First Record of the Genus Vetulina Schmidt, 1879

Total Page:16

File Type:pdf, Size:1020Kb

First Record of the Genus Vetulina Schmidt, 1879 Mar Biodiv DOI 10.1007/s12526-017-0658-7 ORIGINAL PAPER First record of the genus Vetulina Schmidt, 1879 (Porifera: Demospongiae: Sphaerocladina) from the Indian Ocean with the description of two new species: biogeographic and evolutionary significance Andrzej Pisera1 & Magdalena Łukowiak1 & Jane Fromont2 & Astrid Schuster3 Received: 24 August 2016 /Revised: 23 October 2016 /Accepted: 10 February 2017 # The Author(s) 2017. This article is published with open access at Springerlink.com Abstract Two new species of the genus Vetulina Schmidt, 1879 Keywords Lithistids . Vetulinidae . Vetulina indica sp. nov . (Demospongiae, Vetulinidae, Sphaerocladina) were found off the Vetulina rugosa sp. nov . Tethys Sea coast of Western Australia (Indian Ocean). This genus is charac- terized by acrepid polyaxial desmas (sphaeroclones) equipped with arborescent branched outgrowths with spine-like processes Introduction and isometric styles as microscleres. Vetulina indica sp. nov. is an irregular, laterally folded ear-shaped cup with smooth surfaces, Lithistid sponges are known from almost all temperate and and V. rugosa sp. nov. is similar in shape but with a distinctive tropical oceans but are generally restricted to deeper water of ribbed inner surface. Both species are very similar in spicule greater than 80 m depth (Kelly 2007). The best-described composition, but are distinguished by their gross morphology lithistid faunas occur in the tropical western Atlantic (see and pattern of canal openings on the surface. Despite the fact Pomponi et al. 2001 and references therein) and south-west that we could not distinguish the two specimens based on mo- Pacific (see Kelly 2007 and references therein). lecular (CO1) data, we consider them as two separate species Lithistids have rigid skeletons comprised of interlocking based on the morphological species concept. Our molecular phy- desmas and are consequently easily fossilized. However, logeny confirms again that Vetulina is sister to spongillids (fresh- there is no reliable fossil record of Vetulina known to date, water sponges). This is the first occurrence of this genus outside as the report by Moret (1926) of a sponge from the Turonian the Caribbean Atlantic, and the first report from the Indian (Late Cretaceous) of France is based solely on general mor- Ocean. Such a disjunct distribution is considered here to be a phological resemblance (no spicules are known). Lithistids relict of a once widely distributed sponge population in the with sphaeroclonar desmas are known from Jurassic and ancient Tethys Sea. Cretaceous rocks (with one Eocene occurrence in Italy; Frisone et al. 2016), mainly in Europe, and are attributed to Communicated by P. Martinez Arbizu 10 genera (Reid 2004). The first Mesozoic lithistid This article is registered in ZooBank under urn: lsid:zoobank.org: demosponge with sphaeroclonar desmas is from the pub:0895227E-C2F8-41F3-B227-036C80BF83A5 Bathonian (Middle Jurassic) of India (Mehl and Fürsich 1997). There are even Palaeozoic lithistid demosponges bear- * Andrzej Pisera ing sphaeroclonar desmas grouped in the family [email protected] Astylospongiidae Zittel 1877 (Ordovician–Permian) (Finks and Rigby 2004), but their relationship to younger Mesozoic ∼ 1 Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda and Recent forms is unclear, due to the large ( 200 Ma years) 51/55, 00-818 Warszawa, Poland stratigraphic gap that separates them. ‘ 2 Department of Aquatic Zoology, Western Australian Museum, Until recently, lithistids were grouped as lithistid Locked Bag 49, Welshpool DC, WA 6986, Australia Demospongiae’ for convenience, but were known to be poly- 3 Department of Earth & Environmental Sciences, Palaeontology and phyletic (Pisera and Lévi 2002). With recent molecular stud- Geobiology, Ludwig-Maximilians-Universität München, ies, this has been formally abandoned and lithistid species Richard-Wagner-Str. 10, 80333 Munich, Germany have been allocated to 13 families in 4 orders (Morrow and Mar Biodiv Cárdenas 2015; Schuster et al. 2015). The Vetulinidae Von illustrations depicting the morphology of these spicules pre- Lendenfeld 1903 are a single family in the Sphaerocladina, cludes deciding whether or not they are strongyles. On the an order that already existed in the fossil classification other hand, in his earlier publication on V. stalactites,Sollas (Morrow and Cárdenas 2015). (1885) never mentioned strongyles in his descriptions and The genus Vetulina Schmidt 1879 is currently the only only illustrated Bthe simple cylindrical spicules^ as belonging living representative of a once more diversified Mesozoic to V. stalactites (Sollas 1885: pl. IV, fig. 2). Indeed, they re- group of lithistid demosponges with sphaeroclonar desmas semble strongyles more than any other spicule type, including (Pisera and Lévi 2002; Reid 2004 with references), that have the styles found in this study, but the minimum attention given older Paleozoic relatives (Pisera 2002). So far, the only known to describe them, and a single illustrated spicule, allows us to extant representative of this genus is Vetulina stalactites have justified doubts about their real nature. Schmidt 1879 reported from Barbados at 180 m depth The size of the microscleres from the studied specimens (Schmidt 1879; Sollas 1885, 1888; Soest and Stentoft 1988; (80–110 μm) may raise some doubts as to whether they are Pisera and Lévi 2002). However, V. stalactites is rarely report- micro- or megascleres. The threshold between micro- and ed and consequently poorly known. megascleres is generally accepted as 50 μm (van Soest In this paper, we report two new species of Vetulina,de- et al. 2012), although there are some spicules, such as scribing their morphology, illustrating their spiculation in de- sterrasters and selenasters, that are considered to be tail, and discussing their distribution and their molecular microscleres despite their large size. In the species de- barcodes. scribed here, the size is not decisive as we consider the position/role of the spicules in the skeleton to conform more to the definition of microscleres. Materials and methods Genus Vetulina Schmidt 1879 Diagnosis: As for the family. The specimens were collected during an expedition on the RV Remarks: As for the family. The only fossil record of the Southern Surveyor in 2007 which sampled the northwestern genus from the upper Cretaceous rocks by Moret (1926)is continental shelf margin of Western Australia (12°–22°S), in considered here to be unreliable because it is based solely on the eastern Indian Ocean (Fig. 1;Fromontetal.2012). similarities of general morphology (no spicules are known). Equipment used were a Sherman sled and beam trawl that Type species: Vetulina stalactites Schmidt 1879 (by sampled hard substrates. Voucher specimens were monotypy). photographed on deck, labelled and preserved in 75% ethanol. Vetulina indica sp. nov. They are housed in the collections of the Western Australian Figs. 2a, 3a–c, 4, 5, 6 Museum Harry Butler Research Centre, Welshpool. Holotype: Western Australia, Ashmore Reef (12°26′42″S, 123°36′03″Eto12°26′58″S, 123°36′35″E), 95 m, M. Salotti on RV Southern Surveyor, beam trawl, SS0507/188, 06/07/ Systematic description 2007 (WAM Z35842). Diagnosis: Laterally flattened ear-shaped low cup with Class Demospongiae smooth surfaces; no special ectosomal spicules; choanosomal Order Sphaerocladina Schrammen 1924 spicules acrepid polyaxial desmas (sphaeroclones) with small- Family Vetulinidae Lendenfeld 1903 er arborescent outgrowths with minute spines; microscleres Emended diagnosis: Lithistid Demospongiae with acrepid straight to slightly bent isodiametric styles with mucronate polyaxial (sphaeroclones to astroclones) desmas; no other tips. megascleres; microscleres when present are microstyles or Description: Laterally flattened irregular, convoluted, ear- ?strongyles (modified after Pisera and Lévi 2002). shaped cup with a smaller cup outgrowth at the base (Fig. 2a). Remarks: Emendation to the diagnosis was required as the Dimensions of specimen: 10 cm high, apically 10 × 14 cm new species described here have microscleres that were not wide. Small basal lobe: 4 cm high, 6 × 3 cm wide. Cup walls included in the family diagnosis published in the Systema 1 cm thick with convoluted margins slightly sloping towards Porifera (Pisera and Lévi 2002). Microscleres were not report- the outer surface. Both surfaces smooth. Outer surface porous ed in the original description of the type of the genus, with visible growth lines (Fig. 3b, c) and large pores V. stalactites Schmidt (1879), a specimen which was poorly (?oscules) from 100–400 μm in diameter, irregularly distrib- preserved. However, they were described from better pre- uted (Figs. 3c. 4a, b), surrounded by rare styles (Fig. 4b). Inner served specimens investigated by Sollas (1885, 1888), al- surface very smooth (Fig. 3a) with rare low knobs (<1 mm though they were interpreted later as contamination (Pisera high, up to 3 × 3 mm wide) and small openings (?ostia) irreg- and Lévi 2002). Sollas (1888) described them as cylindrical ularly distributed, up to 50 μm in diameter (Fig. 5a–c). Live strongyles, 40–350 μminsize.However,thelackof color light yellow, fawn in ethanol (Fig. 2a). Mar Biodiv Fig. 1 Locations of Station 116 (specimen WAM Z36103) and Station 188 (specimen WAM 35842). Collection sites marked with asterisks Choanosomal spicules acrepid polyaxial desmas interwoven spinose finger-like outgrowths (Fig. 4e, f). (sphaeroclones) to 250 μm diameter (Figs.
Recommended publications
  • Anchialine Cave Biology in the Era of Speleogenomics Jorge L
    International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats.
    [Show full text]
  • From an Anchialine Lava Tube in Lanzarote, Canary Islands
    Ostracoda (Halocypridina, Cladocopina) from an Anchialine Lava Tube in Lanzarote, Canary Islands LOUIS S. KORN1CKER and THOMAS M. ILIFFE SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 568 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • Myodocopid Mega-Assemblage Proxy for Hypoxic Events by Jean-Georges CASIER
    bulletin de l'institut royal des sciences naturelles de belgique sciences de la terre, 74-suppl.: 73-80, 2004 bulletin van het koninklijk belgisch instituut voor natuurwetenschappen aardwetenschappen, 74-suppl.: 73-80, 2004 The mode of life of Devonian entomozoacean ostracods and the Myodocopid Mega-Assemblage proxy for hypoxic events by Jean-Georges CASIER Casier, J.-G., 2004 - The mode of life of Devonian entomozoacean Introduction ostracods and the Myodocopid Mega-Assemblage proxy for hypoxic events. Bulletin de l'Institut royal des Sciences naturelles de Belgique, Sciences de la Terre, 74 suppl.: 73-80, 2 text-figs., 1 Pl., Bruxelles- Ostracods are ecologically sensitive crustaceans, and Brussel, December 15, 2004 - ISSN 0374-6291. their study provides valuable information about environ- mental changes, particularly in the Palaeozoic. For ex¬ ample, studies of more than 40,000 ostracods across the Frasnian - Famennian (F/F) boundary front several sec¬ Abstract tions worldwide confirms that the upper Devonian event was one of the largest Phanerozoic extinctions for ostra¬ The mode of life of entomozoacean ostracods, which belong to the cods. Approximately 75 percent of all marine ostracod Myodocopida, is controversial. It is generally assumed that they are species went extinct close to the F/F boundary (Lethiers pelagic, more precisely planktonic or nektoplanktonic, and that their & Casier, 1999a; Casier & Lethiers, 2001), as a resuit presence is indicative of deep environments. However, a purely mor- phological study is not sufficiënt to determine their mode of life. Their of sea-level changes (Casier & Devleeschouwer, 1995) relationship with the substrata and other animais, and their response to and a hypoxic event (Casier, 1987a).
    [Show full text]
  • Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
    MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda.
    [Show full text]
  • Secretion of Embryonic Envelopes and Embryonic Molting Cycles In
    Homology of Holocene ostracode biramous appendages with those of other crustaceans: the protopod, epipod, exopod and endopod ANNE C. COHEN, JOEL W. MARTIN AND LOUIS S. KORNICKER Cohen, A.C., Martin, J.W. & Kornicker, L.S. 1998 09 15: Homology of Holocene ostracode LETHAIA biramous appendages with those of other crustaceans: the protopod, epipod, exopod and endopod. Lethaia, Vol. 31, pp. 251-265. Oslo. ISSN 0024-1164. Unambiguously biramous appendages with a proximal precoxa, well-defined coxa and basis, setose plate-like epipod originating on the precoxa, and both an endopod and exopod attached to the terminal end of the basis are described from several living Ostracoda of the order Halo- cyprida (Myodocopa). These limbs are proposed as the best choice for comparison of ostracode limbs with those of other crustaceans and fossil arthropods with preserved limbs, such as the Cambrian superficially ostracode-like Kunmingella and Hesslandona. The 2nd maxilla of Metapolycope (Cladocopina) and 1st trunk limb oi Spelaeoecia, Deeveya and Thaumatoconcha (all Halocypridina) are illustrated, and clear homologies are shown between the parts of these limbs and those of some general crustacean models as well as some of the remarkable crusta­ cean 5.5. Orsten fossils. No living ostracodes exhibit only primitive morphology; all have at least some (usually many) derived characters. Few have the probably primitive attribute of trunk segmentation (two genera of halocyprid Myodocopa, one order plus one genus of Podocopa, and the problematic Manawa); unambiguously biramous limbs are limited to a few halo- cyprids. Homologies between podocopid limbs and those of the illustrated primitive myodo- copid limbs are tentatively suggested.
    [Show full text]
  • Anchialine Cave Biology in the Era of Speleogenomics Jorge L
    International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats.
    [Show full text]
  • Phylogeny, Ontogeny, and Morphology of Living and Fossil Thaumatocypridacea (Myodocopa: Ostracoda)
    Phylogeny, Ontogeny, and Morphology of Living and Fossil Thaumatocypridacea (Myodocopa: Ostracoda) LOUIS S. Kt)RNICKER and I. G. SOHN SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 219 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These pub- lications are distributed by mailing lists to libraries, laboratories, and other interested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available.
    [Show full text]
  • Jan H. Stock Memorial Issue SOME of the DEEP-SEA FAUNA IS
    Jan H. Stock Memorial Issue SOME OF THE DEEP-SEA FAUNA IS ANCIENT BY GEORGE D. F. WILSON Centre for Evolutionary Research, Australian Museum, 6 College Street, Sydney, NSW 2000, Australia ABSTRACT Decreasing deep-sea floor temperatures during the mid Cainozoic, and a presumed widespread disoxia in the deep sea prior to this era has lead many authors to suggest that the deep-sea fauna has accumulated during the last 30-40 mybp only. This hypothesis argues for extinction and replace­ ment of earlier faunas. Some taxa, such as the Ostracoda, show extensive taxonomic replacement during the Miocene that is correlated with declining sea floor temperatures. A recent evaluation of the deep Atlantic distribution of major isopod clades, however, demonstrated that two different historical patterns are present. One pattern ("Flabellifera") conforms to a relatively recent Caino­ zoic and ongoing colonization of the deep sea, with relative impoverishment of species with depth. The other pattern (Asellota) is one that is rich in deep-sea species, and has a high level of endemic morphological diversity, suggesting a long period of evolution in isolation. Glaciation during the late Palaeozoic and an early phylogenetic origination of the Asellota support the hypothesis that these isopods colonized the deep sea prior to the disoxia events during the Mesozoic and the early Cainozoic. The Mesozoic deep sea is unlikely to have become completely anoxic globally owing to vertical halothermal circulation at low latitudes, allowing the possibility of oxygenated refuges in deep water. Elements of the Palaeozoic fauna, therefore, may have persisted through the Mesozoic without representation in marine shallow waters.
    [Show full text]
  • Department of Marine Biology Texas a & M Univer
    Thomas M. Iliffe Page 1 CURRICULUM VITAE of THOMAS MITCHELL ILIFFE ADDRESS: Department of Marine Biology Texas A & M University at Galveston Galveston, TX 77553-1675 Office Phone: (409) 740-4454 E-mail: [email protected] Web page: www.cavebiology.com QUALIFICATIONS: Broad background in evolutionary and marine biology, oceanography, ecology, conservation, invertebrate taxonomy, biochemistry, marine pollution studies and diving research. Eleven years full-time research experience in the marine sciences as a Research Associate at the Bermuda Biological Station. Independently developed investigations on the biodiversity, origins, evolution and biogeography of animals inhabiting marine caves. This habitat, accessible only through use of specialized cave diving technology, rivals that of the deep-sea thermal vents for numbers of new taxa and scientific importance. Led research expeditions for studies of the biology of marine and freshwater caves to the Bahamas, Belize, Mexico, Jamaica, Dominican Republic, Canary Islands, Iceland, Mallorca, Italy, Romania, Czechoslovakia, Galapagos, Hawaii, Guam, Palau, Tahiti, Cook Islands, Niue, Tonga, Western Samoa, Fiji, New Caledonia, Vanuatu, Solomon Islands, New Zealand, Australia, Philippines, China, Thailand and Christmas Island; in addition to 9 years of studies on Bermuda's marine caves. Discovered 3 new orders (of Peracarida and Copepoda), 8 new families (of Isopoda, Ostracoda, Caridea, Remipedia and Calanoida), 55 new genera (of Caridea, Brachyura, Ostracoda, Remipedia, Amphipoda, Isopoda, Mysidacea, Tanaidacea, Thermosbaenacea, Leptostraca, Calanoida, Misophrioida and Polychaeta) and 168 new species of marine and freshwater cave-dwelling invertebrates. Published 243 scientific papers, most of which concern marine cave studies. First author on papers in Science and Nature, in addition to 10 invited book chapters on the anchialine cave fauna of the Bahamas, Bermuda, Yucatan Peninsula of Mexico, Galapagos, Tonga, Niue and Western Samoa.
    [Show full text]
  • The Darkness Syndrome in Subsurface-Shallow and Deep-Sea Dwelling Ostracoda (Crustacea)
    Uiblein, F., Ott, J.,©Akademie Stachowitsch, d. Wissenschaften M. (Eds): Wien; downloadDeep-sea unter and www.biologiezentrum.at extreme shallow-water habitats: affinities and adaptations. - Biosystematics and Ecology Series 11:123-143. The darkness syndrome in subsurface-shallow and deep-sea dwelling Ostracoda (Crustacea) D. L. DANIELOPOL, A. BALTANÄS & G. BONADUCE Abstract: Animals that permanently live either within subsurface habitats in shallow marine environments of Consolidated and/or loosely packed sediments or on the bottom of the deep sea commonly display a complex of morphological and biological traits that is here termed the darkness syndrome. Classic examples are regressed ocular structures and body pigments, combined with the compensatory development of extra-optic sensorial traits. It is largely accepted that animals which adapt to the aphotic subsurface and deep-sea habitats become prisoners of their constraining environment. The Austrian zoologist Th. FUCHS, using examples from the Atlantic Ocean, was the first (1894) to propose a deep-sea origin for the shallow marine cave fauna. Modem biological literature offers additional arguments for this hypothesis. Here, evidence is presented for an alternative and/or additional scenario: shelf-dwelling animals, which are not strongly specialized for life in the photic environment, easily colonize deep-sea and/or shallow subsurface habitats. Examples from two major groups of ostracods, Podocopida and Halocyprida, are used in support of this latter evolutionary model. Introduction The high biological richness of our planet Earth is partly due to photosyn­ thesizing organisms, which efficiently capture and use solar energy. Much of the scientific effort in the past was dedicated to describing diversity of life, which evolved at the surface of the planet in well-illuminated habitats.
    [Show full text]
  • Ostracoda from the Late Permian of Greece (Thaumatocyprididae and Polycopidae)
    SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY • NUMBER 87 Ostracoda from the Late Permian of Greece (Thaumatocyprididae and Polycopidae) I.G. Sohn and Louis S. Kornicker SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1998 ABSTRACT Sohn, I.G., and Louis S. Kornicker. Ostracoda from the Late Permian of Greece (Thaumatocyprididae and Polycopidae). Smithsonian Contributions to Paleobiology, number 87, 34 pages, 20 figures, 2 tables, 1 map, 1998.—The ornamentation of the outer surface of the carapace of both living and fossil thaumatocyprids is compared and discussed. Seven new species of Thaumatomma Kornicker and Sohn, 1976, one species of Thaumatomma in open nomenclature, and a new species ofPolycope from the Late Permian of the islands of Hydra and Salamis, Greece, are described and illustrated. A key to the species of Thaumatomma is presented. OFFICIAL PUBLICATION DATE is handstamped in a limited number of inital copies and is recorded in the Institution's annual report, Annals of the Smithsonian Institution. SERIES COVER DESIGN: The trilobite Phacops rana Green. Library of Congress Cataloging-in-Publication Data Sohn, I.G. (Israel Gregory), 1911- Ostracoda from the Late Permian of Greece (Thaumatocyprididae and Polycopidae) / I.G. Sohn and Louis S. Kornicker. p. cm.—(Smithsonian contributions to paleobiology ; no. 87) Includes bibliographical references. 1. Thaumatocyprididae, Fossil—Greece—Hydra Island. 2. Thaumatocyprididae, Fossil—Greece—Salamis Is­ land. 3. Polycopidae, Fossil—Greece—Hydra Island. 4. Polycopidae, Fossil—Greece—Salamis Island. 5. Paleontology—Permian. 6. Animals, Fossil—Greece—Hydra Island. 7. Animals, Fossil—Greece— Salamis Island. I. Kornicker, Louis S., 1919- II. Title. III. Series. QE701.S56 no. 87 [QE817.C8] 560 s—dc21 [565'.33] 98-6127 CIP ® The paper used in this publication meets the minimum requirements of the American National Standard for Permanence of Paper for Printed Library Materials Z39.48—1984.
    [Show full text]