Formal Modeling and Verification of Train Control Systems

Total Page:16

File Type:pdf, Size:1020Kb

Formal Modeling and Verification of Train Control Systems N° d’ordre : 372 CENTRALE LILLE THÈSE Présentée en vue d’obtenir le grade de DOCTEUR En Spécialité : Automatique, Génie informatique, Traitement du signal et des images Par Yuchen XIE DOCTORAT DÉLIVRÉ PAR CENTRALE LILLE Titre de la thèse : Formal Modeling and Verification of Train Control Systems Modélisation et Vérification Formelles de Systèmes de Contrôle de Trains Soutenue le 14 Février 2019 devant le jury d’examen : Président, Rapporteur Jean-François PETIN, Professeur, Université de Lorraine Rapporteur Audine SUBIAS, Maître de Conférences HDR, INSA de Toulouse Examinateur Pascal BERRUET, Professeur, IUT de Lorient Examinateur Thomas BOURDEAUD'HUY, Maître de Conférences, Centrale Lille Directeur de thèse Armand TOGUYENI, Professeur, Centrale Lille Co-encadrante de thèse Manel KHLIF-BOUASSIDA, Maître de Conférences, Centrale Lille Thèse préparée au Centre de Recherche en Informatique, Signal et Automatique de Lille, CRIStAL, CNRS UMR 9189 Ecole Doctorale Sciences Pour l'Ingénieur (ED SPI 072) CONTENTS CONTENTS ....................................................................................................................... I LIST OF FIGURES ............................................................................................................ VII LIST OF TABLES .............................................................................................................. XI LIST OF TERMINOLOGIES .............................................................................................. XIII CHAPTER 1 INTRODUCTION ........................................................................................ 1 1.1 APPLICATION FRAMEWORK AND MOTIVATION ........................................................................ 1 1.1.1 Safety-critical Systems .......................................................................................... 1 1.1.2 Autonomous Trains .............................................................................................. 2 1.1.3 Difficulties and Current Situation of Applying Autonomous Trains ...................... 3 1.2 THEORETICAL FRAMEWORK ................................................................................................. 5 1.2.1 Modeling of Discrete Event System (DES) ............................................................ 5 1.2.2 Verification of Discrete Event System (DES) ......................................................... 5 1.3 PROBLEM STATEMENT ........................................................................................................ 6 1.4 CONTRIBUTION OF THE DISSERTATION ................................................................................... 8 1.4.1 Methodological Contributions .............................................................................. 8 1.4.2 Technical Contributions ........................................................................................ 9 1.4.3 Railway Control Applications .............................................................................. 10 1.5 ORGANIZATION OF THE DISSERTATION ................................................................................. 10 CHAPTER 2 RAILWAY SYSTEM AND TRAIN CONTROL .................................................. 11 2.1 INTRODUCTION TO CHAPTER 2 ........................................................................................... 11 2.2 TERMINOLOGY OF RAILWAY SYSTEMS .................................................................................. 11 2.2.1 Railway network structure ................................................................................. 11 2.2.1.1 Railway line ........................................................................................................... 11 2.2.1.2 Railway station and railway node ......................................................................... 12 2.2.2 Basic Railway Elements and Equipment ............................................................. 12 2.2.3 Train Detection, Blocks and Balise ..................................................................... 14 2.2.3.1 Train Detection and Track Circuit ......................................................................... 14 2.2.3.2 Railway Blocks ....................................................................................................... 15 2.2.3.3 Balise ..................................................................................................................... 16 2.3 TRAIN CONTROL SYSTEMS ................................................................................................. 17 2.3.1 Terminology of Train Control.............................................................................. 17 2.3.2 History of Train Control System Development ................................................... 18 2.4 AUTOMATIC TRAIN CONTROL (ATC) OF METRO SYSTEMS AND CBTC ....................................... 22 2.4.1 Metro Systems and Grades of Automation (GoA) .............................................. 22 2.4.2 Automatic Train Control (ATC) System ............................................................... 23 2.4.3 Communications-Based Train Control (CBTC) .................................................... 23 2.5 DEVELOPMENT TENDENCY OF TRAIN CONTROL SYSTEMS ......................................................... 25 2.5.1 Information transmission ................................................................................... 25 2.5.2 Onboard and trackside equipment ..................................................................... 25 i CONTENTS 2.5.3 Moving blocks ..................................................................................................... 25 2.5.4 Interoperability and fusion of different train control systems ........................... 26 2.6 ERTMS / ETCS .............................................................................................................. 27 2.6.1 Necessity of Developing and implementing ERTMS ........................................... 27 2.6.2 ERTMS Specifications and Legislation ................................................................ 28 2.6.3 ERTMS System Composition ............................................................................... 29 2.6.4 ETCS Levels and their Train Control Methods ..................................................... 30 2.7 CONCLUSION OF CHAPTER 2 .............................................................................................. 33 CHAPTER 3 STATE-OF-THE-ART FOR THE TRAIN CONTROL SYSTEM DEVELOPMENT ..... 35 3.1 INTRODUCTION TO CHAPTER 3 ........................................................................................... 35 3.2 REVIEW OF METHODS FOR TRAIN CONTROL SYSTEMS DEVELOPMENT ........................................ 35 3.2.1 Railway Safety Standards and Formal Methods ................................................ 35 3.2.1.1 Railway safety standards ...................................................................................... 35 3.2.1.2 Formal methods application in the railway industry ............................................ 37 3.2.2 Requirements Specification Methods ................................................................. 38 3.2.2.1 Requirement Modeling Methods and Tools ......................................................... 39 3.2.2.2 Requirements Verification and Validation ............................................................ 44 3.2.3 System Design Modeling .................................................................................... 46 3.2.3.1 System Structural Modeling.................................................................................. 47 3.2.3.2 System Behavior Modeling ................................................................................... 47 3.2.4 Implementation Methods ................................................................................... 49 3.2.5 Verification Methods and Tools ......................................................................... 51 3.2.5.1 Testing ................................................................................................................... 51 3.2.5.2 Simulation ............................................................................................................. 52 3.2.5.3 Model checking ..................................................................................................... 53 3.2.5.4 Theorem proving................................................................................................... 53 3.2.5.5 Equivalence checking ............................................................................................ 53 3.2.5.6 Abstract Interpretation and Invariant Method ..................................................... 54 3.2.5.7 Quantitative Analysis ............................................................................................ 54 3.2.5.8 Comparison of Verification and Validation Methods ........................................... 54 3.2.6 Whole lifecycle tools ........................................................................................... 55 3.2.6.1 Rodin Based on Event-B ........................................................................................ 55 3.2.6.2 SCADE Suite ........................................................................................................... 57 3.2.6.3 CPN Tools based on Petri nets .............................................................................. 57 3.2.6.4 RAISE development method ................................................................................
Recommended publications
  • ERTMS/ETCS Railway Signalling
    Appendix A ERTMS/ETCS Railway Signalling Salvatore Sabina, Fabio Poli and Nazelie Kassabian A.1 Interoperable Constituents The basic interoperability constituents in the Control-Command and Signalling Sub- systems are, respectively, defined in TableA.1 for the Control-Command and Sig- nalling On-board Subsystem [1] and TableA.2 for the Control-Command and Sig- nalling Trackside Subsystem [1]. The functions of basic interoperability constituents may be combined to form a group. This group is then defined by those functions and by its remaining exter- nal interfaces. If a group is formed in this way, it shall be considered as an inter- operability constituent. TableA.3 lists the groups of interoperability constituents of the Control-Command and Signalling On-board Subsystem [1]. TableA.4 lists the groups of interoperability constituents of the Control-Command and Signalling Trackside Subsystem [1]. S. Sabina (B) Ansaldo STS S.p.A, Via Paolo Mantovani 3-5, 16151 Genova, Italy e-mail: [email protected] F. Poli Ansaldo STS S.p.A, Via Ferrante Imparato 184, 80147 Napoli, Italy e-mail: [email protected] N. Kassabian Ansaldo STS S.p.A, Via Volvera 50, 10045 Piossasco Torino, Italy e-mail: [email protected] © Springer International Publishing AG, part of Springer Nature 2018 233 L. Lo Presti and S. Sabina (eds.), GNSS for Rail Transportation,PoliTO Springer Series, https://doi.org/10.1007/978-3-319-79084-8 234 Appendix A: ERTMS/ETCS Railway Signalling Table A.1 Basic interoperability constituents in the Control-Command
    [Show full text]
  • CONTRACT T-8000-1415 AUTOMATIC TRAIN CONTROL TECHNICAL SPECIFICATION THIS PAGE INTENTIONALLY LEFT BLANK Contents
    ATTACHMENT C PART 2 – ATC SYSTEM MARYLAND TRANSIT ADMINISTRATION CONTRACT T-8000-1415 AUTOMATIC TRAIN CONTROL TECHNICAL SPECIFICATION THIS PAGE INTENTIONALLY LEFT BLANK Contents 1 GENERAL REQUIREMENTS 2 COMMUNICATIONS BASED TRAIN CONTROL REQUIREMENTS 3 MAIN LINE AND STORAGE YARD SOLID STATE INTERLOCKING REQUIREMENTS 4 AUTOMATIC TRAIN SUPERVISION REQUIREMENTS 5 DATA COMMUNICATIONS SYSTEM REQUIREMENTS 6 AUXILIARY WAYSIDE EQUIPMENT REQUIREMENTS 7 ENVIRONMENTAL AND EMC 8 SYSTEM SAFETY REQUIREMENTS 9 RELIABILITY, AVAILABILITY, AND MAINTAINABILITY REQUIREMENTS 10 INSTALLATION CUTOVER AND CONSTRUCTION REQUIREMENTS 11 ATC TESTING 12 QUALITY ASSURANCE AND CONTROL 13 TECHNICAL SUPPORT 14 TRAINING Attachment C, Part 2, ATC System T-8000-1415 i September 2015 THIS PAGE INTENTIONALLY LEFT BLANK Attachment C, Part 2, ATC System T-8000-1415 ii September 2015 SECTION 1 GENERAL REQUIREMENTS Contents 1.1 GENERAL..................................................................................................................................1-1 1.2 PROJECT OBJECTIVES ...............................................................................................................1-2 1.2.1 PROVEN DESIGN......................................................................................................1-3 1.2.2 COMMISSIONING ON A REVENUE SYSTEM...............................................................1-3 1.2.3 DESIGN LIFE.............................................................................................................1-3 1.3 SCOPE OF WORK......................................................................................................................1-3
    [Show full text]
  • Report on Railway Accident with Freight Car Set That Rolled Uncontrolledly from Alnabru to Sydhavna on 24 March 2010
    Issued March 2011 REPORT JB 2011/03 REPORT ON RAILWAY ACCIDENT WITH FREIGHT CAR SET THAT ROLLED UNCONTROLLEDLY FROM ALNABRU TO SYDHAVNA ON 24 MARCH 2010 Accident Investigation Board Norway • P.O. Box 213, N-2001 Lillestrøm, Norway • Phone: + 47 63 89 63 00 • Fax: + 47 63 89 63 01 www.aibn.no • [email protected] This report has been translated into English and published by the AIBN to facilitate access by international readers. As accurate as the translation might be, the original Norwegian text takes precedence as the report of reference. The Accident Investigation Board has compiled this report for the sole purpose of improving railway safety. The object of any investigation is to identify faults or discrepancies which may endanger railway safety, whether or not these are causal factors in the accident, and to make safety recommendations. It is not the Board’s task to apportion blame or liability. Use of this report for any other purpose than for railway safety should be avoided. Photos: AIBN and Ruter As Accident Investigation Board Norway Page 2 TABLE OF CONTENTS NOTIFICATION OF THE ACCIDENT ............................................................................................. 4 SUMMARY ......................................................................................................................................... 4 1. INFORMATION ABOUT THE ACCIDENT ..................................................................... 6 1.1 Chain of events ...................................................................................................................
    [Show full text]
  • Road Level Crossing Protection Equipment
    Engineering Procedure Signalling CRN SM 013 ROAD LEVEL CROSSING PROTECTION EQUIPMENT Version 2.0 Issued December 2013 Owner: Principal Signal Engineer Approved by: Stewart Rendell Authorised by: Glenn Dewberry Disclaimer. This document was prepared for use on the CRN Network only. John Holland Rail Pty Ltd makes no warranties, express or implied, that compliance with the contents of this document shall be sufficient to ensure safe systems or work or operation. It is the document user’s sole responsibility to ensure that the copy of the document it is viewing is the current version of the document as in use by JHR. JHR accepts no liability whatsoever in relation to the use of this document by any party, and JHR excludes any liability which arises in any manner by the use of this document. Copyright. The information in this document is protected by Copyright and no part of this document may be reproduced, altered, stored or transmitted by any person without the prior consent of JHR. © JHR UNCONTROLLED WHEN PRINTED Page 1 of 66 Issued December 2013 Version 2.0 CRN Engineering Procedure - Signalling CRN SM 013 Road Level Crossing Protection Equipment Document control Revision Date of Approval Summary of change 1.0 June 1999 RIC Standard SC 07 60 01 00 EQ Version 1.0 June 1999. 1.0 July 2011 Conversion to CRN Signalling Standard CRN SM 013. 2.0 December 2013 Inclusion of Safetran S40 and S60 Mechanisms, reformatting of figures and tables, and updating text Summary of changes from previous version Section Summary of change All Include automated
    [Show full text]
  • Irish Railway Standard IRS-203-A
    Irish Railway Standard IRS-203-A EMC Co-ordination Issue Published by Issue Date A CRR on behalf of the Irish Railway Industry 22.10.2019 Irish Railway Standards IRS-203-A EMC Co-ordination 1 Foreword 1.1 This Irish Railway Standard: i. cannot replace any Technical Standard for Interoperability (TSI) or other legal requirements which may be applicable to a given project; ii. is recommended to be chosen in accordance with RFU-STR-088 as an Alternative Solution in conjunction with a TSI Parameter to demonstrate conformity with the Essential Requirements; iii. may be called up as a code of practice in conjunction with CSM-REA 352/2009 and 402/2013; iv. may be called up as good industry practice in conjunction with Railway Safety Act 2005; v. may be called up as a code of practice in conjunction with the safe integration of projects within the Railway System in the Republic of Ireland as defined under 2008/57/EC Art15 or 2016/797 (EU) Art 18; vi. may in parts or in full be called up as a National Technical Rule (NTR) for the Republic of Ireland in conjunction with 2008/57/EC or 2016/797 (EU). 1.2 Where this document is called up as an NTR, the reason for its application shall be identified in line with EU 2016/797 Art 13(2): i. where the TSIs do not cover, or do not fully cover, certain aspects corresponding to the essential requirements, including open points as referred to in 2016/797 Article 4(6); ii.
    [Show full text]
  • Modeling of ERTMS Level 2 As an Sos and Evaluation of Its Dependability Parameters Using Statecharts Siqi Qiu, Mohamed Sallak, Walter Schön, and Zohra Cherfi-Boulanger
    This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE SYSTEMS JOURNAL 1 Modeling of ERTMS Level 2 as an SoS and Evaluation of its Dependability Parameters Using Statecharts Siqi Qiu, Mohamed Sallak, Walter Schön, and Zohra Cherfi-Boulanger Abstract—In this paper, we consider the European Rail Traffic INCOSE International Council on Systems Engineering. Management System (ERTMS) as a System-of-Systems (SoS) and GSM-R Global System for Mobile communications— propose modeling it using Unified Modeling Language statecharts. Railways. We define the performance evaluation of the SoS in terms of dependability parameters and average time spent in each state RTM Radio Transmission Module. (working state, degraded state, and failed state). The originality BTM Balise Transmission Module. of this work lies in the approach that considers ERTMS Level 2 TIU Train Interface Unit. as an SoS and seeks to evaluate its dependability parameters by DMI Driver Machine Interface. considering the unavailability of the whole SoS as an emergent EVC European Vital Computer. property. In addition, human factors, network failures, Common- Cause Failures (CCFs), and imprecise failure and repair rates are RBC Radio Block Center. taken into account in the proposed model. EEIG European Economic Interest Group. MUT Mean Up Time. Index Terms—Common-Cause Failures (CCFs), dependability, emergent property, European Rail Traffic Management System MDT Mean Down Time. (ERTMS), human factors, network failures, statecharts, System- MTTF Mean Time to Failure. of-Systems (SoS). MTBF Mean Time Between Failures. ACRONYMS ERTMS European Rail Traffic Management System.
    [Show full text]
  • [(Central] [Central, 6 E -1 4
    /NEWYORK^ Fnewyork^ [(Central] [Central, 6 e -1 4 Reference Marks NEW YORK CENTRAL LC.L Between POPULAR ALL-COACH DAYLINER Dally. II Meal station. Sunday only. • Thla train does not carry baggage SERVICE ADVANTAGES Chicago, Pittsburgh & Boston Daily except Sunday- Ex. Sun.—Runs dally except Sunday. Daily except Monday. E.T.—Eastern Standard Time. Daily except Saturday. C.T.—Central Standard Time. In addition to the train service shown, buses of the United Traction Company run at frequent intervals between Albany and Troy. | I i^i ichedulot . pcart'd to 5 Packing and handling research Stops on signal to receive passengers for stations beyond Albuny. traffic requirement! for most ... they assure the security ol Stops to receive or discbarge passengers for or from Astatabula and beyond. Stops except Saturdays and Sundays. rX|M*llitioilH .1. Ii\ i-r n--. the shipped merchandise. bb Stops at 6.25 a. m. to discharge passengers from Rochester and beyond or to 2 Free pick up and delivery ser• receive passengers for Chicago. Smooth operation . easy 4 Stops on signal to receive passengers for beyond Troy. vice . direct from Hliippcr's grades... superlative roadbed. Stops on signal to discharge or receive passengers. to roiisipiirrV door. No baggage handled for or from this station; *y Constant supervision and pro• Stops regularly, but only to receive passengers. * f Optional trucking allowance to tection in transit.. still mon Stops only to discbarge passengers. nhi|»|MTH jiiul roiittignrcR ... a security for shipped merchan Runs Saturdays only. mi I • i i ii i ii I tavina to both. dise.
    [Show full text]
  • Beijing Subway Map
    Beijing Subway Map Ming Tombs North Changping Line Changping Xishankou 十三陵景区 昌平西山口 Changping Beishaowa 昌平 北邵洼 Changping Dongguan 昌平东关 Nanshao南邵 Daoxianghulu Yongfeng Shahe University Park Line 5 稻香湖路 永丰 沙河高教园 Bei'anhe Tiantongyuan North Nanfaxin Shimen Shunyi Line 16 北安河 Tundian Shahe沙河 天通苑北 南法信 石门 顺义 Wenyanglu Yongfeng South Fengbo 温阳路 屯佃 俸伯 Line 15 永丰南 Gonghuacheng Line 8 巩华城 Houshayu后沙峪 Xibeiwang西北旺 Yuzhilu Pingxifu Tiantongyuan 育知路 平西府 天通苑 Zhuxinzhuang Hualikan花梨坎 马连洼 朱辛庄 Malianwa Huilongguan Dongdajie Tiantongyuan South Life Science Park 回龙观东大街 China International Exhibition Center Huilongguan 天通苑南 Nongda'nanlu农大南路 生命科学园 Longze Line 13 Line 14 国展 龙泽 回龙观 Lishuiqiao Sunhe Huoying霍营 立水桥 Shan’gezhuang Terminal 2 Terminal 3 Xi’erqi西二旗 善各庄 孙河 T2航站楼 T3航站楼 Anheqiao North Line 4 Yuxin育新 Lishuiqiao South 安河桥北 Qinghe 立水桥南 Maquanying Beigongmen Yuanmingyuan Park Beiyuan Xiyuan 清河 Xixiaokou西小口 Beiyuanlu North 马泉营 北宫门 西苑 圆明园 South Gate of 北苑 Laiguangying来广营 Zhiwuyuan Shangdi Yongtaizhuang永泰庄 Forest Park 北苑路北 Cuigezhuang 植物园 上地 Lincuiqiao林萃桥 森林公园南门 Datunlu East Xiangshan East Gate of Peking University Qinghuadongluxikou Wangjing West Donghuqu东湖渠 崔各庄 香山 北京大学东门 清华东路西口 Anlilu安立路 大屯路东 Chapeng 望京西 Wan’an 茶棚 Western Suburban Line 万安 Zhongguancun Wudaokou Liudaokou Beishatan Olympic Green Guanzhuang Wangjing Wangjing East 中关村 五道口 六道口 北沙滩 奥林匹克公园 关庄 望京 望京东 Yiheyuanximen Line 15 Huixinxijie Beikou Olympic Sports Center 惠新西街北口 Futong阜通 颐和园西门 Haidian Huangzhuang Zhichunlu 奥体中心 Huixinxijie Nankou Shaoyaoju 海淀黄庄 知春路 惠新西街南口 芍药居 Beitucheng Wangjing South望京南 北土城
    [Show full text]
  • EUROPEAN COMMISSION DG RESEARCH STADIUM D2.1 State
    EUROPEAN COMMISSION DG RESEARCH SEVENTH FRAMEWORK PROGRAMME Theme 7 - Transport Collaborative Project – Grant Agreement Number 234127 STADIUM Smart Transport Applications Designed for large events with Impacts on Urban Mobility D2.1 State-of-the-Art Report Project Start Date and Duration 01 May 2009, 48 months Deliverable no. D2.1 Dissemination level PU Planned submission date 30-November 2009 Actual submission date 30 May 2011 Responsible organization TfL with assistance from IMPACTS WP2-SOTA Report May 2011 1 Document Title: State of the Art Report WP number: 2 Document Version Comments Date Authorized History by Version 0.1 Revised SOTA 23/05/11 IJ Version 0.2 Version 0.3 Number of pages: 81 Number of annexes: 9 Responsible Organization: Principal Author(s): IMPACTS Europe Ian Johnson Contributing Organization(s): Contributing Author(s): Transport for London Tony Haynes Hal Evans Peer Rewiew Partner Date Version 0.1 ISIS 27/05/11 Approval for delivery ISIS Date Version 0.1 Coordination 30/05/11 WP2-SOTA Report May 2011 2 Table of Contents 1.TU UT ReferenceTU DocumentsUT ...................................................................................................... 8 2.TU UT AnnexesTU UT ............................................................................................................................. 9 3.TU UT ExecutiveTU SummaryUT ....................................................................................................... 10 3.1.TU UT ContextTU UT ........................................................................................................................
    [Show full text]
  • Job-Worker Spatial Dynamics in Beijing: Insights from Smart Card Data
    Published as: Huang, Jie, Levinson, D., Wang, Jiaoe, Jin, Haitao (2019) Job-worker spatial dynamics in Beijing: Insights from Smart Card Data. Cities 86, 89-93 https://doi.org/10.1016/j.cities.2018.11.021 1 Job-worker spatial dynamics in Beijing: insights from Smart 2 Card Data 3 Abstract: 4 As a megacity, Beijing has experienced traffic congestion, unaffordable housing 5 issues and jobs-housing imbalance. Recent decades have seen policies and projects 6 aiming at decentralizing urban structure and job-worker patterns, such as subway 7 network expansion, the suburbanization of housing and firms. But it is unclear 8 whether these changes produced a more balanced spatial configuration of jobs and 9 workers. To answer this question, this paper evaluated the ratio of jobs to workers 10 from Smart Card Data at the transit station level and offered a longitudinal study for 11 regular transit commuters. The method identifies the most preferred station around 12 each commuter’s workpalce and home location from individual smart datasets 13 according to their travel regularity, then the amounts of jobs and workers around each 14 station are estimated. A year-to-year evolution of job to worker ratios at the station 15 level is conducted. We classify general cases of steepening and flattening job-worker 16 dynamics, and they can be used in the study of other cities. The paper finds that (1) 17 only temporary balance appears around a few stations; (2) job-worker ratios tend to be 18 steepening rather than flattening, influencing commute patterns; (3) the polycentric 19 configuration of Beijing can be seen from the spatial pattern of job centers identified.
    [Show full text]
  • Federal Railroad Administration, DOT § 235.7
    Federal Railroad Administration, DOT § 235.7 railroads that operate on standard gage (5) Removal of an intermittent auto- track which is part of the general rail- matic train stop system in conjunction road system of transportation. with the implementation of a positive (b) This part does not apply to rail train control system approved by FRA rapid transit operations conducted over under subpart I of part 236 of this chap- track that is used exclusively for that ter. purpose and that is not part of the gen- (b) When the resultant arrangement eral system of railroad transportation. will comply with part 236 of this title, it is not necessary to file for approval § 235.5 Changes requiring filing of ap- to decrease the limits of a system as plication. follows: (a) Except as provided in § 235.7, ap- (1) Decrease of the limits of an inter- plications shall be filed to cover the locking when interlocked switches, de- following: rails, or movable-point frogs are not in- (1) The discontinuance of a block sig- volved; nal system, interlocking, traffic con- (2) Removal of electric or mechanical trol system, automatic train stop, lock, or signal used in lieu thereof, train control, or cab signal system or from hand-operated switch in auto- other similar appliance or device; matic block signal or traffic control (2) The decrease of the limits of a territory where train speed over the block signal system, interlocking, traf- switch does not exceed 20 miles per fic control system, automatic train hour; or stop, train control, or cab signal sys- (3) Removal of electric or mechanical tem; or lock, or signal used in lieu thereof, (3) The modification of a block signal from hand-operated switch in auto- system, interlocking, traffic control matic block signal or traffic control system, automatic train stop, train territory where trains are not per- control, or cab signal system.
    [Show full text]
  • Selection of a New Hardware and Software Platform for Railway Interlocking
    Selection of a new hardware and software platform for railway interlocking Arghya Kamal Bhattacharya School of Electrical Engineering Thesis submitted for examination for the degree of Master of Science in Technology. Espoo 27.04.2020 Supervisor Prof. Valeriy Vyatkin Advisor MSc. Tommi Kokkonen Copyright ⃝c 2020 Arghya Kamal Bhattacharya Aalto University, P.O. BOX 11000, 00076 AALTO www.aalto.fi Abstract of the master’s thesis Author Arghya Kamal Bhattacharya Title Selection of a new hardware and software platform for railway interlocking Degree programme Automation and Electrical Engineering Major Control, Robotics and Autonomous Systems Code of major ELEC3025 Supervisor Prof. Valeriy Vyatkin Advisor MSc. Tommi Kokkonen Date 27.04.2020 Number of pages 82+34 Language English Abstract The interlocking system is one of the main actors for safe railway transportation. In most cases, the whole system is supplied by a single vendor. The recent regulations from the European Union direct for an “open” architecture to invite new game changers and reduce life-cycle costs. The objective of the thesis is to propose an alternative platform that could replace a legacy interlocking system. In the thesis, various commercial off-the-shelf hardware and software products are studied which could be assembled to compose an alternative interlocking platform. The platform must be open enough to adapt to any changes in the constituent elements and abide by the proposed baselines of new standardization initiatives, such as ERTMS, EULYNX, and RCA. In this thesis, a comparative study is performed between these products based on hardware capacity, architecture, communication protocols, programming tools, security, railway certifications, life-cycle issues, etc.
    [Show full text]