6. Annual Review and Significant Events
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Severe Tropical Cyclone Glenda 27 - 31 March 2006
Severe Tropical Cyclone Glenda 27 - 31 March 2006 Perth Tropical Cyclone Warning Centre Bureau of Meteorology A. Summary Severe Tropical Cyclone Glenda was a small and intense system that developed very rapidly after moving off the northwest Kimberley coast. Glenda reached category 5 intensity but weakened as it approached the Pilbara coast. Although threatening to cross the coast near the populated Dampier/Karratha region as a Category 4 system close to the time of high tide, Glenda took a more SW course towards Onslow and weakened before finally crossing the coast near Onslow at 2200 WST 30 March as a marginal category 3 system. Very destructive winds were recorded on the coast at Mardie prior to crossing. A total of 206 mm of rain fell at Onslow in the 24 hours to 0900 WST 31 March, representing the sixth wettest day on record for the town. Other centres in the Pilbara also recorded cumulative totals of over 200mm, and although in general Glenda produced less than average rainfall for a landfalling tropical cyclone, rainfall was sufficient to cause problems for transport. The weakening of TC Glenda prior to impact on Onslow, together with the preparedness of the town helped to avert major damage. B. Meteorological Description A weak low developed in the Gulf of Carpentaria during the middle of March and slowly progressed westwards over the Northern Territory. On 24 March it moved temporarily into the Joseph Bonaparte Gulf north of Wyndham, then accelerated across the Kimberley overnight. On 26 March vertical wind shear eased and by about 1200 UTC the system moved off the coast and developed rapidly. -
Known Impacts of Tropical Cyclones, East Coast, 1858 – 2008 by Mr Jeff Callaghan Retired Senior Severe Weather Forecaster, Bureau of Meteorology, Brisbane
ARCHIVE: Known Impacts of Tropical Cyclones, East Coast, 1858 – 2008 By Mr Jeff Callaghan Retired Senior Severe Weather Forecaster, Bureau of Meteorology, Brisbane The date of the cyclone refers to the day of landfall or the day of the major impact if it is not a cyclone making landfall from the Coral Sea. The first number after the date is the Southern Oscillation Index (SOI) for that month followed by the three month running mean of the SOI centred on that month. This is followed by information on the equatorial eastern Pacific sea surface temperatures where: W means a warm episode i.e. sea surface temperature (SST) was above normal; C means a cool episode and Av means average SST Date Impact January 1858 From the Sydney Morning Herald 26/2/1866: an article featuring a cruise inside the Barrier Reef describes an expedition’s stay at Green Island near Cairns. “The wind throughout our stay was principally from the south-east, but in January we had two or three hard blows from the N to NW with rain; one gale uprooted some of the trees and wrung the heads off others. The sea also rose one night very high, nearly covering the island, leaving but a small spot of about twenty feet square free of water.” Middle to late Feb A tropical cyclone (TC) brought damaging winds and seas to region between Rockhampton and 1863 Hervey Bay. Houses unroofed in several centres with many trees blown down. Ketch driven onto rocks near Rockhampton. Severe erosion along shores of Hervey Bay with 10 metres lost to sea along a 32 km stretch of the coast. -
Summary of 2005/6 Australian-Region Tropical Storm Season and Verification of Authors’ Seasonal Forecasts
Summary of 2005/6 Australian-Region Tropical Storm Season and Verification of Authors’ Seasonal Forecasts Issued: 15th May 2006 by Professor Mark Saunders and Dr Adam Lea Benfield Hazard Research Centre, UCL (University College London), UK. Summary ¢¡¤£¦¥¨§¨§¨© £¨¨ £¨£¨ ¨£"!$#%¨&('(¨)¨'*+%,¨-'(.¨&/%¨01¨.%'23'(%546¨7+£¨ ¤£¨ ¨£8!$#%¨&('(¨9&*¨¤7:¨&(&*'( ;¨.%'23'*%54=<3 ¢¡¤'*>.¨¤%¨%?@'(%¡9%¡£A:B¨#A-,£C3'(¨#/!$#%¨&('(¨ %,¨-¤'*.¨&%¨0D£¨¨E@¡'(.¡F¨&(&3¡¤¨7F)£&(,@£¨ ¨£"¨.%'23'(%54¨<G ¢¡£" ¢HIJ%£,.'(&(£K-,¨)¤¨)'(&*'(%54 :B¨,£.¨%¦:L¨M%¡¤£¥¨§¨§¨© N £¨¨O¡,@£7P£Q¨.£&*&(£%$R¤'*&(&(ST-,£7'(.%'( :,¨0VUW 4X¥¨§¨§¨©+%¡¨% !K#%¨&('*¨ )¨'( ¨7 &(¨7¤:¨&*&('( Y¨.%'Z3'(%54Y[¨#&(7 )£\.&*¨£\%Y£¨ ¨£<X ¢¡¤£] ¢H¤I 7¤£%£0^'*¤'*%'*.¦:B¨,£.¨%A¡,@£76 ¨¨¨76R¤'*&(&_:B¨;)¤¨'(`¨.%'23'(%54a¨76:B¨¦&*¨¤7:¨&(&*'( M%,¨-'(.¨& %¨0b¤#0^)£_:,¨0bUc 4d¥¨§¨§¨©¨< egf3hejilk m3n(opqsr=t k iu1vKn(wyxOze{r|vK}$ok ~3wk it nZ¨u1m¨ilhwh~¨tNw@pFwy¨u[upiOk¨st(f3h¨¨¨ ^"3wyt(ilpq(n*p~3 ilh,¨n(k ~;t*ilk m3n(opqwtNk iyuwhpwk ~9p~3¦p8gpq(n(¨pt n(k ~k¨t(f3hniwhpwk ~3pqm¨ilk 3p3n(q*n(wyt n(oAp~3¦¨ht hiunZ~3n(wyt n*o k ilhopwyt w>k i?t(f3n(w>potNn 3nZt*¨¤egf3hwh$k ilhopwyt w{@hilh$n*wwy3hKuk ~¨t(f3qZ95ilk ut*f3h$ t(f¦Wp9¨¨¨ "tNk"t*f3h t(f@hohu[3hi8¨¨¨ p~3nZ~3oqZ3¨hKwhm3pilptNhTm¨ilh¨n(otNn(k ~3wsk i{~¨¨u3hilwsk¨¤t*ilk m3n(opqwyt k iuw~¨¨u[3hilw k¨¢wh¤hilh t(ilk m3n(opq¡oC3oq(k ~3hw"p~3¢t(f3h A£E¤¥z5@oo¨u3q(ptNh^£E3oq*k ~3h¦¤¡~3hi 3}snZ~3¨h§3egf3h[q*pt(tNhiKn(w ¨n ¤h~dk i¨t*f3h/"f3k¨q(h/"3wyt(ilpq*n(p~35ilh ¨n(k ~3 Features of the 2005/6 Australian-Region Season • The 2005/6 Australian-region tropical storm season featured 11 storms of which 7 made severe tropical cyclone strength (U.S. -
Characterizing the Hydrodynamics of Jurien Bay, Western Australia
Characterizing the Hydrodynamics of Jurien Bay, Western Australia Kellie Holloway June 2006 Professor Charitha Pattiaratchi ------------------------------------------------------------------------------------- This dissertation is submitted in partial fulfillment of the requirements for the Bachelor of Engineering (Applied Ocean Science) ------------------------------------------------------------------------------------- Abstract Abstract Jurien Bay is a small town on the Central West Coast of Western Australia. With an expanding economy based on fishing, aquaculture and tourism and proximity to Perth, Jurien Bay is expected to grow rapidly over the coming years. Increasing anthropogenic pressure has the potential to compromise the currently pristine natural environment. The livelihood of the town and the economy relies on the quality of the marine environment in particular; hence it is important to understand the dynamics of the system. This study investigates the characteristics of circulation in Essex Lagoon, a deep basin to the south of the main Jurien Bay settlement. This area is a particularly important for investigation due to the future impact of the adjacent Ardross Estates development and the aquaculture zone located within Essex Lagoon. An Acoustic Doppler Current Profiler (ADCP) was deployed in summer 2006 to obtain profiles of current velocity and magnitude over three weeks in Essex Lagoon. This data complemented similar data collected during winter 2002 in Essex Lagoon and was used to carry out a seasonal comparison of currents, to characterize circulation patterns and to examine the potential for outside forcing such as atmospheric pressure systems and the Leeuwin Current to influence circulation. A distinct seasonality was found in the circulation characteristics between summer and winter and this was primarily influenced by seasonality in the wind field. -
Edition 2 from Forest to Fjaeldmark the Vegetation Communities Highland Treeless Vegetation
Edition 2 From Forest to Fjaeldmark The Vegetation Communities Highland treeless vegetation Richea scoparia Edition 2 From Forest to Fjaeldmark 1 Highland treeless vegetation Community (Code) Page Alpine coniferous heathland (HCH) 4 Cushion moorland (HCM) 6 Eastern alpine heathland (HHE) 8 Eastern alpine sedgeland (HSE) 10 Eastern alpine vegetation (undifferentiated) (HUE) 12 Western alpine heathland (HHW) 13 Western alpine sedgeland/herbland (HSW) 15 General description Rainforest and related scrub, Dry eucalypt forest and woodland, Scrub, heathland and coastal complexes. Highland treeless vegetation communities occur Likewise, some non-forest communities with wide within the alpine zone where the growth of trees is environmental amplitudes, such as wetlands, may be impeded by climatic factors. The altitude above found in alpine areas. which trees cannot survive varies between approximately 700 m in the south-west to over The boundaries between alpine vegetation communities are usually well defined, but 1 400 m in the north-east highlands; its exact location depends on a number of factors. In many communities may occur in a tight mosaic. In these parts of Tasmania the boundary is not well defined. situations, mapping community boundaries at Sometimes tree lines are inverted due to exposure 1:25 000 may not be feasible. This is particularly the or frost hollows. problem in the eastern highlands; the class Eastern alpine vegetation (undifferentiated) (HUE) is used in There are seven specific highland heathland, those areas where remote sensing does not provide sedgeland and moorland mapping communities, sufficient resolution. including one undifferentiated class. Other highland treeless vegetation such as grasslands, herbfields, A minor revision in 2017 added information on the grassy sedgelands and wetlands are described in occurrence of peatland pool complexes, and other sections. -
Derwent Catchment Review
Derwent Catchment Review PART 1 Introduction and Background Prepared for Derwent Catchment Review Steering Committee June, 2011 By Ruth Eriksen, Lois Koehnken, Alistair Brooks and Daniel Ray Table of Contents 1 Introduction ..........................................................................................................................................1 1.1 Project Scope and Need....................................................................................................1 2 Physical setting......................................................................................................................................1 2.1 Catchment description......................................................................................................2 2.2 Geology and Geomorphology ...........................................................................................5 2.3 Rainfall and climate...........................................................................................................9 2.3.1 Current climate ............................................................................................................9 2.3.2 Future climate............................................................................................................10 2.4 Vegetation patterns ........................................................................................................12 2.5 River hydrology ...............................................................................................................12 2.5.1 -
KUNINJKU PEOPLE, BUFFALO, and CONSERVATION in ARNHEM LAND: ‘IT’S a CONTRADICTION THAT FRUSTRATES US’ Jon Altman
3 KUNINJKU PEOPLE, BUFFALO, AND CONSERVATION IN ARNHEM LAND: ‘IT’S A CONTRADICTION THAT FRUSTRATES US’ Jon Altman On Tuesday 20 May 2014 I was escorting two philanthropists to rock art galleries at Dukaladjarranj on the edge of the Arnhem Land escarpment. I was there in a corporate capacity, as a direc- tor of the Karrkad-Kanjdji Trust, seeking to raise funds to assist the Djelk and Warddeken Indigenous Protected Areas (IPAs) in their work tackling the conservation challenges of maintain- ing the environmental and cultural values of 20,000 square kilometres of western Arnhem Land. We were flying low in a Robinson R44 helicopter over the Tomkinson River flood plains – Bulkay – wetlands renowned for their biodiversity. The experienced pilot, nicknamed ‘Batman’, flew very low, pointing out to my guests herds of wild buffalo and their highly visible criss-cross tracks etched in the landscape. He remarked over the intercom: ‘This is supposed to be an IPA but those feral buffalo are trashing this country, they should be eliminated, shot out like up at Warddeken’. His remarks were hardly helpful to me, but he had a point that I could not easily challenge mid-air; buffalo damage in an iconic wetland within an IPA looked bad. Later I tried to explain to the guests in a quieter setting that this was precisely why the Djelk Rangers needed the extra philanthropic support that the Karrkad-Kanjdji Trust was seeking to raise. * * * 3093 Unstable Relations.indd 54 5/10/2016 5:40 PM Kuninjku People, Buffalo, and Conservation in Arnhem Land This opening vignette highlights a contradiction that I want to explore from a variety of perspectives in this chapter – abundant populations of environmentally destructive wild buffalo roam widely in an Indigenous Protected Area (IPA) declared for its natural and cultural values of global significance, according to International Union for the Conservation of Nature criteria. -
Liawenee Flume Project
Liawenee Flume Project of consumables by boat over 12,000 miles from Barnsley in the United Kingdom to Hobart. On arrival in Hobart, we were met by Hydro Tasmania repre- sentative Norm Cribbin, whose help, local knowledge and sup- port were to prove invaluable, plus he carried the snakebite kits! Also there were representatives of JDP Coatings, a potential new installer for Australia. We hired a small truck and a large station Liawenee flume is situated high in the mountains north of Ho- wagon, loaded up and set off up the mountain. bart, capital city of Tasmania, an island 180 miles south of Aus- At site we unloaded the preparation equipment and set about tralia. Hobart is Australia’s second oldest and southernmost city, removing the moss, growths and unsound areas from the sur- next stop Antarctica. face with a high-pressure jet washer and in more difficult areas Fernco Environmental Ltd. is an U.K. company that markets a with a pneumatic scabbler. For the next stage we sprayed the unique range of products targeted at the preservation, conserva- whole area to be coated with a dilute bleach as a mild biocide tion, harvesting and recycling of water assets. We presented Fernco Ultracoat, an epoxy coating system de- The challenges were a remote site, no facilities veloped by Warren Environmental, to Tasmania Hydro, highlight- whatsoever, in a national park, an area of conservation, ing its special qualities as a no VOCs, high build in one coat, conditions varied from freezing to +20 degrees Celsius. structurally reinforcing and rapidly applied epoxy coating system with over 15 years of successful in ground history. -
Listing Statement
THREATENED SPECIES LISTING STATEMENT ORCHID L iawenee greenhood Pterostylis pratensis D. L. Jones 1998 Status Tasmanian Threatened Species Protection Act 1995 ……………………………….……..………..………………..vulnerable Commonwealth Environment Protection and Biodiversity Conservation Act 1999 ……………………..….….…...............Vulnerable Hans & Annie Wapstra Description December. In flower, the plants are 7 to 15 cm tall, Pterostylis pratensis belongs to a group of orchids with many closely sheathing stem leaves. They commonly known as greenhoods because the dorsal have 2 to 12 densely crowded white flowers with sepal and petals are united to form a predominantly dark green stripes. The hood apex curves down green, hood-like structure that dominates the abruptly and terminates with a short tip. The two flower. When triggered by touch, the labellum flips lateral sepals hang down and are fused to form a inwards towards the column, trapping any insect pouch below the labellum though the tips may inside the flower, thereby aiding pollination as the remain free. The labellum, which also hangs down, insect struggles to escape. Greenhoods are is whitish green, oblong with a shallowly notched deciduous terrestrials that have fleshy tubers, which tip and has an appendage that points out with a dark are replaced annually. At some stage in their life green, knob-like apex with a short, broad, blunt cycle all greenhoods produce a rosette of leaves. beak about 0.5 mm long. In all, the flowers are 7 to 8.5 mm long and 4.5 mm wide. The rosette of Pterostylis pratensis encircles the base of the flower stem. The 4 to 8 rosette leaves Its darker green and white flowers and larger leaves are dark green, crowded, and oval to circular can distinguish Pterostylis pratensis, which grows shaped with the broadest part in the middle, 25 to in montane and subalpine regions on the Central 35 mm long and 14 to 22 mm wide. -
Storm Surge: Know Your Risk in Queensland!
Storm Surge: Know your risk in Queensland! Storm surge is a rise in sea level above the normal tide usually associated with a low pressure weather system such as a tropical cyclone. Storm surge develops due to strong winds pushing water towards the coastline as well as the low atmospheric pressure drawing up the sea surface. The Queensland coastline is highly vulnerable to storm surge. This is due to the frequency of tropical cyclones, the wide continental shelf and relatively shallow ocean floor in both the Great Barrier Reef lagoon and in the Gulf of Carpentaria, as well as the low lying nature of many coastal cities and towns. While the highest storm surges are more likely to occur in North Queensland and the Gulf of Carpentaria, they can also develop in southeast Queensland affecting the Sunshine Coast, Moreton Bay and the Gold Coast. Storm surges may reach magnitudes of 1 to 10 metres above the tide depending on the intensity of the cyclone, its size and the local characteristics of the coastline. Impacts Coral Sea Storm surge can be very dangerous and poses a critical risk Gulf of Carpentaria to human life during tropical cyclones. Great Cairns Barrier Reef The length of coastline affected by a storm surge can be Innisfail tens to hundreds of kilometres wide. The rise in sea level Cardwell Townsville can be rapid and high in velocity, inundating the ground Bowen floor of buildings, even up to the roof. Mackay Queensland Storm surge has the power to easily move cars, even Gladstone houses, can damage roads and buildings and can be Hervey Bay almost impossible to manoeuvre through. -
Australian Orchidaceae: Genera and Species (12/1/2004)
AUSTRALIAN ORCHID NAME INDEX (21/1/2008) by Mark A. Clements Centre for Plant Biodiversity Research/Australian National Herbarium GPO Box 1600 Canberra ACT 2601 Australia Corresponding author: [email protected] INTRODUCTION The Australian Orchid Name Index (AONI) provides the currently accepted scientific names, together with their synonyms, of all Australian orchids including those in external territories. The appropriate scientific name for each orchid taxon is based on data published in the scientific or historical literature, and/or from study of the relevant type specimens or illustrations and study of taxa as herbarium specimens, in the field or in the living state. Structure of the index: Genera and species are listed alphabetically. Accepted names for taxa are in bold, followed by the author(s), place and date of publication, details of the type(s), including where it is held and assessment of its status. The institution(s) where type specimen(s) are housed are recorded using the international codes for Herbaria (Appendix 1) as listed in Holmgren et al’s Index Herbariorum (1981) continuously updated, see [http://sciweb.nybg.org/science2/IndexHerbariorum.asp]. Citation of authors follows Brummit & Powell (1992) Authors of Plant Names; for book abbreviations, the standard is Taxonomic Literature, 2nd edn. (Stafleu & Cowan 1976-88; supplements, 1992-2000); and periodicals are abbreviated according to B-P- H/S (Bridson, 1992) [http://www.ipni.org/index.html]. Synonyms are provided with relevant information on place of publication and details of the type(s). They are indented and listed in chronological order under the accepted taxon name. Synonyms are also cross-referenced under genus. -
Identification of Climate Change Adaptation Best Practices in the Waste Management Sector ______
Identification of climate change adaptation Best Practices in the Waste Management Sector ___________________________________________ Disaster Waste Management Best practices FINAL REPORT – SEPTEMBER 4TH , 2013 IDENTIFICATION OF CLIMATE CHANGE ADAPTATION BEST PRACTICES IN THE WASTE MANAGEMENT SECTOR PART I REVISIONS VERSION DATE COMMENTS AUTHOR : CHECKED Final document incl. 2 02/09/2013 MLL ThM comments from client 1 19/08/2013 Final document MLL & JW ThM 0 09/08/2013 Draft document part I MLL & JW ThM This document is submitted by Pöyry France – Pöyry France becomes Naldeo Contact : Thierry Martin Manager International Department Naldeo France Phone + 33.4.91.13.97.56 Mobile + 33.6.82.56.92.94 55 rue de la Villette 69425 Lyon cedex 03 - France E-mail : [email protected] Page 2 NALDEO- PÖYRY 2013 IDENTIFICATION OF CLIMATE CHANGE ADAPTATION BEST PRACTICES IN THE WASTE MANAGEMENT SECTOR PART I CONTENTS PART I 1 IDENTIFICATION OF GEOGRAPHIC AREAS AFFECTED BY DESTRUCTIVE EVENTS LINKED TO CLIMATE CHANGE ................................................................................................................ 11 1.1 Effects of climat change .............................................................................................................. 11 1.1.1 Effects of climate change in the Pacific Region .....................................................................................................................11 1.1.2 Affected geographic areas ......................................................................................................................................................13