A Novel OFDM Chirp Waveform Scheme for Use of Multiple Transmitters In

Total Page:16

File Type:pdf, Size:1020Kb

A Novel OFDM Chirp Waveform Scheme for Use of Multiple Transmitters In 568 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 10, NO. 3, MAY 2013 A Novel OFDM Chirp Waveform Scheme for Use of Multiple Transmitters in SAR Jung-Hyo Kim, Member, IEEE, Marwan Younis, Senior Member, IEEE, Alberto Moreira, Fellow, IEEE, and Werner Wiesbeck, Fellow, IEEE Abstract—In this letter, we present a new waveform technique channel coherence bandwidth, in order to avoid the frequency- for the use of multiple transmitters in synthetic aperture radar selective channel effect [4]. The OFDM signaling is also paid (SAR) data acquisition. This approach is based on the principle of attention for SAR applications, and recently, SAR processing the orthogonal-frequency-division-multiplexing technique. Unlike techniques for OFDM waveforms were introduced in [5] and multiple subband approaches, the proposed scheme allows the generation of multiple orthogonal waveforms on common spectral [6]. A major problem of the typical OFDM signal (mainly in support and thereby enables to exploit the full bandwidth for spaceborne SAR) is the fast variation of the signal envelope. each waveform. This letter introduces the modulation and the We resolve the problem by combining the OFDM principle demodulation processing in regard to typical spaceborne SAR with chirp waveforms. Therefore, the basic idea behind the receive signals. The proposed processing techniques are verified proposed waveform scheme is to exploit both the orthogonality by a simulation for the case of pointlike targets. of subcarriers and intrinsic characteristics of traditional chirp Index Terms—Digital beamforming (DBF), multiple-input waveforms. multiple-output (MIMO) synthetic aperture radar (SAR), orthog- The importance of using chirp waveform in the proposed onal frequency division multiplexing (OFDM), orthogonal wave- scheme is emphasized in the following issues: First, one can form, SAR. easily achieve the constant envelope of time domain wave- forms aforementioned, which leads to a maximum efficiency I. INTRODUCTION of the transmitter modules of a phased-array antenna. Second, the chirp spectrum approaches a rectangular shape as the HE USE of multiple transmitters is of a great interest in the time–bandwidth product increases so that its spectral efficiency T synthetic aperture radar (SAR) community. It provides an and signal-to-noise ratio can be maximized [2], [7]. Finally, increase of degrees of freedom and dramatically improves SAR one can further exploit the linear frequency–time characteristics imaging performance when combined with multiple receivers, a of chirp in signal processing. It makes it easy to combine the so-called multiple-input multiple-output (MIMO) constellation proposed scheme with existing SAR processing algorithms, [1]. However, the waveform design for multiple transmitters has such as the dechirp-on-receive technique. been the most important and challenging issue in realizing the Focusing on a dual transmit antenna scenario, we develop MIMO SAR concept. Particularly for spaceborne SAR, aside the novel waveform scheme consisting of the modulation and from the orthogonality between waveforms for simultaneous demodulation algorithm, based on the conventional OFDM multiple pulse transmissions, a constant envelope of the wave- processing, and validate its potential. Special attention has to be form is desired, considering the high power amplifier (HPA) in paid to the demodulation since the classical OFDM demodula- transmitters. The HPAs in spaceborne SAR systems operate in tion assumes that the delay length of a received signal is shorter saturation in order to generate the maximum output power and than the length of the cyclic prefix (CP), but a SAR echo signal to ensure a stable output power level for amplitude variations is generally much longer than the transmitted pulse length. In in the HPA input signal [2]. A significant envelope variation this letter, we present a demodulation strategy for such a long of waveform therefore yields a clipping effect on the output SAR signal. waveform, and the orthogonality can be broken. This letter presents a novel waveform scheme to meet the aforementioned requirements, based on the principle of orthog- II. OFDM CHIRP MODULATION onal frequency division multiplexing (OFDM) proposed in [3]. In OFDM systems, an available signal bandwidth is divided into A. Principles multiple subbands, which is specified to be narrower than the The basic idea behind the proposed technique is to exploit the orthogonality of discrete frequency components, i.e., sub- carriers. This means that the orthogonality of waveforms is Manuscript received April 20, 2012; revised June 29, 2012; accepted independent of the types of input sequences. July 16, 2012. Assume the input sequence (spectrum) S[¯p] with N discrete J.-H. Kim, M. Younis, and A. Moreira are with the Microwaves and Radar 2Δf Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany spectral components, which are separated by as shown (e-mail: [email protected]). in Fig. 1. First, the input sequence S[¯p] is interleaved by N W. Wiesbeck is with the Institute of High Frequency Technique and Elec- zeros, which is S1[p] in Fig. 1, and then, the interleaved input tronics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany. sequence is shifted by Δf for the second data sequence S [p]. Color versions of one or more of the figures in this paper are available online 2 at http://ieeexplore.ieee.org. These data sequences are transformed into the time domain by Digital Object Identifier 10.1109/LGRS.2012.2213577 the 2N-point inverse discrete Fourier transform (IDFT), which 1545-598X/$31.00 © 2012 IEEE KIM et al.: NOVEL OFDM CHIRP WAVEFORM SCHEME FOR USE OF MULTIPLE TRANSMITTERS IN SAR 569 Fig. 1. Two orthogonal OFDM chirp waveforms are generated by zero interleaving and shift of a single chirp spectrum as an input sequence. is the OFDM modulation. As a result, we obtain two waveforms modulated by two orthogonal subcarrier sets that are mutually Fig. 2. Real parts of OFDM chirp waveforms in time domain with 50-MHz shifted by Δf. Thus, their demodulation must be performed by bandwidth and N = 4096. The phase change in s2(t) due to the subcarrier 2N-point DFT. It must be emphasized that both the sets contain offset must be remarked in comparison with s1(t).(a)s1(t).(b)s2(t). 2N subcarriers but use only N subcarriers to carry the input data, respectively. B. Signal Model As aforementioned, a chirp signal spectrum is used for the OFDM modulation in this work. The chirp signal spectrum, as input complex data, is obtained by 2 S[¯p]=F{s[n]} = F exp j · π · Kr · (nTs) (1) where s[n] denotes the discrete time samples of a complex chirp signal with the length of N, F{·}is the Fourier transform operator, T is the sampling interval, and K is the chirp rate, s r Fig. 3. Generic schematic of the proposed OFDM demodulator followed which is a ratio between the signal bandwidth B and the chirp by the polyphase decomposition and parallel matched filters for the range duration Tp (Kr = B/Tp). Using (1), we generate two input compression. data sequences by the zero interleaving and shift as follows: ··· − By introducing t = nTs and Δf =1/2NTs, it is noticed that S1[p]=[S[0], 0,S[1], 0, ,S[N 1], 0] (2) both waveforms are distinguishable by the subcarrier offset Δf. ··· − S2[p]=[0,S[0], 0,S[1], , 0,S[N 1]] (3) These modulated OFDM waveforms are converted to analog where p =0, 1, 2,...,2N − 1. Both data sequences contain to- forms by a digital-to-analog converter. The OFDM waveforms tal 2N components, respectively. Therefore, they are modulated in the time domain are plotted in Fig. 2. Due to the zero inter- by 2N-point IDFT. According to the Cooley–Tukey algorithm, leaving in the spectrum, the peak power level of the waveforms the DFT/IDFT can be performed by separate transforms with will be reduced. However, according to Parseval’s theorem [8], respect to the odd and even components of the input. Since the the total energy of the input sequence is conserved. even components in S1 are zeros, the inverse Fourier transform Using the aforementioned signal model, the OFDM wave- of S1[p] is equivalent to that of S[¯p]. Substituting p¯ for p/2,the forms can be also directly produced in the time domain. modulated waveform s1 is given by The time domain generation is valuable since a band-limited − input sequence can cause an overshoot in time domain N1 2π s [n]= S[¯p] · exp j pn¯ (4) waveforms [8]. 1 N p¯=0 where n =0, 1, 2,...,2N − 1. Since the inverse Fourier trans- III. OFDM SAR SIGNAL DEMODULATION form of S[¯p] is s[n] with the period of N, s1[n] can be expressed This section is dedicated to the development of an OFDM by a repetition of s[n] over the length of 2N demodulation algorithm applicable to a received SAR signal, n n − N s [n]=s[n] · rect + s[n − N] · rect . (5) which is typically much longer than the OFDM pulse length. 1 N N According to the classical OFDM demodulation scheme, the In the same way, using (p +1)/2=¯p +(1/2), the other orthogonality of subcarriers can be exploited only if the follow- modulated waveform s2 is derived as ing requirements are strictly fulfilled: synchronization between − the modulator and demodulator in length and no truncation of π N1 2π s [n]=exp j n S[¯p] · exp j pn¯ (6) the waveforms within IDFT/DFT windows. To meet the require- 2 N N p¯=0 ments, the demodulation algorithm developed in this section consists of the segmentation of the echo signal by spatial and using s[n], it can be also described as filtering (digital beamforming), the circular-shift addition, and − the conventional OFDM demodulation using DFT, as shown · n − · n N s2[n]= s[n] rect + s[n N] rect in Fig.
Recommended publications
  • Introduction to Radar Part I
    1 . Introduction to Radar Part I Scriptum of a lecture at the Ruhr-UniversitÄatBochum Dr.-Ing. Joachim H.G. Ender Honorary Professor of the Ruhr-University Bochum Head of the Fraunhofer-Institute for High Frequency Physics and Radar Techniques FHR Neuenahrer Str. 20, 53343 Wachtberg, Phone 0228-9435-226, Fax 0228-9435-627 E-Mail: [email protected] Copyright remarks This document is dedicated exclusively to purposes of edu- cation at the Ruhr-University Bochum, the University of Siegen, the RWTH Aachen and the Fraunhofer-Institute FHR. No part of this document may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of the author. 2 Contents 1 Radar fundamentals 9 1.1 The nature of radar . 9 1.2 Coherent radar . 12 1.2.1 Quadrature modulation and demodulation . 12 1.2.2 A generic coherent radar . 14 1.2.3 Optimum receive ¯lter . 15 1.2.4 The point spread function . 19 1.2.5 Two time scales for pulse radar . 20 1.3 Doppler e®ect . 21 1.4 De¯nitions of resolution . 24 1.5 Pulse compression . 26 1.5.1 The idea of pulse compression . 26 1.5.2 The chirp waveform, anatomy of a chirp I . 27 1.5.3 Spatial interpretation of the radar signal and the receive ¯lter 28 1.5.4 Inverse and robust ¯ltering . 30 1.5.5 Range processing and the normal form . 32 1.5.6 The de-ramping technique . 33 1.6 Range-Doppler processing .
    [Show full text]
  • Design of a Dual Band Local Positioning System
    Technische Universität Dresden Design of a Dual Band Local Positioning System Niko Joram der Fakultät Elektrotechnik und Informationstechnik der Technischen Universität Dresden zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) genehmigte Dissertation Vorsitzender: Prof. Dr. techn. Klaus Janschek Gutachter: Prof. Dr. sc. techn. Frank Ellinger Prof. Dr. sc. techn. Jan Hesselbarth Tag der Einreichung: 30. Januar 2015 Tag der Verteidigung: 11. September 2015 Danksagung An dieser Stelle möchte ich mich bei allen Personen bedanken, die diese Arbeit in den letzten Jahren unterstützt haben. Mein besonderer Dank gilt Prof. Dr. sc. techn. Frank Ellinger, der mich zur Arbeit auf dem Gebiet der integrierten Hochfrequenzschaltungen motiviert hat und es mir ermöglicht hat, meine Dissertation an seinem Lehrstuhl zu bearbeiten. Sehr verbunden bin ich meinen Mitstreitern Jens Wagner und Belal Al-Qudsi, die sich stets Zeit für umfangreiche Fachdiskussionen genommen haben und mich bei allen wissenschaftlichen, technischen und administrativen Belangen im Projekt unschätzbar unterstützt haben. Markus Schulz, Elena Sobotta, Axel Strobel und Robert Wolf, meinen Kollegen im Büro, sowie Bastian Lindner, Anja Muthmann, Stefan Schumann und Uwe Mayer danke ich für das kreative Arbeitsklima und die vielen aufschlussreichen fachlichen und privaten Gespräche. Ich danke Tom Drechsel, Mohammed El-Shennawy, Marco Gunia und Prof. Dr. Udo Jörges für die aufmerksame Durchsicht der Arbeit und die hilfreichen Kom- mentare und Diskussionen, die zur Verbesserung
    [Show full text]
  • High-Resolution Time-Frequency Analysis of Neurovascular Responses to Ischemic Challenges Frederick Romberg
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine January 2012 High-Resolution Time-Frequency Analysis Of Neurovascular Responses To Ischemic Challenges Frederick Romberg Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Romberg, Frederick, "High-Resolution Time-Frequency Analysis Of Neurovascular Responses To Ischemic Challenges" (2012). Yale Medicine Thesis Digital Library. 1754. http://elischolar.library.yale.edu/ymtdl/1754 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. High-Resolution Time-Frequency Analysis of Neurovascular Responses to Ischemic Challenges A Thesis Submitted to the Yale University School of Medicine in Partial Fulfillment of the Requirements for the Degree of Doctor of Medicine by Frederick William Romberg 2012 HIGH-RESOLUTION TIME-FREQUENCY ANALYSIS OF NEUROVASCULAR RESPONSES TO ISCHEMIC CHALLENGES Frederick W. Romberg1, Christopher G. Scully2, Tyler Silverman1, Ki H. Chon2, Kirk H. Shelley1, Nina Stachenfeld3, and David G. Silverman1 1Department of Anesthesiology, Yale University, School of Medicine, New Haven, CT 2Department of Biomedical
    [Show full text]
  • Investigation of Non-Linear Chirp Coding for Improved Second Harmonic Pulse Compression
    This is a repository copy of Investigation of Non-linear Chirp Coding for Improved Second Harmonic Pulse Compression. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/116334/ Version: Accepted Version Article: Arif, M, Ali, MA, Shaikh, MM et al. (1 more author) (2017) Investigation of Non-linear Chirp Coding for Improved Second Harmonic Pulse Compression. Ultrasound in Medicine & Biology, 43 (8). pp. 1690-1702. ISSN 0301-5629 https://doi.org/10.1016/j.ultrasmedbio.2017.03.005 © 2017 World Federation for Ultrasound in Medicine & Biology. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Investigation of Nonlinear Chirp Coding for Improved Second Harmonic Pulse Compression Muhammad Arifa,∗, Muhammad Asim Alib, Muhammad Mujtaba
    [Show full text]
  • Sidelobe Suppression in Chirp Radar Systems
    New Jersey Institute of Technology Digital Commons @ NJIT Dissertations Electronic Theses and Dissertations Spring 5-31-1971 Sidelobe suppression in chirp radar systems Stephen N. Honickman New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/dissertations Part of the Electrical and Electronics Commons Recommended Citation Honickman, Stephen N., "Sidelobe suppression in chirp radar systems" (1971). Dissertations. 1353. https://digitalcommons.njit.edu/dissertations/1353 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept a copying order if, in its judgment,
    [Show full text]
  • Orthogonal Frequency Division Multiplexing Multiple-Input Multiple-Output Automotive Radar with Novel Signal Processing Algorithms
    Orthogonal Frequency Division Multiplexing Multiple-Input Multiple-Output Automotive Radar with Novel Signal Processing Algorithms von der Fakultät Informatik, Elektrotechnik und Informationstechnik der Universität Stuttgart zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung vorgelegt von Gor Hakobyan aus Jerewan, Armenien Hauptberichter: Prof. Dr.-Ing. Bin Yang Mitberichter: Prof. Dr. Friedrich K. Jondral Tag der mündlichen Prüfung: 07.02.2018 Institut für Signalverarbeitung und Systemtheorie der Universität Stuttgart 2018 – 3 – Vorwort Die vorliegende Arbeit entstand während meiner Zeit als Doktorand bei der zentralen Forschung der Robert Bosch GmbH in Kooperation mit der Universität Stuttgart. Mein besonderer Dank gilt Prof. Bin Yang, dem Leiter des Instituts für Signalverarbeitung und Systemtheorie an der Universität Stuttgart für die Gelegenheit, unter seiner Betreuung zu promovieren. Insbesondere möchte ich mich für das Vertrauen, die stets hervorragende Betreuung, die Freiheit, eigene Wege in Forschung zu gehen, sowie kurzfristige und sorgfältige Korrekturen meiner Veröffentlichungen und der Dissertation recht herzlich bedanken. Prof. Friedrich Jondral vom Institut für Nachrichtentechnik des Karlsruher Instituts für Technologie danke ich herzlich für die Übernahme des Mitberichts. Ferner möchte ich mich bei den Mitarbeitern der Robert Bosch GmbH und des Instituts für Signalverarbeitung und Systemtheorie bedanken, die zur Entstehung dieser Arbeit beigetragen haben. Insbesondere geht mein Dank an Herrn
    [Show full text]
  • Spectrum Analysis Considerations for Radar Chirp Waveform Spectral
    This paper was submitted to and will appear in the IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 3, June 2014. IEEE Transactions on Electromagnetic Compatibility are Copyright © IEEE. Spectrum Analysis Considerations for Radar Chirp Waveform Spectral Compliance Measurements Charles Baylis, Member, IEEE, Josh Martin, Member, IEEE, Matthew Moldovan, Member, IEEE, Robert J. Marks, II, Fellow, IEEE, Lawrence Cohen, Member, IEEE, Jean de Graaf, Member, IEEE, Robert Johnk, Senior Member, IEEE, and Frank Sanders, Member, IEEE Abstract—The measurement of a radar chirp waveform is crit- settings for the measurement of emissions [3]. The ITU Ra- ical to assessing its spectral compliance. The Fourier transform dio Regulations provide the spectral limitations of transmitted for a linear frequency-modulated chirp is a sequence of frequency- radio signals [4]. In addition, individual nations have regula- domain impulse functions. Because a spectrum analyzer measures the waveform with a finite-bandwidth intermediate-frequency (IF) tory agencies that often expound upon the ITU standards for filter, the bandwidth of this filter is critical to the power level and spectrum regulation. In U.S., the National Telecommunications shape of the reported spectrum. Measurement results are presented and Information Administration (NTIA) sets guidelines for the that show the effects of resolution bandwidth and frequency sam- spectrum properties in the radar spectrum emissions criteria pling interval on the measured spectrum and its reported shape. (RSEC) [5]. In addition to the RSEC, the NTIA has released The objective of the measurement is to align the shape of the mea- sured spectrum with the true shape of the signal spectrum.
    [Show full text]
  • SIDELOBE DEDUCTION by PIECEWISE NON LINEAR FREQUENCY MODULATION WAVEFORM Djoeisac Thomas1, C
    ISSN: 2319-8753 International Journal of Innovative Research in Science, Engineering and Technology Vol. 2, Issue 3, March 2013 SIDELOBE DEDUCTION BY PIECEWISE NON LINEAR FREQUENCY MODULATION WAVEFORM DjoeIsac Thomas1, C. Kamalanathan2, Dr. S.Valarmathy3 1PG Scholar, Dept. of ECE, Bannari Amman Institute of Technology, Sathyamangalam, TamilNadu, India 2Asst. Professor (Sr. Grade), Dept. of ECE, Bannari Amman Institute of Technology,Sathyamangalam, TamilNadu, India 3Prof. & HoD, Dept. of ECE, Bannari Amman Institute of Technology, Sathyamangalam, TamilNadu, India Abstract :-The Linear Frequency Modulation (LFM) waveform is the most commonly and extensively used signal in practical radar system. This paper introduces a new scheme of Piecewise Nonlinear Frequency Modulation (PNFM) for generating good code sets. Each code set has good autocorrelation with small peak sidelobes and cross-correlation. A weighting function is usually applied in order to reduce the sidelobes. In an effort to achieve low autocorrelation sidelobe level without applying weighting function, PNFM signal has been investigated. The new class codes is shown to have good ambiguity function with the ability to tolerate a realistic range of Doppler shift. At the receiver a matched filter is used which improvement in Doppler detection with good SNR. Keywords:-Piecewise Nonlinear Frequency Modulation, LFM, Ambiguity function, Chirp code, Radar. I. INTRODUCTION Chirp system are the only spread spectrum system that do not normally employ a code sequence to control their output signal spectra. Chirp signal is generated by sliding the carrier over a given range of frequency in a linear or some other known manner during a fixed pulse period as shown in figure 1.
    [Show full text]
  • Design of Digital FMCW Chirp Synthesizer Plls Using Continuous-Time Delta-Sigma Time-To-Digital Converters
    Design of Digital FMCW Chirp Synthesizer PLLs Using Continuous-Time Delta-Sigma Time-to-Digital Converters by Daniel J. Weyer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical Engineering) in the University of Michigan 2018 Doctoral Committee: Professor Michael P. Flynn, Chair Professor Zhong He Associate Professor David D. Wentzloff Associate Professor Zhengya Zhang Daniel J. Weyer [email protected] ORCID iD: 0000-0002-8355-9402 © Daniel J. Weyer 2018 TABLE OF CONTENTS LIST OF FIGURES ..................................................................................................................v LIST OF TABLES .................................................................................................................. ix ABSTRACT...............................................................................................................................x CHAPTER 1 Introduction ........................................................................................................1 1.1 FMCW Radar ............................................................................................................1 1.2 PLL Design for FMCW Chirp Synthesis ....................................................................5 1.3 Research Contributions ..............................................................................................7 1.4 Outline of the Dissertation .........................................................................................9 CHAPTER
    [Show full text]
  • Sistema Plc De Banda Angosta Para La Caracterización De La Impedancia De La Red Eléctrica
    SISTEMA PLC DE BANDA ANGOSTA PARA LA CARACTERIZACIÓN DE LA IMPEDANCIA DE LA RED ELÉCTRICA Adrián de la Fuente El presente Trabajo de Tesis ha sido desarrollado en el Laboratorio de Instrumentación y Control de la Universidad Nacional de Mar del Plata, y presentado al Departamento de Electrónica de la Facultad de Ingeniería de la Universidad Nacional de Mar del Plata el 12 de Noviembre de 2018, como requisito parcial para la obtención del título de Ingeniero Electrónico. Director: Dr. Ing. Matías Hadad Codirector: Dr. Ing. Marcos Funes RINFI se desarrolla en forma conjunta entre el INTEMA y la Biblioteca de la Facultad de Ingeniería de la Universidad Nacional de Mar del Plata. Tiene como objetivo recopilar, organizar, gestionar, difundir y preservar documentos digitales en Ingeniería, Ciencia y Tecnología de Materiales y Ciencias Afines. A través del Acceso Abierto, se pretende aumentar la visibilidad y el impacto de los resultados de la investigación, asumiendo las políticas y cumpliendo con los protocolos y estándares internacionales para la interoperabilidad entre repositorios Esta obra está bajo una Licencia Creative Commons Atribución- NoComercial-CompartirIgual 4.0 Internacional. Índice general Agradecimientos .......................................................................................................................... 8 Resumen ...................................................................................................................................... 9 Nomenclatura ...........................................................................................................................
    [Show full text]
  • Sparse Detection in the Chirplet Transform: Application to FMCW Radar Signals Fabien Millioz, Michael Davies
    Sparse Detection in the Chirplet Transform: Application to FMCW Radar Signals Fabien Millioz, Michael Davies To cite this version: Fabien Millioz, Michael Davies. Sparse Detection in the Chirplet Transform: Application to FMCW Radar Signals. IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engi- neers, 2012, 60 (6), pp.2800 - 2813. 10.1109/TSP.2012.2190730. hal-00714397 HAL Id: hal-00714397 https://hal.archives-ouvertes.fr/hal-00714397 Submitted on 4 Jul 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Sparse detection in the chirplet transform: application to FMCW radar signals Fabien Millioz and Michael Davies Abstract—This paper aims to detect and characterise a signal by the matching-pursuit framework making it impractical for coming from Frequency Modulation Continuous Wave radars. real time deployment. Here we are interested in a minimal The radar signals are made of piecewise linear frequency computation approach. Chirplet chains [5], [6] are based on modulations. The Maximum Chirplet Transform, a simplification of the chirplet transform is proposed. A detection of the relevant the search of a single best path in the time-frequency domain, Maximum Chirplets is proposed based on iterative masking, and are applied in the low Signal-to-Noise Ratio (SNR) an iterative detection followed by window subtraction that does context of gravitational wave detection.
    [Show full text]
  • Digitally Assisted Transmitter Enhancement Techniques for Millimeter Wave Radio Systems
    Digitally Assisted Transmitter Enhancement Techniques for Millimeter Wave Radio Systems Prasidh Ramabadran 2020 Dissertation submitted in fulfilment of the requirements for candidature for degree of Doctor of Philosophy National University of Ireland Maynooth Department of Electronic Engineering Supervisors: Dr.John Dooley, Prof. Ronan Farrell Head of Department: Prof. Ronan Farrell Date of submission 31 Oct 2019 “An investment in knowledge always pays the best interest.” Benjamin Franklin Contents Abstract1 1. Introduction 11 1.1. Key Parameters, Channel Capacity and Resource Sharing Schemes in Wireless Communications . 12 1.1.1. Channel Parameters . 12 1.1.2. Channel Capacity . 12 1.1.3. Resource Sharing Schemes . 13 1.2. Features of Next Generation Wireless Communication Systems . 14 1.3. Challenges In The Design For Next Generation Wireless Communi- cations That Motivated This Work . 17 2. Overview of a Wireless Transceiver and Signal Distortion Effects in Wireless Communications 21 2.1. A Modern Wireless Transceiver . 21 2.2. Key Performance Indicators of SISO Transceivers . 23 2.2.1. Key Performance Indices of an RF transmitter . 23 2.2.2. Key Performance Indices of an RF receiver . 27 2.3. Non-Ideal Characteristics of hardware blocks in a SISO transceiver and their impacts. 31 2.3.1. Transmitter . 33 2.3.2. Receiver . 42 2.4. Active Antenna Arrays for 5G Communications . 47 2.5. Conclusion . 49 3. Calibration of RF Signal Paths in Transmitters 51 3.1. Introduction . 51 3.2. Prior Art Techniques for calibration of Impairments . 52 3.2.1. Iterative calibration of LO Leak . 55 3.2.2. Calibration of IQ gain imbalance, quadrature phase error and timing offsets.
    [Show full text]