Adaptations - Edna Scremin-Dias TROPICAL AQUATIC PLANTS: MORPHOANATOMICAL ADAPTATIONS Edna Scremin-Dias Botany Laboratory, Biology Department, Federal University of Mato Grosso do Sul, Brazil Keywords: Wetland plants, aquatic macrophytes, life forms, submerged plants, emergent plants, amphibian plants, aquatic plant anatomy, aquatic plant morphology, Pantanal. Contents 1. Introduction and definition 2. Origin, distribution and diversity of aquatic plants 3. Life forms of aquatic plants 3.1. Submerged Plants 3.2 Floating Plants 3.3 Emergent Plants 3.4 Amphibian Plants 4. Morphological and anatomical adaptations 5. Organs structure – Morphology and anatomy 5.1. Submerged Leaves: Structure and Adaptations 5.2. Floating Leaves: Structure and Adaptations 5.3. Emergent Leaves: Structure and Adaptations 5.4. Aeriferous Chambers: Characteristics and Function 5.5. Stem: Morphology and Anatomy 5.6. Root: Morphology and Anatomy 6. Economic importance 7. Importance to preserve wetland and wetlands plants Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS Tropical ecosystems have a high diversity of environments, many of them with high seasonal influence. Tropical regions are richer in quantity and diversity of wetlands. Aquatic plants SAMPLEare widely distributed in theseCHAPTERS areas, represented by rivers, lakes, swamps, coastal lagoons, and others. These environments also occur in non tropical regions, but aquatic plant species diversity is lower than tropical regions. Colonization of bodies of water and wetland areas by aquatic plants was only possible due to the acquisition of certain evolutionary characteristics that enable them to live and reproduce in water. Aquatic plants have several habits, known as life forms that vary from emergent, floating-leaves, submerged free, submerged fixed, amphibian and epiphyte.