Cyclone Larry
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Known Impacts of Tropical Cyclones, East Coast, 1858 – 2008 by Mr Jeff Callaghan Retired Senior Severe Weather Forecaster, Bureau of Meteorology, Brisbane
ARCHIVE: Known Impacts of Tropical Cyclones, East Coast, 1858 – 2008 By Mr Jeff Callaghan Retired Senior Severe Weather Forecaster, Bureau of Meteorology, Brisbane The date of the cyclone refers to the day of landfall or the day of the major impact if it is not a cyclone making landfall from the Coral Sea. The first number after the date is the Southern Oscillation Index (SOI) for that month followed by the three month running mean of the SOI centred on that month. This is followed by information on the equatorial eastern Pacific sea surface temperatures where: W means a warm episode i.e. sea surface temperature (SST) was above normal; C means a cool episode and Av means average SST Date Impact January 1858 From the Sydney Morning Herald 26/2/1866: an article featuring a cruise inside the Barrier Reef describes an expedition’s stay at Green Island near Cairns. “The wind throughout our stay was principally from the south-east, but in January we had two or three hard blows from the N to NW with rain; one gale uprooted some of the trees and wrung the heads off others. The sea also rose one night very high, nearly covering the island, leaving but a small spot of about twenty feet square free of water.” Middle to late Feb A tropical cyclone (TC) brought damaging winds and seas to region between Rockhampton and 1863 Hervey Bay. Houses unroofed in several centres with many trees blown down. Ketch driven onto rocks near Rockhampton. Severe erosion along shores of Hervey Bay with 10 metres lost to sea along a 32 km stretch of the coast. -
6. Annual Review and Significant Events
6. Annual Review and Significant Events January-April: wet in the tropics and WA, very hot in central to eastern Australia For northern Australia, the tropical wet season (October 2005 – April 2006) was the fifth wettest on record, with an average of 674 mm falling over the period. The monsoon trough was somewhat late in arriving over the Top End (mid-January as opposed to the average of late December), but once it had become established, widespread heavy rain featured for the next four months, except over the NT and Queensland in February. One particularly noteworthy event occurred towards the end of January when an intense low (central pressure near 990 hPa) on the monsoon trough, drifted slowly westward across the central NT generating large quantities of rain. A two-day deluge of 482 mm fell at Supplejack in the Tanami Desert (NT), resulting in major flooding over the Victoria River catchment. A large part of the central NT had its wettest January on record. Widespread areas of above average rain in WA were mainly due to the passages of several decaying tropical cyclones, and to a lesser extent southward incursions of tropical moisture interacting with mid-latitude systems. Severe tropical cyclone Clare crossed the Pilbara coast on 9t h January and then moved on a southerly track across the western fringes of WA as a rain depression. Significant flooding occurred around Lake Grace where 226 mm of rain fell in a 24-hour period from 12 t h to 13 t h January. Tropical cyclone Emma crossed the Pilbara coast on 28 th February and moved on a southerly track; very heavy rain fell in the headwaters of the Murchison River on 1s t March causing this river’s highest flood on record. -
Summary of 2005/6 Australian-Region Tropical Storm Season and Verification of Authors’ Seasonal Forecasts
Summary of 2005/6 Australian-Region Tropical Storm Season and Verification of Authors’ Seasonal Forecasts Issued: 15th May 2006 by Professor Mark Saunders and Dr Adam Lea Benfield Hazard Research Centre, UCL (University College London), UK. Summary ¢¡¤£¦¥¨§¨§¨© £¨¨ £¨£¨ ¨£"!$#%¨&('(¨)¨'*+%,¨-'(.¨&/%¨01¨.%'23'(%546¨7+£¨ ¤£¨ ¨£8!$#%¨&('(¨9&*¨¤7:¨&(&*'( ;¨.%'23'*%54=<3 ¢¡¤'*>.¨¤%¨%?@'(%¡9%¡£A:B¨#A-,£C3'(¨#/!$#%¨&('(¨ %,¨-¤'*.¨&%¨0D£¨¨E@¡'(.¡F¨&(&3¡¤¨7F)£&(,@£¨ ¨£"¨.%'23'(%54¨<G ¢¡£" ¢HIJ%£,.'(&(£K-,¨)¤¨)'(&*'(%54 :B¨,£.¨%¦:L¨M%¡¤£¥¨§¨§¨© N £¨¨O¡,@£7P£Q¨.£&*&(£%$R¤'*&(&(ST-,£7'(.%'( :,¨0VUW 4X¥¨§¨§¨©+%¡¨% !K#%¨&('*¨ )¨'( ¨7 &(¨7¤:¨&*&('( Y¨.%'Z3'(%54Y[¨#&(7 )£\.&*¨£\%Y£¨ ¨£<X ¢¡¤£] ¢H¤I 7¤£%£0^'*¤'*%'*.¦:B¨,£.¨%A¡,@£76 ¨¨¨76R¤'*&(&_:B¨;)¤¨'(`¨.%'23'(%54a¨76:B¨¦&*¨¤7:¨&(&*'( M%,¨-'(.¨& %¨0b¤#0^)£_:,¨0bUc 4d¥¨§¨§¨©¨< egf3hejilk m3n(opqsr=t k iu1vKn(wyxOze{r|vK}$ok ~3wk it nZ¨u1m¨ilhwh~¨tNw@pFwy¨u[upiOk¨st(f3h¨¨¨ ^"3wyt(ilpq(n*p~3 ilh,¨n(k ~;t*ilk m3n(opqwtNk iyuwhpwk ~9p~3¦p8gpq(n(¨pt n(k ~k¨t(f3hniwhpwk ~3pqm¨ilk 3p3n(q*n(wyt n(oAp~3¦¨ht hiunZ~3n(wyt n*o k ilhopwyt w>k i?t(f3n(w>potNn 3nZt*¨¤egf3hwh$k ilhopwyt w{@hilh$n*wwy3hKuk ~¨t(f3qZ95ilk ut*f3h$ t(f¦Wp9¨¨¨ "tNk"t*f3h t(f@hohu[3hi8¨¨¨ p~3nZ~3oqZ3¨hKwhm3pilptNhTm¨ilh¨n(otNn(k ~3wsk i{~¨¨u3hilwsk¨¤t*ilk m3n(opqwyt k iuw~¨¨u[3hilw k¨¢wh¤hilh t(ilk m3n(opq¡oC3oq(k ~3hw"p~3¢t(f3h A£E¤¥z5@oo¨u3q(ptNh^£E3oq*k ~3h¦¤¡~3hi 3}snZ~3¨h§3egf3h[q*pt(tNhiKn(w ¨n ¤h~dk i¨t*f3h/"f3k¨q(h/"3wyt(ilpq*n(p~35ilh ¨n(k ~3 Features of the 2005/6 Australian-Region Season • The 2005/6 Australian-region tropical storm season featured 11 storms of which 7 made severe tropical cyclone strength (U.S. -
In the Aftermath of Cyclone Yasi: AIR Damage Survey Observations
AIRCURRENTS By IN THE AFTERMATH OF CYCLONE YaSI: AIR DAMAGE SURVEY OBSERVATIONS EDITOR’S NOTE: In the days following Yasi’s landfall, AIR’s post-disaster survey team visited areas in Queensland affected by the storm. This article 03.2011 presents their findings. By Dr. Kyle Butler and Dr. Vineet Jain Edited by Virginia Foley INTRODUCTION Severe Cyclone Yasi began as a westward-moving depression In addition to the intense winds, Yasi brought 200-300 off Fiji that rapidly developed into a tropical storm before millimeters of precipitation in a 24 hour period and a storm dawn on January 30, 2011. Hours later, Yasi blew across the surge as high as five meters near Mission Beach. northern islands of Vanuatu, continuing to grow in intensity and size and prompting the evacuation of more than 30,000 residents in Queensland, Australia. By February 2 (local time), the storm had achieved Category 5 status on the Australian cyclone scale (a strong Category 4 on the Saffir-Simpson scale). At its greatest extent, the storm spanned 650 kilometers. By the next day, it became clear that Yasi would spare central Queensland, which had been devastated by heavy flooding in December. But there was little else in the way of good news. Yasi made landfall on the northeast coast of Queensland on February 3 between Innisfail and Cardwell with recorded gusts of 185 km/h. Satellite-derived sustained Figure 1. Satellite-derived 10-minute sustained wind speeds in knots just after wind speeds of 200 km/h were estimated near the center Cyclone Yasi made landfall. -
Lessons Learned from Cyclones in Northern Australia
Lessons Learned from Cyclones in Northern Australia SEPTEMBER 2013 RIRDC Publication No. 13/071 Lessons Learned from Cyclones in Northern Australia By Rhonda Sorensen September 2013 RIRDC Publication No. 13/071 RIRDC Project No. PRJ-008498 © 2013 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-564-6 ISSN 1440-6845 Lessons Learned from Cyclones in Northern Australia Publication No. 13/071 Project No. PRJ-008498 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. -
The Cyclone As Trope of Apocalypse and Place in Queensland Literature
ResearchOnline@JCU This file is part of the following work: Spicer, Chrystopher J. (2018) The cyclone written into our place: the cyclone as trope of apocalypse and place in Queensland literature. PhD Thesis, James Cook University. Access to this file is available from: https://doi.org/10.25903/7pjw%2D9y76 Copyright © 2018 Chrystopher J. Spicer. The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owners of any third party copyright material included in this document. If you believe that this is not the case, please email [email protected] The Cyclone Written Into Our Place The cyclone as trope of apocalypse and place in Queensland literature Thesis submitted by Chrystopher J Spicer M.A. July, 2018 For the degree of Doctor of Philosophy College of Arts, Society and Education James Cook University ii Acknowledgements of the Contribution of Others I would like to thank a number of people for their help and encouragement during this research project. Firstly, I would like to thank my wife Marcella whose constant belief that I could accomplish this project, while she was learning to live with her own personal trauma at the same time, encouraged me to persevere with this thesis project when the tide of my own faith would ebb. I could not have come this far without her faith in me and her determination to journey with me on this path. I would also like to thank my supervisors, Professors Stephen Torre and Richard Landsdown, for their valuable support, constructive criticism and suggestions during the course of our work together. -
Circulation and Suspended Sediment Transport in a Coral
Marine Pollution Bulletin Archimer 2010, Volume 61, Issues 7-12, Pages 269-296 http://archimer.ifremer.fr http://dx.doi.org/10.1016/j.marpolbul.2010.06.023 © 2010 Elsevier Ltd All rights reserved. ailable on the publisher Web site Circulation and suspended sediment transport in a coral reef lagoon: The south-west lagoon of New Caledonia S. Ouillona,b,*, P. Douilletc, J.P. Lefebvrec, R. Le Gendred, A. Jouone, P. Bonnetone, J.M. Fernandezd, C. Chevillond, O. Magandf, J. Lefèvred, P. Le Hirg, R. Laganierh, F. Dumasg, P. Marchesielloa,d, A. Bel Madanii, S. Andréfouëtd, J.Y. Panchéd, R. Fichezc a Université de Toulouse, UPS (OMP-PCA), LEGOS, 14 av. Edouard Belin, Toulouse F-31400, France b IRD, LEGOS, 14 av. Edouard Belin, Toulouse F-31400, France c IRD, UAM, Dpt Hidrobio – DIV de Ciencas Bio y Salud, AV. San Rafael Atlixco 186 – Col. Vicentina 09340, Mexico DF, Mexico blisher-authenticated version is av d IRD Nouméa, BP A5, 98848 Nouméa cedex, New Caledonia e Université de Bordeaux, CNRS, UMR 5805, Bordeaux F-33000, France f LGGE, CNRS, Université Joseph Fourier, 54 rue Molière, Saint Martin d’Hères cedex F-38402, France g DYNECO/PHYSED, Ifremer, BP 70, Plouzané F-29280, France h Université Paris Diderot – Paris 7, Case 7001, 75205 Paris cedex 13, France i IRD, IMARPE/CIMOBP, Instituto del Mar del Perù, Esquina de Gamarra y General Valle S/N Chucuito, Callao, Peru *: Corresponding author : S. Ouillon, Tel.: +33 5 61 33 29 02, email address : [email protected] Abstract: The south-west lagoon of New Caledonia is a wide semi-open coral reef lagoon bounded by an intertidal barrier reef and bisected by numerous deep inlets. -
Weed Response to Cyclones in the Wet Tropics Rainforests – Impacts and Adaptation –
Weed Response to Cyclones in the Wet Tropics Rainforests – Impacts and adaptation – Pub. No. 11/010 www.rirdc.gov.au Weed response to cyclones in the Wet Tropics rainforests Impacts and adaptation by Helen T Murphy, Dan J Metcalfe, Matt G Bradford and Andrew J Ford March 2011 RIRDC Publication No 11/010 RIRDC Project No AWRC 08-61 © 2011 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-190-0 ISSN 1440-6845 Weed response to cyclones in the Wet Tropics rainforests: impacts and adaptation Publication No. 11/010 Project No. AWRC 08-61 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation and the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person arising directly or indirectly from any act or omission or for any consequences of any such act or omission made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. -
KUNINJKU PEOPLE, BUFFALO, and CONSERVATION in ARNHEM LAND: ‘IT’S a CONTRADICTION THAT FRUSTRATES US’ Jon Altman
3 KUNINJKU PEOPLE, BUFFALO, AND CONSERVATION IN ARNHEM LAND: ‘IT’S A CONTRADICTION THAT FRUSTRATES US’ Jon Altman On Tuesday 20 May 2014 I was escorting two philanthropists to rock art galleries at Dukaladjarranj on the edge of the Arnhem Land escarpment. I was there in a corporate capacity, as a direc- tor of the Karrkad-Kanjdji Trust, seeking to raise funds to assist the Djelk and Warddeken Indigenous Protected Areas (IPAs) in their work tackling the conservation challenges of maintain- ing the environmental and cultural values of 20,000 square kilometres of western Arnhem Land. We were flying low in a Robinson R44 helicopter over the Tomkinson River flood plains – Bulkay – wetlands renowned for their biodiversity. The experienced pilot, nicknamed ‘Batman’, flew very low, pointing out to my guests herds of wild buffalo and their highly visible criss-cross tracks etched in the landscape. He remarked over the intercom: ‘This is supposed to be an IPA but those feral buffalo are trashing this country, they should be eliminated, shot out like up at Warddeken’. His remarks were hardly helpful to me, but he had a point that I could not easily challenge mid-air; buffalo damage in an iconic wetland within an IPA looked bad. Later I tried to explain to the guests in a quieter setting that this was precisely why the Djelk Rangers needed the extra philanthropic support that the Karrkad-Kanjdji Trust was seeking to raise. * * * 3093 Unstable Relations.indd 54 5/10/2016 5:40 PM Kuninjku People, Buffalo, and Conservation in Arnhem Land This opening vignette highlights a contradiction that I want to explore from a variety of perspectives in this chapter – abundant populations of environmentally destructive wild buffalo roam widely in an Indigenous Protected Area (IPA) declared for its natural and cultural values of global significance, according to International Union for the Conservation of Nature criteria. -
Exploring Cyclones EARTH and SPACE SCIENCES Introduction
Exploring Cyclones EARTH AND SPACE SCIENCES Introduction At the Queensland Museum, we research a broad range of topics spanning biodiversity, geosciences, cultures and histories, and conservation practices. Often these research areas overlap; for example, Queensland Museum researchers and scientists may explore how the Earth’s landscape shapes our biodiversity, and vice versa. The Queensland Museum Network has one of the largest and most significant Geosciences Collections in the southern hemisphere. The Geosciences Collection consists of 55,000 geological samples and 27,000 mineral samples, as well as over 7 million fossil specimens! This includes nearly 10,000 primary type specimens (reference specimens used to identify, name and classify fossil plant and animal species). The Biodiversity Collection at the Queensland Museum contains over 2.5 million specimens, and scientists from the Queensland Museum have played a role in discovering over 4000 new species since 1862! This resource may be used individually or with the Queensland Museum online resource ‘Volcanoes’. The Queensland Museum has many other resources online that cover our natural environment, including the Queensland Museum Network Field Guide to Queensland Fauna app for identifying local species. This booklet complements the Active Earth Kit which can be borrowed from Queensland Museum loans. Future Makers is an innovative partnership between Queensland Museum Network and QGC formed to encourage students, teachers and the community to get involved in science, technology, engineering and maths (STEM) education in Australia. This partnership aims to engage and inspire people with the wonder of science, and increase the participation and performance of young Australians in STEM-related careers — creating a highly capable workforce for the future. -
Key Factors Influencing the Occurrence and Frequency of Ciguatera
ResearchOnline@JCU This file is part of the following work: Sparrow, Leanne (2017) Key factors influencing the occurrence and frequency of ciguatera. PhD Thesis, James Cook University. Access to this file is available from: https://doi.org/10.25903/5d48bba175630 Copyright © 2017 Leanne Sparrow. The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owners of any third party copyright material included in this document. If you believe that this is not the case, please email [email protected] SPARROW, LEANNE B.Arts – Town Planning B.Sc – Marine Biology; M.App.Sc – Phycology KEY FACTORS INFLUENCING THE OCCURRENCE AND FREQUENCY OF CIGUATERA Doctor of Philosophy College of Science and Engineering James Cook University Submitted: 30 July 2017 Acknowledgements The production of this thesis is the end of a long and challenging journey. While I have endured numerous challenges, I have also gained so much more in experiences along the way – there have been so many wonderful people that I had the fortune to meet through tutoring, work and research. Firstly, I would like to acknowledge my supervisors for their support and contributions to experimental design and editorial advice. In particular I would like to thank Kirsten Heimann, apart from her intellectual guidance and support, she has provided emotional, financial, mentoring and friendship over the years prior and during this research – thank you. I would also like to thank Garry Russ and Leone Bielig for the guidance and the supportive chats that kept me sane towards the end. Out in the field the support and interest of the then managers, Kylie and Rob at Orpheus Island Research Station was greatly appreciated. -
Proceedings of the 2008 Marine and Tropical Sciences Research Facility Annual Conference
Proceedings of the 2008 Marine and Tropical Sciences Research Facility Annual Conference 28 April – 1 May 2008 The Hotel Cairns, Abbott Street, Cairns Compiled by Robin Taylor1 and Suzanne Long2 1 Consultant with Page One 2 Reef and Rainforest Research Centre Limited Supported by the Australian Government’s Marine and Tropical Sciences Research Facility © Reef and Rainforest Research Centre Limited ISBN 9781921359279 This report should be cited as: Taylor, R. and Long, S. (2009) Proceedings of the 2008 Marine and Tropical Sciences Research Facility Annual Conference, 28 April – 1 May 2008. Reef and Rainforest Research Centre Limited, Cairns (230pp.). Sections of this report should be cited as, for example: Carmody, J. and Prideaux, B. (2009) Visitation and recreation in the Wet Tropics World Heritage Area: A comparison of urban and regional residents. In: Proceedings of the 2008 Marine and Tropical Sciences Research Facility Annual Conference, 28 April – 1 May 2008. Taylor, R. and Long, S. (eds.) Reef and Rainforest Research Centre Ltd, Cairns. Published by the Reef and Rainforest Research Centre on behalf of the Australian Government’s Marine and Tropical Sciences Research Facility. The Australian Government’s Marine and Tropical Sciences Research Facility (MTSRF) supports world-class, public good research. The MTSRF is a major initiative of the Australian Government, designed to ensure that Australia’s environmental challenges are addressed in an innovative, collaborative and sustainable way. The MTSRF investment is managed by the Department of the Environment, Water, Heritage and the Arts (DEWHA), and is supplemented by substantial cash and in-kind investments from research providers and interested third parties.