An Introduction to the M-14P for Flat-Engine Pilots by Fred
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Sme1601 Advanced Internal Combustion Engineering
SCHOOL OF MECHANICAL ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING SME1601 ADVANCED INTERNAL COMBUSTION ENGINEERING UNIT I INTRODUCTION TO I.C ENGINES I. INTRODUCTION TO I.C ENGINES Classification of I.C Engines-Thermodynamics of Air Standard Otto and Diesel Cycles – Working of 4 Stroke and 2 stroke –S.I and C.I engines– Comparison of S.I and C.I Engines-I.C engine fuels, types, Combustion of fuels-Rating of fuels – composition of petrol and diesel fuels - importance Of valve and port timing. As the name implies or suggests, the internal combustion engines (briefly written as IC engines) are those engines in which the combustion of fuel takes place inside the engine cylinder. These are petrol, diesel, and gas engines. CLASSIFICATION OF IC ENGINES The internal combustion engines may be classified in many ways, but the following are important from the subject point of view 1. According to the type of fuel used (a) Petrol engines. (b) Diesel engines or oil engines, and (c) Gas engines. 2. According to the method of igniting the fuel (a) Spark ignition engines (briefly written as S.1. engines), (b) Compression ignition engines (briefly written as C.I. engines), and (c) Hot spot ignition engines 3. According to the number of strokes per cycle (a) Four stroke cycle engines, and (b) Two stroke cycle engines. 4. According to the cycle of operation (a) Otto. cycle (also known as constant volume cycle) engines, (b) Diesel cycle (also known as constant pressure cycle) engines, and (c) Dual combustion cycle (also known as semi-diesel cycle) engines. -
Introduction to Internal Combustion Engines
k Chapter 1 Introduction to Internal Combustion Engines 1.1 INTRODUCTION The goals of this textbook are to describe how internal combustion engines work and provide insight into how engine performance can be modeled and analyzed. The main focus of the text is the application of the thermal sciences, including thermodynamics, combus- tion, fluid mechanics, and heat transfer, to internal combustion engines. An aspect upon which we will put considerable emphasis is the development of idealized models to repre- sent the actual features of an operating engine. Engineers use the methods and analyses introduced in the textbook to calculate the performance of proposed engine designs and to parameterize and correlate engines experiments. With the advent of high-speed computers and advanced measurement tech- niques, today’s internal combustion engine design process has evolved from being purely k k empirical to a rigorous semi-empirical process in which computer based engineering software is used to evaluate the performance of a proposed engine design even before the engine is built and tested. In addition to detailed analysis, the textbook contains numerous computer routines for calculating the various thermal and mechanical parameters that describe internal combustion engine operation. In this chapter we discuss the engineering parameters, such as thermal efficiency, mean effective pressure, and specific fuel consumption, that are used to characterize the over- all performance of internal combustion engines. Major engine cycles, configurations, and geometries are also covered. The following chapters will apply the thermal science princi- ples to determine an internal combustion engine’s temperature and pressure profiles, work, volumetric efficiency, and exhaust emissions. -
Service Information 2009 Technik Introduction All Boxster/Cayman Models Cardiagn.Com
® cardiagn.com Service Information 2009 Technik Introduction All Boxster/Cayman Models cardiagn.com Important Notice: Some of the contents of this AfterSales Training brochure was originally written by Porsche AG for its rest-of- world English speaking market. The electronic text and graphic files were then imported by Porsche Cars N.A, Inc. and edited for content. Some equipment and technical data listed in this publication may not be applicable for our market. Specifications are sub- ject to change without notice. We have attempted to render the text within this publication to American English as best as we could. We reserve the right to make changes without notice. © 2009 Porsche Cars North America, Inc. All Rights Reserved. Reproduction or translation in whole or in part is not permitted without written authorization from publisher. AfterSales Training Publications Dr. Ing. h.c. F. Porsche AG is the owner of numerous trademarks, both registered and unregistered, including without limitation the Porsche Crest®, Porsche®, Boxster®, Carrera®, Cayenne®, Cayman™, Panamera®, Tiptronic®, VarioCam®, PCM®, 911®, 4S®, FOUR, UNCOMPROMISED.SM and the model numbers and distinctive shapes of Porsche's automobiles such as, the federally registered 911 and Boxster automobiles. The third party trademarks contained herein are the properties of their respective owners. Specifications, performance standards, options, and other elements shown are subject to change without notice. Some vehicles may be shown with non-U.S. equipment. Porsche recommends seat belt usage and observance of traffic laws at all times. Printed in the USA Part Number - PNA 987 021 09 Edition - 2/09 Foreword Since its North American launch in 1997, “Boxster” has quickly become synony- mous with the ultimate in roadster feeling. -
A Handbook on the Steam Engine, with Especial Reference to Small And
ADVERTlSEMElfTS. i+t\\i JD, 3.E. YS. (YS, Tl sPOUS U ^rcacuteb to PI nd), of I tt of Toronto id). Professor E.A.Allcut AL. Is. Castings in Bronze, Brass and Gun and White Metals, Machined if required. ROLLED PHOSPHOR BRONZE, Strip and Sheet, for Air Pump Valves, Eccentric Strap Liners, etc. HIKE find TELEPHONE WIRE. AD VER TISEMENTS. THE PHOSPHOR BRONZE CO, LIMITED, 87, Sumner Street, Southwark, London, S.E. And at BIRMINGHAM. r "COG WHEEL" and Sole Makers of the j3S %jg "VULCAN" iSPI^flfiC Brands of The best and most durable Alloys for Slide Valves, Bearings, Bushes, Eccentric Straps, and other parts of Machinery exposed to friction and Piston Motor wear ; Pump Rods, Pumps, Rings, Pinions, Worm Wheels, Gearing, etc. "DURO METAL" (REGISTERED TRADE MARK). Alloy B, specially adapted for BEARINGS for HOT-NECK ROLLS. CASTINGS In BRONZE, BRASS, GUN and WHITE METALS, in the Rough, or Machined, if required. ROLLED AND DRAWN BRONZE, GERMAN SILVER, GUN METAL, TIN, WHITE METALS AND ALUMINIUM BRONZE ALLOYS PHOSPHOR TIN & PHOSPHOR COPPER, "Cog-Wheel" Brand. Please specify the Manufacture of THE PHOSPHOR BRONZE CO., Ltd., of Southwark, London. lii ADVERTISEMENTS, ROBEY & Co GLOBE WORKS, LINCOLN. Mod Compound Horizontal Fixed Engine, it.- 1 iiii I'.ii.-nt Ti-ip Kxitiimioii (ic:ir. tolnijthe limpl >nUit ml miTrt economical at uuv in tin- market, and working ;.|iei to the Newcastle-nil -Tvm .tit Station (MX large engines), also St. Helens mint lam. BrUbane Electric Tram- Open-front High-speed Vertical e, for electric lighting. All thete Engine* are specially Dengned and Adapted for Electric Lighting. -
Internal Combustion Engine T Alrayyes Internal Combustion Engine
Internal combustion Engine T Alrayyes Internal Combustion Engine Total Credits 3 credits Course Type Optional Name of Instructor Dr. Taleb BakrAlrayyes Email:[email protected] Text Book Pulkrabek, Willard W. Engineering Fundamentals of the Internal Combustion Engine , Prentice Hall Topics covered • Operating characteristics • Engine Standard and real Cycles • Thermochemistry and fuel • Intake and exhaust • Combustion • Emissions and air pollusion • Heat transfer in Engines Engine main strokes Early history • Huygens (1673) developed piston mechanism, Papin (1695) first to use steam in piston mechaanism • Lenoir Engine (1860): driving the piston by the expansion of burning products - first practical engine, 0.5 HP later 4.5 kW engines with mech efficiency up to 5%. several hundred of these engine • Otto-Langen Engine (1867), Mechanical Efficiency 11%. • Otto was given credit for the first built 4 stroke internal combustion Engine • 1880s the internal combustion engine first appeared. • Also in this decade the two-stroke cycle engine became practical and was manufactured in large numbers. • Diesel Engine 1892: noisy, large, single cylinder. • 1920s multicylinder engines where introduced • Daimler/Maybach (1882) Incorporated IC engine in automobile Single cylinder Otto Engine Engine parts Valves: Minimum Two Valves pre Cylinder • Exhaust Valve lets the exhaust gases escape the combustion Chamber. (Diameter is smaller then Intake valve) • Intake Valve lets the air or air fuel mixture to enter the combustion chamber. (Diameter is larger -
DOCUMENT RESUME TITLE Basic Principles of Marine Diesel.Engines, 8-2. Military Curriculum Materials for Vocational and Technical
DOCUMENT RESUME ED 223 901 CE 034 541 TITLE Basic Principles of Marine Diesel.Engines, 8-2. Military Curriculum Materials for Vocational and Technical Education. INSTITUTION Army Transportation School, Fort Eustic, VA.;Ohio State Univ., Columbus. National Center for Research in Vocational Edudation. SPONS AGENCY Office of Education (DHEW), Washington, D.C. PUB DATE 78 NOTE 110p. PUB TYPE Guides - Classroom Use Materials (For Learner) (051) EDRS PRICE MF01/PC05 Plus Postage. DESCRIPTORS Behavioral Objectives; *Diesel Engines; Individualized Instruction; Learning Activities; *Mechanics (Process); Pacing; Postsecondary Education; Secondary Education; Tests; Textbooks; *Trade and Industrial Education IDENTIFIERS *Marine Equipment; Military Curriculum Project ABSTRACT This volume of student materials for a secondary/postsecondary level course in principles of marine diesel engines is,one of a number of.military-developed curriculumpackages selected for adaptation to vocational instruction andcurriculum development in a civilian setting. The purpose of theindividualized, self-paced course is to acquaint students with theoperating cycles and systems that make ,up a diesel engine. Itprovides theory that is useful in laboratory and on-the-job learningexperiences. The course is divided into two lessons: Diesel EngineConstruction, Principles, and Structural Parts; and Valve Gear, FuelInjection, and Governors. These materials are included: the reference text,"Basic Principles of Marine Diesel Engines" (five chapters and anappended glossary); and -
The 996: First 911 with Water-Cooled Flat Engine
The 996: First 911 with water-cooled flat engine With the fifth generation of the 911 introduced in 1997 – the type 996 – Porsche took the bold step to stop using air-cooled engines. After 34 years, the sports car manufacturer completely revamped its icon with the new 911 and in doing so solved a number of urgent challenges. As part of a process that had started with the predecessor, the focus was on reducing production costs through maximum compatibility of parts with other model series, such as the Boxster, as well as on meeting updated safety and emissions regulations. Porsche found its path into the future with the 996. It did this by preserving classic proportions and combining them with modern technology – in short, re-inventing a sports car legend and preparing it for the future. The 996 had a difficult legacy to follow, but it also represented the first chapter of a new era. That was already clear in the design. The result was a newly developed body, which impressed with an elegant, no-frills look. The dimensions also grew: The new 911 was now 18.5 centimetres longer, and the wheelbase was also lengthened for the second time in the history of the model series. This increased by 80 mm, while the body width also added another three centimetres. The interior also benefited from these changes: the 996 offered more elbow room and a more generous feeling of spaciousness. The dashboard also had a new look: the five round instruments merge into each other – another break with tradition. -
US1653136.Pdf
Patented Dec. 20, 1927. 1,653,136 UNITED STATES PATENT OFFICE. HOMAS H. THOMAS, OF EDGEwooD, PENNSYLVANIA, ASSIGNOR. To west ING iOUSE AIR BRAKE COMPANY, OF WILMERDING, PENNSYLVANIA, A coRPoRATION OF PENINSYLVANIA. FLUID-PRESSURE BRAKE Application filed April 11, 1927. serial No. 182,744. This invention relates to fluid pressure comprising a piston 8, having the chamber 9 brakes, and more particularly to the brake at one side thereof connected to the equaliz control equipment on the locomotive. ing reservoir 10 through a passage 11, choke. In the usual locomotive fluid pressure 12, and pipe 13. At the opposite side of the 5 brake equipment the automatic brake valve piston 8 the chamber 14 is connected with the 60 device is normally carried in running po brake pipe 15 through a passage 16 and sition, while the brakes are held fülease?, and branch pipe 17. The piston 8 is adapted to when the brake valve device is in this posi operate a discharge valve 18 for controlling tion, fluid under pressure is supplied to the 0 the venting of fluid from the brake pipe 15. brake pipe through a feed valve device, to Also. ... O included... ". in the brake valve device 65 maintain the pressure in the brake pipe at casing, is a cut-off valve mechanism compris a predetermined degree. ing a valve 19 contained in a chamber 20 If, when the brakes are in release position, and adapted, in one position, to seal against a sudden or emergency reduction in brake a seat ring 21. The valve 19 is connected pipe pressure is initiated somewhere in the with the stem 22 of a piston 23, at one side 7 train, other than by the operation of the of which piston there is a chamber 24 con automatic brake valve device, this reduc nected to the brake pipe 15 through a pas tion will be propagated serially throughout Sage 25, passage 16 and branch pipe 17. -
Steam Power Plant Cycles
www.getmyuni.com Steam Power Plant Cycles Classification of Power plant Cycle Power plants cycle generally divided in to the following groups, (1) Vapour Power Cycle (Carnot cycle, Rankine cycle, Regenerative cycle, Reheat cycle, Binary vapour cycle) (2) Gas Power Cycles (Otto cycle, Diesel cycle, Dual combustion cycle, Gas turbine cycle.) 1. CARNOT CYCLE This cycle is of great value to heat power theory although it has not been possible to construct a practical plant on this cycle. It has high thermodynamics efficiency. It is a standard of comparison for all other cycles. The thermal efficiency () of Carnot cycle is as follows: = (T1 – T2)/T1 where, T1 = Temperature of heat source T2 = Temperature of receiver 2. RANKINE CYCLE Steam engine and steam turbines in which steam is used as working medium follow Rankine cycle. This cycle can be carried out in four pieces of equipment joint by pipes for conveying working medium as shown in Fig. 1.1. The cycle is represented on Pressure Volume P-V and S-T diagram as shown in Figs. 1.2 and 1.3 respectively. 3.REHEAT CYCLE In this cycle steam is extracted from a suitable point in the turbine and reheated generally to the original temperature by flue gases. Reheating is generally used when the pressure is high say above 100 kg/cm2. The various advantages of reheating are as follows: (i) It increases dryness fraction of steam at exhaust so that blade erosion due to impact of water particles is reduced. (ii) It increases thermal efficiency. (iii) It increases the work done per kg of steam www.getmyuni.com and this results in reduced size of boiler. -
EJ Engines 101.Pdf
EJ Engines 101 Disclaimer: The below is for reference purposes only. It may not be accurate. It was collected from many sources and again, the below information is just informational. Please use at your own risk. Identifying An EJ A 10-digit engine code is used by Subaru: the first 2 characters identify the engine series. The 3rd & 4th identify displacement volume in liters. The 5th digit is a sub-series identifier and fuel system flag. The 6th digit identifies emissions regulations it conforms to, while the 7th digit shows the intended transmission it was mated with. The final 3 digits are minor production change codes. The series engine is also physically embossed on the top of the engine block, to the left of the alternator. EJ15 1.5 Litre SOHC Usage: * Impreza (JDM only, though often seen in gray market exports to eastern Europe and Russia.) EJ16 1.6 Litre SOHC, 90 hp (67 kW) @ 5600 rpm. Usage: * Impreza 93-94 (JDM only) * Impreza 93-06 (Europe & Middle East) * Impreza 93-97 (Australia) EJ18 1.8 Litre SOHC 110 hp (82 kW) @ 5600 rpm. Usage: * Impreza 93-99 * Legacy (non-USDM) 90-96 EJ20 2.0 Litre SOHC or DOHC EJ20T This is not actually a valid code from Subaru, but is mostly used by enthusiasts and also mechanics to describe the entire line of 2.0 litre turbocharged engines that have been available over time. When referring to the EJ20T, one is speaking of one of the following: EJ20G EJ20G fall in to 2 categories -early engines 1989-9/1996 -late wagon and automatic sedans from 1994/1996 and later to identify an early EJ20G * Coil on plug * Divorced idle air wer q Late model EJ20Gs are the same general design as the EJ20K 3a q3t Usage: * Legacy RS 89-93 * Legacy RS-RA 89-93 * Legacy GT 89-93 * Impreza WRX 92~96 * Impreza WRX Wagon 92~98 * Impreza WRX STi 94~96 227 hp (169 kW) @ 4000 rpm EJ20K to identify an EJ20K * Wasted spark coil pack on center of manifold * Inlet under manifold * Divorced idle air controller Usage: * Impreza WRX & STi 9/96~9/98 EJ205 This engine series is used for non-Japanese marketed WRX models in the world market as of 1999. -
Press Release June 7, 2013 No
Press Release June 7, 2013 No. 59/13 Efficiency and performance for 50 years: the flat-six engines from Porsche “Engine of the Year Award” for the 2.7-litre flat-six engine Stuttgart. Once again, a flat-six engine from Porsche has been named “Engine of the Year”. This year, the international jury gave the renowned award to the 2.7-litre engine that is used in the Boxster and the Cayman for the 2.5 to 3.0-litre engine displacement class. “A brilliant engine for a brilliant car. This centrepiece of Porsche technology combines performance and a sporty pedigree with impressive fuel efficiency.” This is how Dean Slavnich of “Engine Technology International Magazine” supported the jury’s decision. The British trade magazine has been giving this award for excellent engines for 15 years now. The jury also praised the flexibility and responsiveness, performance and smooth running of the smallest-displacement flat engine from Porsche. The sport engine was derived from the 3.4-litre engine based on the downsizing principle, and together with the PDK transmission (Porsche Doppelkupplung) in the Cayman it offers a power of 275 hp (202 kW) combined with a NEDC fuel consumption of 7.7 l/100 km (180 g/km CO2). Its specific power of 101.6 hp/l means that this six-cylinder engine surpasses the magic limit of 100 hp per litre engine displacement. This is the fourth time that a flat engine from Porsche has won this competition between the best engines in the world. In 2007, Porsche has already won in the category of three to four-litre engines with the engine of the 911 Turbo. -
The Principal Pump Valves Used by Mining
88 supposed to proceed from the rapid absorption of oxygen by the mass, on being brought into the air, from the water, where it had already received a certain amount of oxygen. The production of heat, being in this case, governed by the same law, as that under which animal heat, and the heat of combustion, were developed. Mr. HO- Mr. Homersham said that the water of the Thames, up as high mersham. as Richmond, had the same effect as sea-water, in rendering cast iron soft? Mr. J. Mr. Simpson believed, that if hard grey cast iron witha good Simpson. surface, was used for castings, which were subjected to the action of sea-water,but littleinjurious effect was to be dreaded; he was so convinced of the fact, that he was about to use cast iron extensively for piles. He had recently examined some cast iron piles, which had heen in sea-water for sixteenyears, without any detrimental effect being produced. Mr. J. B. Mr. Jordan thought that it was very desirable, to mark the differ- Jordan. ence between the composition of brass, and the alloy of copper and tin, used in casting guns. With brass, in which zinc formed a part of the composition, it was probable, that the iron would have been acted upon with lessenergy, because it wasmore electro-negative than zinc ; hutthe gun-metal acted positively uponthe iron, and ap- parently, altered the substance. Mr. F. Mr. Braithwaite said, that the proportions of the mixture, used for Braith- the bearings of machinery, were usually 92 per cent.