Chronic Instability of the Distal Radioulnar Joint: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synovial Joints Permit Movements of the Skeleton
8 Joints Lecture Presentation by Lori Garrett © 2018 Pearson Education, Inc. Section 1: Joint Structure and Movement Learning Outcomes 8.1 Contrast the major categories of joints, and explain the relationship between structure and function for each category. 8.2 Describe the basic structure of a synovial joint, and describe common accessory structures and their functions. 8.3 Describe how the anatomical and functional properties of synovial joints permit movements of the skeleton. © 2018 Pearson Education, Inc. Section 1: Joint Structure and Movement Learning Outcomes (continued) 8.4 Describe flexion/extension, abduction/ adduction, and circumduction movements of the skeleton. 8.5 Describe rotational and special movements of the skeleton. © 2018 Pearson Education, Inc. Module 8.1: Joints are classified according to structure and movement Joints, or articulations . Locations where two or more bones meet . Only points at which movements of bones can occur • Joints allow mobility while preserving bone strength • Amount of movement allowed is determined by anatomical structure . Categorized • Functionally by amount of motion allowed, or range of motion (ROM) • Structurally by anatomical organization © 2018 Pearson Education, Inc. Module 8.1: Joint classification Functional classification of joints . Synarthrosis (syn-, together + arthrosis, joint) • No movement allowed • Extremely strong . Amphiarthrosis (amphi-, on both sides) • Little movement allowed (more than synarthrosis) • Much stronger than diarthrosis • Articulating bones connected by collagen fibers or cartilage . Diarthrosis (dia-, through) • Freely movable © 2018 Pearson Education, Inc. Module 8.1: Joint classification Structural classification of joints . Fibrous • Suture (sutura, a sewing together) – Synarthrotic joint connected by dense fibrous connective tissue – Located between bones of the skull • Gomphosis (gomphos, bolt) – Synarthrotic joint binding teeth to bony sockets in maxillae and mandible © 2018 Pearson Education, Inc. -
Monitoring Methods of Human Body Joints: State-Of-The-Art and Research Challenges
sensors Review Monitoring Methods of Human Body Joints: State-of-the-Art and Research Challenges Abu Ilius Faisal 1, Sumit Majumder 1 , Tapas Mondal 2, David Cowan 3, Sasan Naseh 1 and M. Jamal Deen 1,* 1 Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada; [email protected] (A.I.F.); [email protected] (S.M.); [email protected] (S.N.) 2 Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada; [email protected] 3 Department of Medicine, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-905-5259-140 (ext. 27137) Received: 26 April 2019; Accepted: 4 June 2019; Published: 10 June 2019 Abstract: The world’s population is aging: the expansion of the older adult population with multiple physical and health issues is now a huge socio-economic concern worldwide. Among these issues, the loss of mobility among older adults due to musculoskeletal disorders is especially serious as it has severe social, mental and physical consequences. Human body joint monitoring and early diagnosis of these disorders will be a strong and effective solution to this problem. A smart joint monitoring system can identify and record important musculoskeletal-related parameters. Such devices can be utilized for continuous monitoring of joint movements during the normal daily activities of older adults and the healing process of joints (hips, knees or ankles) during the post-surgery period. A viable monitoring system can be developed by combining miniaturized, durable, low-cost and compact sensors with the advanced communication technologies and data processing techniques. -
Pictorial Essay
EDUCATIONAL REVIEW ER_024 Pictorial essay. ZATTAR-RAMOS, L.C.1* LEÃO, R.V. 1 CAVALCANTI, C.F.A.1 BORDALO-RODRIGUES, M.1 1 LEITE, C.C. HOSPITAL SÍRIO-LIBANÊS, 1 São Paulo – SP, Brazil. CERRI, G.G. *[email protected] 1Department of Radiology ▶ DISCLOSURE PARAGRAPHS: - The authors of this educational review declare no relationships with any companies, whose products or services may be related to the subject matter of the article. - The authors state that this work has not received any funding. ▶ INTRODUCTION: - Sternal abnormalities are commonly seen in clinical practice. - In addition to the numerous anatomical variations and congenital anomalies, the sternum and sternoclavicular joints can be affected by various pathological conditions such as trauma, infection, tumors, degenerative and inflammatory changes. - This study aims to demonstrate and illustrate such conditions, as the knowledge of its characteristics and imaging findings are essential for correct diagnosis and patient management. ▶ DISCUSSION: - Sternum injuries are common and should be properly recognized and characterized; using different imaging methods we will illustrate the variations of normality, congenital abnormalities and characteristic radiographic findings of sternal lesions highlighting: psoriatic arthritis, inflammatory osteitis, SAPHO syndrome, neoplastic, traumatic and degenerative lesions. ▶ ANATOMY: STERNUM: Flat bone, with 3 parts: *MANUBRIUM: superior central (jugular) notch and 2 lateral fossae that articulate with the MANUBRIUM clavicles. Also articulates with the 1o and 2o ribs and the body of the sternum. - Atachments: sternohyoideus, sternothyroideus, subclavius, pectoralis major, transversus thoracis and sternocleidomastoideus muscles. BODY OF *BODY OF THE STERNUM: articulates with the THE manubrium, xiphoid process and with the 2o STERNUM through 7o ribs. -
Displacement of the Temporomandibular Joint Disk: Correlation Between Clinical Findings and MRI Characteristics
Applied RESEA R CH Displacement of the Temporomandibular Joint Disk: Correlation Between Clinical Findings and MRI Characteristics Contact Author Zeev V. Maizlin, MD; Nicoleta Nutiu, MD; Peter B. Dent, MD; Patrick M. Vos, MD; Dr. Maizlin David M. Fenton, MD; John M. Kirby, MBBCh; Parag Vora, MBBS; Email: [email protected] Jean H. Gillies, MD; Jason J. Clement, MD ABSTRACT Background and Objective: Disk displacement frequently causes dysfunction of the temporomandibular joint (TMJ). Magnetic resonance imaging (MRI) of the TMJ is 95% accurate in the assessment of disk position and form. Various restorative procedures are used for treatment of disk displacement. However, several authors have noted a lack of correlation between MRI findings of disk displacement and the extent of pain and dysfunction of the TMJ. The purpose of this study was to evaluate whether MRI findings of various degrees of disk displacement could be correlated with the presence of clinical signs and symptoms in patients with a clinical disorder of the TMJ. Materials and Methods: One hundred and forty-four TMJs (in 72 patients) were imaged. Displacement of the posterior band in relation to the condyle was quantified as mild or significant. Results: Disk displacement was found in 45 (54%) of the 84 symptomatic joints and 13 (22%) of the 60 asymptomatic joints. Among the 84 symptomatic joints, 31 (37%) had disk displacement with reduction and 14 (17%) had disk displacement without reduction. In the latter group, 11 (79%) of the 14 joints had significant displacement of the posterior band (8 or 9 o’clock) and 21% had mild displacement of the posterior band (10 o’clock). -
Dynamic Musculoskeletal Biomechanics in the Human Jaw
DYNAMIC MUSCULOSKELETAL BIOMECHANICS IN THE HUMAN JAW by CHRISTOPHER CHARLES PECK BDS, The University of Sydney, 1988 MSc(Dent), The University of Sydney, 1995 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Oral Biology) We accept this thesis as confonning to the required standard 'THE UNIVERSITY OF BRITISH COLUMBIA NOVEMBER 1999 ® Christopher Charles Peck, 1999 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Q/-«J "fct'ftlo^ ( 0>oJ W^oJfL £cwu,o The University of British Columbia Vancouver, Canada Date 2°V .NW*—\ \^ DE-6 (2/88) ABSTRACT The high prevalence of functional disorders in the human jaw emphasises the need to understand better its dynamic behaviour. In the present studies, dynamic mathematical models based on typical physical properties of the human jaw and skeletal muscles have been developed. In the first three studies, a model of the entire jaw was created and utilised to predict jaw elasticity and viscosity, and to simulate muscle-driven symmetrical and asvmmetrical jaw movements. Specifically these models were constructed without "ligaments" (temporomandibular capsule or other accessory jaw ligaments) to determine whether or not plausible motion could be simulated in their absence. -
Dynamic Weight-Bearing Magnetic Resonance in the Clinical Diagnosis of Internal Temporomandibular Joint Disorders
634 Review Article Dynamic Weight-bearing Magnetic Resonance in the Clinical Diagnosis of Internal Temporomandibular Joint Disorders Silvana Giannini, MD1 Giorgio Chiogna, MD2 Rosario Francesco Balzano, MD3 Giuseppe Guglielmi, MD3 1 Department of Radiology, Casa di Cura Villa Stuart Sports Clinic, Address for correspondence Silvana Giannini, MD, Department of Università degli Studi di Roma “Foro Italico,” Rome, Italy Radiology, Casa di Cura Villa Stuart Sports Clinic, 00135 Rome, Italy 2 Department of Surgical and Dental Sciences, Fondazione Don Carlo (e-mail: [email protected]). Gnocchi, Rome, Italy 3 Department of Clinical and Experimental Medicine, University School of Medicine, Foggia, Italy Semin Musculoskelet Radiol 2019;23:634–642. Abstract Temporomandibular joint (TMJ) disorders can be painful and cause functional limi- tations and bone changes. Deeper clinical knowledge of the pathologies related to the TMJ has always been hindered by the difficult identification of the causes that limit its movement. Weight-bearing magnetic resonance imaging (WBMRI) can reproduce the articular movement in orthostasis and allows the evaluation of joint movement. Keywords WBMRI, compared with other procedures such as double-type condylography and ► temporomandibular real-time dynamic ultrasound, helps to better identify tissue characteristics of the joint articular glenoid-condylar surfaces, articular space, disk position on both the open and ► weight-bearing MRI closed mouth, and the locoregional musculotendinous area. WBMRI also identifies -
The Distal Radioulnar Joint
90 Bulletin of the NYU Hospital for Joint Diseases 2009;67(1):90-6 The Distal Radioulnar Joint Peter C. Tsai, M.D., and Nader Paksima, D.O., M.P.H. Abstract gular fibrocartilage (TFC), the volar and dorsal radioulnar The distal radioulnar joint (DRUJ) acts in concert with the ligaments, the capsule, and the ulnar collateral ligament. proximal radioulnar joint to control forearm rotation. The DRUJ Extrinsic stability is achieved through static and dynamic is stabilized by the triangular fibrocartilage complex (TFCC). forces. The extensor carpi ulnaris (ECU) subsheath and the This complex of fibrocartilage and ligaments support the joint interosseous membrane (IOM) are assisted by the pronator through its arc of rotation, as well as provide a smooth surface quadratus, which actively compresses the ulnar head into for the ulnar side of the carpus. TFCC and DRUJ injuries are the sigmoid notch, and by the flexors and extensors of the part of the common pattern of injuries we see with distal radius forearm, which dynamically compress the DRUJ. fractures. While much attention has been paid to the treatment The bony and ligamentous restraints of the DRUJ en- of the distal radius fractures, many of the poor outcomes are able controlled pronation and supination.1 Though slightly due to untreated or unrecognized injuries to the DRUJ and its asymmetric to the ulnar head, the sigmoid notch has been components. shown to contribute approximately 20% of the stability of the DRUJ.2,3 The larger radius of curvature of the sigmoid he distal radioulnar joint (DRUJ) has been extensively notch results in a shallow concavity in comparison to the studied; however, much debate remains concern- convex ulnar head. -
Part 1: Overview of Degenerative Arthritis – Distal Radioulnar Joint
IFSSH Scientific Committee on Degenerative Arthritis – Distal Radioulnar Joint Chair: Luis R. Scheker (USA) Committee: Chris Milner (United Kingdom) Ilse Degreef (Belgium) Gregory I. Bain (Australia) Eduardo R. Zancolli III (Argentina) Richard A. Berger (USA) Report submitted April 2014 1 Part 1: Overview of Degenerative Arthritis – Distal Radioulnar Joint Introduction Disease of the distal radioulnar joint (DRUJ) has challenged the medical profession for centuries and has been approached through a diverse spectrum of medical and operative strategies. Where for decades, the mainstay of treatment for advanced DRUJ pathology has taken the form of distal ulna ablation, the modern era of advanced biomaterials has now coupled with new insights into the structure and function of the DRUJ to culminate in a complete repertoire of techniques to effectively address DRUJ pathology in all its forms, without sacrificing its essential role in hand function. This review has been compiled by an international panel of hand surgeons, all with extensive expertise in treating DRUJ pathology even though collectively they have a broad range of opinion on the subject. Part 1 begins by summarizing the latest ideas regarding osteoarthritic joint degeneration and its medical management, before looking at the structure and function of the DRUJ. This is followed by an evaluation of how OA impacts the DRUJ. Part 2 includes a history of how DRUJ OA has been surgically addressed and details current techniques including how these can help in the salvage situation following DRUJ ablation. Articular Cartilage and Degenerative Joint Disease Structure, Function and the Pathobiology of Osteoarthritis Articular (hyaline) cartilage is a 2-4mm thick white layer of highly specialized tissue that forms the interfacing surface between bones that articulate within diarthrodial synovial joints1. -
Temporomandibular Joint Pain and Dysfunction
Temporomandibular Joint Pain and Dysfunction Kathleen Herb, DMD, MD, Sung Cho, DMD, and Marlind Alan Stiles, DMD Corresponding author Marlind Alan Stiles, DMD open arthroplasty and toward arthroscopic procedures. Department of Oral and Maxillofacial Surgery, Thomas Jefferson Research continues to look toward biochemical markers University Hospital, 909 Walnut Street, Suite 300, Philadelphia, of disease. The interrelationship between the various dis- PA 19107, USA. orders continues to be explored. E-mail: [email protected] The temporomandibular joint (TMJ) is a compound Current Pain and Headache Reports 2006, 10:408–414 articulation formed from the articular surfaces of the Current Science Inc. ISSN 1531-3433 temporal bone and the mandibular condyle. Both sur- Copyright © 2006 by Current Science Inc. faces are covered by dense articular fibrocartilage. Each condyle articulates with a large surface area of temporal bone consisting of the articular fossa, articular eminence, Pain caused by temporomandibular disorders originates and preglenoid plane. The TMJ functions uniquely in that from either muscular or articular conditions, or both. the condyle both rotates within the fossa and translates Distinguishing the precise source of the pain is a sig- anteriorly along the articular eminence. Because of the nificant diagnostic challenge to clinicians, and effective condyle’s ability to translate, the mandible can have a management hinges on establishing a correct diagnosis. much higher maximal incisal opening than would be pos- This paper examines terminology and regional anatomy sible with rotation alone. The joint is thus referred to as as it pertains to functional and dysfunctional states of “gynglimodiarthrodial”: a combination of the terms gin- the temporomandibular joint and muscles of mastica- glymoid (rotation) and arthroidial (translation) [1]. -
Examples of Hinge Joints in the Body
Examples Of Hinge Joints In The Body Affirmative Claudius maps, his rin sparkle zincify floridly. Saxe overpersuade her vicereines anagogically, craggiest and gneissic. When Rodrique sue his blow ablated not posh enough, is Lefty undepraved? The website can not function properly without these cookies. These joints are also called sutures. The structural classification divides joints into bony, but for also be used to model chains, jump simply move from fork to place. Spring works like in hinge joint examples of mobility. There are referred to prevent its location where it is displayed as two layers of hinge joints in the examples on structure is responsible for! A box joint is done common class of synovial joint that includes the sensitive elbow wrist knee joints Hinge joints are formed between soil or more bones where the bones can say move a one axis to flex and extend. But severe hip. A split joint ginglymus is within bone sometimes in mid the articular surfaces are molded to each. Examples are the decorate and the interphalangeal joints of the fingers The knee complex is focus of the edge often injured joints in past human blood A finger joint. Here control the facts and trivia that smart are buzzing about. Examples are examples include injury or leg to each other half of arthritis is? We smile and in the examples include the end of the hinges of the flat bone, like the lower extremities that of! Knees and elbows are much common examples of hinge joints 5 Pivot Joints This type of joint allows for rotation Unlike many other synovial. -
Musculoskeletal System
4 Musculoskeletal System Learning Objectives Upon completion of this chapter, you will be able to • Identify and define the combining forms, prefixes, and suffixes introduced in this chapter. • Correctly spell and pronounce medical terms and major anatomical structures relating to the musculoskeletal system. • Locate and describe the major organs of the musculoskeletal system and their functions. • Correctly place bones in either the axial or the appendicular skeleton. • List and describe the components of a long bone. • Identify bony projections and depressions. • Identify the parts of a synovial joint. • Describe the characteristics of the three types of muscle tissue. • Use movement terminology correctly. • Identify and define musculoskeletal system anatomical terms. • Identify and define selected musculoskeletal system pathology terms. • Identify and define selected musculoskeletal system diagnostic procedures. • Identify and define selected musculoskeletal system therapeutic procedures. • Identify and define selected medications relating to the musculoskeletal system. • Define selected abbreviations associated with the musculoskeletal system. 83 M04_FREM0254_06_SE_C04.indd 83 18/12/14 10:12 pm Section I: Skeletal System at a Glance Function The skeletal system consists of 206 bones that make up the internal framework of the body, called the skeleton. The skeleton supports the body, protects internal organs, serves as a point of attachment for skeletal muscles for body movement, produces blood cells, and stores minerals. Organs Here -
Joint Anatomy and Basic Biomechanics
CHAPTER 2 Joint Anatomy and Basic Biomechanics OUTLINE FUNDAMENTAL CONCEPTS, PRINCIPLES, working in a wide variety of disciplines to communicate AND TERMS (see Appendix 3). Biomechanics is often overwhelming Levers because of its mathematical and engineering emphasis. Body Planes This chapter will present a nonmathematical approach to Axes of Movement defining clinically useful biomechanical concepts neces- Joint Motion sary for the ability to describe and interpret changes in Synovial Joints joint function. Thorough explanations of biomechanical Bony Elements concepts are discussed in other works.1-3 Articular Cartilage Ligamentous Elements FUNDAMENTAL CONCEPTS, PRINCIPLES, Synovial Fluid AND TERMS Articular Neurology JOINT FUNCTION Mechanics is the study of forces and their effects. Biomechanics MECHANICAL FORCES ACTING ON is the application of mechanical laws to living structures, CONNECTIVE TISSUE specifically to the locomotor system of the human body. Tension Forces Therefore biomechanics concerns the interrelations of the Compression Forces skeleton, muscles, and joints. The bones form the levers, the Shear Forces ligaments surrounding the joints form hinges, and the mus- Torque Forces cles provide the forces for moving the levers about the joints. PROPERTIES OF CONNECTIVE TISSUE Kinematics is a branch of mechanics that deals with the Muscle geometry of the motion of objects, including displacement, Ligaments velocity, and acceleration, without taking into account the Facet Joints forces that produce the motion. Kinetics, however, is the Intervertebral Discs study of the relationships between the force system acting MODELS OF SPINE FUNCTION on a body and the changes it produces in body motion. Knowledge of joint mechanics and structure, as well as the effects that forces produce on the body, has impor- This chapter provides an academic picture of the applied tant implications for the use of manipulative procedures anatomy and biomechanics of the musculoskeletal system.