Reuse: a Safe and Effective Way to Save Water

Total Page:16

File Type:pdf, Size:1020Kb

Reuse: a Safe and Effective Way to Save Water SOUTH FLORIDA WATER MANAGEMENT DISTRICT Water Reuse: A safe and effective way to save water ON THE INSIDE The demand for water is projected to increase over the long term in n Reclaimed water and reuse explained South Florida. Urban populations, agricultural operations and the environment depend on adequate water supplies. Fresh ground n Reuse success stories water and surface water will not be sufficient to satisfy all future n Reuse on a regional level demands. Meeting this growing thirst hinges on efforts to develop How water is reclaimed n alternative water sources. This brochure looks at one of the ways to n Purple pipes signify conserve Florida’s water resources — reclaiming water for reuse. reclaimed water Consider what happens to the water used inside the home. Once down the drain, this water is piped to the local wastewater treatment plant where it undergoes treatment to meet state standards for disposal. Historically, most of the water was disposed by injecting it deep underground or by discharging to surrounding waters or to the ocean. This is a wasteful way to treat such a valuable resource. More and more communities are finding that wastewater need not be wasted. They are reclaiming this water for irrigation of residential lots, golf courses, sports fields and orange groves; industrial cooling; car washing; fire protection; and Reclaimed water sign in Collier County groundwater recharge. Reuse is also beneficial to the environment. Success Stories During times of drought, reclaimed water •Pompano Beach – The city takes is a dependable source of water because wastewater being piped to the ocean, its availability is not dependent on rainfall. treats it to a higher standard and The use of reclaimed water is currently reuses it locally for irrigating exempt from year-round landscape residential lawns, parks and golf irrigation conservation measures and courses. emergency water shortage restrictions. The color purple is used to •Cape Coral – A reclaimed water irrigation system serves more than identify pumps, tanks and What Is Reuse? 38,000 residences as part of the city's Water Independence for Cape Coral pipes carrying reclaimed Water reuse is the use of highly treated (WICC) campaign. Canal water is used water for reuse. The photo domestic wastewater (reclaimed water) for to supplement reclaimed water to meet above and on the cover beneficial purposes, such as: irrigation of the 28 mgd system demand. shows a reuse facility in yards, agriculture, golf courses, parks and other green space; industrial purposes Pompano Beach. •Collier County – More than 18 mgd such as cooling water and process water; of reclaimed water is provided by 2 groundwater recharge; toilet flushing; dust facilities. The water is reused at almost control; and environmental restoration. 20,000 residences, 23 golf courses Reuse reduces the reliance on ground and several parks and schools. water, surface water and potable water. •Orlando and Orange County – The Conserv I and Conserv II reuse systems Is It Safe to Use Reclaimed Water? provide reclaimed water to about Yes. The Florida Department of Health has 8,000 residences, 85 parks, 12 found that reuse poses no threat to public schools and 13 golf courses – in health. Continuous monitoring of addition to recharging the aquifer reclaimed water, required by the Florida through rapid infiltration basins. Department of Environmental Protection, •Loxahatchee River District – This ensures excellent water quality for system in Jupiter reuses more than 6 protection of the public and the mgd of reclaimed water to irrigate 14 environment. It is not treated for golf courses, 14 parks and 4,500 domestic use, such as drinking, residential lawns. cooking or bathing. •Palm Beach County – The county's Reuse System Locations Water Utilities Department provides approximately 14 mgd of reclaimed The map to the left shows locations water to more than 6,000 residences, where reclaimed water is being 10 golf courses, 2 parks, and the utilized within the 16-county area Wakodahatchee and Green Cay of the South Florida Water wetlands. In addition, approximately Management District. The dots 20 mgd of reclaimed water is sent to represent more than 100 FPL's West County Energy Center for wastewater facilities that are reusing cooling. 266 million gallons per day (mgd), or 31 percent of the total wastewater •Reedy Creek Improvement treated. For now, the rest of the District – This utility provides wastewater (590 mgd) is being sent to reclaimed water for irrigation of the the ocean or injected 3,000 feet landscaped areas in the Walt Disney underground, primarily in Palm Beach, World Resort Complex. Four golf Broward and Miami-Dade counties. This is courses, hotels, highway medians and water that could be reclaimed for reuse. parks are irrigated with reclaimed water. A network of rapid infiltration OTHER REUSE UTILITIES IN SOUTH FLORIDA Ave Maria Miramar Boca Raton Naples Bonita Springs North Fort Myers Broward County Okeechobee Clewiston Port St. Lucie East Central Regional St. Cloud (West Palm Beach) St. Lucie County Groundwater recharge basins in Florida Keys Aqueduct Authority St. Lucie West Orlando Fort Myers Sanibel Hollywood Seacoast Indiantown South Central Regional LaBelle (Boynton Beach/Delray Beach) Lee County South Martin Regional Marco Island (Hobe Sound/Jupiter Island) Martin County Toho Water Authority Miami-Dade County Wellington Fort Myers city nursery using reclaimed water basins is used for groundwater reuse. The demand, especially for recharge. More than 6 mgd of irrigation, has grown beyond what can reclaimed water is used for reasonably be supplied by traditional groundwater recharge and another groundwater sources and reclaimed 5 mgd is used for irrigation. water sources. There is a waiting list of users for reclaimed water. Utilities Does the SFWMD Help Fund Reuse and the District are working together Projects? to maximize the use of reclaimed water. This includes interconnecting The District has provided financial reclaimed water systems, developing Wetland created with reclaimed assistance through the Alternative Water water in south Palm Beach County supplemental sources of water and Supply (AWS) grant program to local increasing storage. entities in developing local reuse initiatives. The District has contributed • Miami-Dade, Broward, Palm more than $99 million to 257 reclaimed Beach Counties – Miami-Dade, water projects through its annual grant Broward and Palm Beach counties program. make up the Lower East Coast urban corridor. Since 2007, any increase in Reuse on a Regional Level future water supply needs cannot draw from the natural system. These • Kissimmee/Orlando Area – This counties have large requirements for Freeze-proofing plants with area has historically had a high reclaimed water in Orlando water reuse due to the Ocean Outfall percentage of water reuse. The District Act that could offset the regional is working with utilities in Orange, demands. This would reduce the Osceola and Polk counties to optimize demand on the regional system and the use of reclaimed water to offset improve Everglades/Lake Okeechobee withdrawals from the Floridan aquifer restoration efforts. and avoid potential harm to the groundwater resources. Palm Beach County has taken great strides with water reuse, doubling its • Collier, Lee, Martin Counties/ reuse over the last 10 years to 58 Northern Palm Beach County – mgd in 2012, or 48 percent of its These areas have a high percentage of Reclaimed water for golf course wastewater flow. irrigation in Palm Beach Gardens How Water Is Reclaimed DID YOU KNOW? n More than 127,000 residences, 199 golf courses, 269 parks and 74 schools are using reclaimed water Golf and Sports Field Irrigation for irrigation within the boundaries of the South Florida Water Management District. Industrial/Commercial Uses n Reclaimed water doesn’t smell or stain sidewalks and driveways like WASTEWATER well water or canal water. TREATMENT FILTRATION DISINFECTION PLANT Agricultural Irrigation n Nature is the ultimate reuser of water. Through what is called the “hydrologic cycle,” today's rainfall Residential/Landscape is the same water recycled over Irrigation millions and millions of years. Ground Water Recharge n An average of 725 million gallons per day (mgd) of reclaimed water This diagram follows the process of turning domestic wastewater into reclaimed water for is reused every day in Florida. reuse. Separate pipes carry wastewater to the treatment plant where it undergoes treatment, About 266 mgd of this reuse including filtration and disinfection, before it can be distributed. Reuse eliminates the occurs within the 16-county area dependence on potable water, surface water or ground water for these uses. of the South Florida Water Management District. – FOR MORE INFORMATION ON WATER REUSE – n Most of the reclaimed water (55%) Rick Nevulis (561) 682-6242 or [email protected] is used for irrigation of public areas like residences, parks, – FOR MORE INFORMATION ON WATER CONSERVATION – schools, medians, golf courses, etc. www.savewaterfl.com n Users of reclaimed water are currently exempt from year-round irrigation measures and For more information on this restrictions imposed during water subject, scan this QR code shortages. using a barcode reader app on your smartphone. n As the population grows, wastewater flows will increase and so will the ability to produce more reclaimed water. The South Florida Water Manage ment District is a regional, governmental Sixty-four percent of wastewater agency that oversees the water resources in the southern half of the state. It is the n treated in the District is in oldest and largest of the state’s five water management districts. Broward and Miami-Dade Our Mission is to manage and protect water resources of the region by balancing counties. Of that, only about and improving water quality, flood control, natural systems and water supply. five percent is reused. This “Below the Surface” publication n Putting reclaimed water to on Water Reuse beneficial use is “Recycling at its directly supports our South Florida Water Management District Best.” 3301 Gun Club Road mission of water West Palm Beach, Florida 33406 supply.
Recommended publications
  • A Combined Vermifiltration-Hydroponic System
    applied sciences Article A Combined Vermifiltration-Hydroponic System for Swine Wastewater Treatment Kirill Ispolnov 1,*, Luis M. I. Aires 1,Nídia D. Lourenço 2 and Judite S. Vieira 1 1 Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), School of Technology and Management (ESTG), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; [email protected] (L.M.I.A.); [email protected] (J.S.V.) 2 Applied Molecular Biosciences Unit (UCIBIO)-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT), NOVA University of Lisbon, 2829-516 Caparica, Portugal; [email protected] * Correspondence: [email protected] Abstract: Intensive swine farming causes strong local environmental impacts by generating ef- fluents rich in solids, organic matter, nitrogen, phosphorus, and pathogenic bacteria. Insufficient treatment of hog farm effluents has been reported for common technologies, and vermifiltration is considered a promising treatment alternative that, however, requires additional processes to remove nitrate and phosphorus. This work aimed to study the use of vermifiltration with a downstream hydroponic culture to treat hog farm effluents. A treatment system comprising a vermifilter and a downstream deep-water culture hydroponic unit was built. The treated effluent was reused to dilute raw wastewater. Electrical conductivity, pH, and changes in BOD5, ammonia, nitrite, nitrate, phosphorus, and coliform bacteria were assessed. Plants were monitored throughout the experiment. Electrical conductivity increased due to vermifiltration; pH stayed within a neutral to mild alkaline range. Vermifiltration removed 83% of BOD5, 99% of ammonia and nitrite, and increased nitrate by Citation: Ispolnov, K.; Aires, L.M.I.; 11%.
    [Show full text]
  • Wastewater Treatment: Overview and Background
    Wastewater Treatment: Overview and Background Claudia Copeland Specialist in Resources and Environmental Policy October 30, 2014 Congressional Research Service 7-5700 www.crs.gov 98-323 Wastewater Treatment: Overview and Background Summary The Clean Water Act prescribes performance levels to be attained by municipal sewage treatment plants in order to prevent the discharge of harmful wastes into surface waters. The act also provides financial assistance so that communities can construct treatment facilities to comply with the law. The availability of funding for this purpose continues to be a major concern of states and local governments. This report provides background on municipal wastewater treatment issues, federal treatment requirements and funding, and recent legislative activity. Meeting the nation’s wastewater infrastructure needs efficiently and effectively is likely to remain an issue of considerable interest to policymakers. Congressional Research Service Wastewater Treatment: Overview and Background Contents Introduction ...................................................................................................................................... 1 Federal Aid for Wastewater Treatment ............................................................................................ 1 How the SRF Works .................................................................................................................. 2 Other Federal Assistance ..........................................................................................................
    [Show full text]
  • The Role of Water Reclamation in Water Resources Management in the 21St Century
    THE ROLE OF WATER RECLAMATION IN WATER RESOURCES MANAGEMENT IN THE 21ST CENTURY K. Esposito1*, R. Tsuchihashi2, J. Anderson1, J. Selstrom3 1*: Metcalf & Eddy, 60 East 42nd Street, 43rd Floor, New York, NY 10165 2: Metcalf & Eddy, 719 2nd Street, Suite 11, Davis, CA 95616 3: Metcalf & Eddy, 2751 Prosperity Ave Suite 200, Fairfax, VA 22031 ABSTRACT In recognition of the existing and impending stress to traditional water supply, water planners must look beyond structural developments and interbasin water transfers to secure supply into the future. In this process, it is becoming evident that various issues related to water must be integrated into a whole system approach, including water supply, water use, wastewater treatment, stormwater management, and management of surrounding water environment. In bringing disparate water assets together, alternatives to traditional water supply should arise. Integrated water resources management can provide a realistic framework for examining the feasibility of water reuse. This paper evaluates how water reuse can become a strategic alternative in water resources management. The key challenges that limit water reclamation as one of the key elements in integrated water resources management scheme are discussed, including limitations with typical centralized wastewater treatment systems and public health protection, particularly the implications of trace contaminants. The key considerations to address these challenges are presented including (1) selection of appropriate treatment processes and reuse applications, (2) scientific and engineering solutions to emerging concerns, (3) consideration for cost effective and sustainable system, and (4) public acceptance. Recent water reclamation projects are presented to illustrate the response of the engineering community to the challenges of making water reclamation and reuse a real and sustainable solution to water supply system management planning.
    [Show full text]
  • Community Wastewater Treatment by Using Vermifiltration Technique
    International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017) © International Research Publication House http://www.irphouse.com Community Wastewater Treatment By Using Vermifiltration Technique Author 1 Nandini Misal Assistant Professor,Department of Civil Engineering,D.Y .Patil College of Engineering and Technology, KasabaBawada,Kolhapur Author 2 Mr.NitishA.Mohite Assistant Professor,Department of Civil Engineering,D.Y .Patil College of Engineering and Technology, KasabaBawada,Kolhapur Abstract cowdung,clay and loaded with vermis-Eisenia fetida Now-a-days many developing countries cannot afford the earthworms. wastewater treatment processes as they are costly,need more The wastewater is allowed to pass through the filter,the space to construct the treatment plant and in addition use of earthworms consume and metabolise oils,fats and other chemicals for the treatment.They need some more options at compounds.The water percolating through is collected in low cost,space saving and ecofriendly another container.Earlier report of Sinha et.al(2008) have techniques.Vermifiltration is one of the simple,low proved that the body of earthworms works as a “biofilter”and cost,ecofriendly,chemical free technique used to treat the the body walls absorbs the solids from wastewater.It has been canteen wastewater using the Eisenia fetida earthworm observed that the earthworms are potentially capable of species.The earthworms are potentially capable of digesting digesting the waste organic material and remove the 5days the waste organic material and reduce it through ingestion.It is BOD5 near about 90%,COD by 85-90%, TS by 90-95%,TDS considered to be an innovative ecofriendly technology that by 95%,TSS by 95-98%.
    [Show full text]
  • Glossary of Wastewater Terms
    Glossary of Wastewater Terms Activated Sludge Sludge that has undergone flocculation forming a bacterial culture typically carried out in tanks. Can be extended with aeration. Advanced Primary Treatment The use of special additives to raw wastewater to cause flocculation or clumping to help settling before the primary treatment such as screening. Advanced Wastewater Treatment Any advanced process used above and beyond the defacto typical minimum primary and secondary wastewater treatment. Aerobic Wastewater Treatment Oxygen dependent wastewater treatment requiring the presence of oxygen for aerobic bacterial breakdown of waste. Alkalinity A measure of a substances ability to neutralize acid. Water containing carbonates, bicarbonates, hydroxides, and occasionally borates, silicates, and phosphates can be alkaline. Alkaline substances have a pH value over 7 Anaerobic Wastewater Treatment Wastewater treatment in the absence of oxygen, anaerobic bacteria breakdown waste. Bacteria Single cell microscopic living organisms lacking chlorophyll, which digest many organic and inorganic substances. An essential part of the ecosystem including within human beings. Bioengineering The use of living plants as part of the system, be it wastewater treatment, erosion control, water polishing, habitat repair and on. Biosolids Rich organic material leftover from aerobic wastewater treatment, essentially dewatered sludge that can be re-used. BOD - Biochemical Oxygen Demand Since oxygen is required in the breakdown or decomposition process of wastewater, its "demand" or BOD, is a measure of the concentration of organics in the wastewater. Clarifier A piece of wastewater treatment equipment used to "clarify" the wastewater, usually some sort of holding tank that allows settling. Used when solids have a specific gravity greater than 1.
    [Show full text]
  • Sustainable Action Plan for County Operations 4890-012418 RTP-HT Table of Contents
    REPORT CARD: FY 2016/2017 Sustainable Action Plan for County Operations 4890-012418 RTP-HT Table of contents Table of contents . 3 . Report card: FY 2016/2017 . 4 . How to use this report . 4 Progress summary . 5. Chapter 1 Chapter 4 Chapter 7 Minimizing the Carbon Footprint Alternative Fuel Waste of County Operations 6 Vehicles 12 Reduction 18 Noteworthy accomplishments . 6 Noteworthy accomplishments . 12 Noteworthy accomplishments . 18 Benefits & Performance . 7 Benefits & Performance . 13 Benefits & Performance . 19 Chapter 2 Chapter 5 Chapter 8 Renewable Energy & Energy Water Conservation Green Efficiency 8 & Management 14 Purchasing 20 Noteworthy accomplishments . 8 Noteworthy accomplishments . 14 Noteworthy accomplishments . 20 Benefits & Performance . 9 Benefits & Performance . 15 Benefits & Performance . 21 Chapter 3 Chapter 6 Chapter 9 Green Land Conservation Health & Building 10 & Management 16 Wellness 22 Noteworthy accomplishments . 10 Noteworthy accomplishments . 16 Noteworthy accomplishments . 22 Benefits & Performance . 11 Benefits & Performance . 17 Benefits & Performance . 23 Glossary . 24 References . 26 . Sustainable Action Plan for County Operations • Report Card: FY 2016/2017 | 3 REPORT CARD: FY 2016/2017 Sustainable Action Plan for County Operations n May 17, 2014, the Pima County Board of Supervisors adopted the 2014 Sustainable O Action Plan for County Operations . This plan seeks to achieve a “balance between economic development, social well-being and environmental protection to ensure the needs of current generations can be met without compromising the ability of future generations to meet their own needs .” Measuring progress is crucial to the success of Pima County’s sustainability efforts . The purpose of this report card is to inform County decision makers and the broader community about Pima Construction workers restore and preserve the Pima County’s progress toward meeting the goals and County Historic Courthouse .
    [Show full text]
  • Reclaiming Resources: Reducing Water Consumption Through Reuse
    Reclaiming Resources: Reducing Water Consumption through Reuse Although water reuse can be energy-intensive, its use is increasing across numerous industries By: Al Goodman Al Goodman is a principal with 42 years of experience serving clients in water reuse projects at the Louisville, Ky., office of CDM Smith (Boston). Communities and industries around the world are turning to water reuse. The drivers are varied: the need to augment strained water supplies, reduce nutrients in treated effluent, maintain ecological balance, use the most energy-efficient water sources, and reduce cost of purchased and treated water. The major driver is water scarcity in arid and semi-arid regions, though some regions of the world that are not considered to be water-scarce are implementing water reuse. Ecological drivers are becoming more important in evaluating reuse as part of a response to rigorous and costly requirements to reduce or remove nutrients (mainly nitrogen and phosphorus) from discharges to surface waters. Though water reuse can be energy-intensive, depending on the level of treatment required, only a full life-cycle analysis can reveal whether overall resource costs are greater than or less than alternative water supplies. Municipalities are implementing various types of urban water reuse and turning to industry and agriculture as potential customers of reclaimed water. Categories of water reuse applications are presented in the table. This article focuses on considerations relevant for municipal and industrial reuse. For more information on the full range of categories of reuse, refer to the U.S. Environmental Protection Agency’s Guidelines for Water Reuse (2012; http://nepis.epa.gov/Adobe/ PDF/P100FS7K.pdf).
    [Show full text]
  • Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State
    energies Review Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State Stephanie Taboada 1,2, Lori Clark 2,3, Jake Lindberg 1,2, David J. Tonjes 2,3,4 and Devinder Mahajan 1,2,* 1 Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; [email protected] (S.T.); [email protected] (J.L.) 2 Institute of Gas Innovation and Technology, Advanced Energy Research and Technology, Stony Brook, NY 11794, USA; [email protected] (L.C.); [email protected] (D.J.T.) 3 Department of Technology and Society, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA 4 Waste Data and Analysis Center, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA * Correspondence: [email protected] Abstract: Public attention to climate change challenges our locked-in fossil fuel-dependent energy sector. Natural gas is replacing other fossil fuels in our energy mix. One way to reduce the greenhouse gas (GHG) impact of fossil natural gas is to replace it with renewable natural gas (RNG). The benefits of utilizing RNG are that it has no climate change impact when combusted and utilized in the same applications as fossil natural gas. RNG can be injected into the gas grid, used as a transportation fuel, or used for heating and electricity generation. Less common applications include utilizing RNG to produce chemicals, such as methanol, dimethyl ether, and ammonia. The GHG impact should be quantified before committing to RNG. This study quantifies the potential production of biogas (i.e., Citation: Taboada, S.; Clark, L.; the precursor to RNG) and RNG from agricultural and waste sources in New York State (NYS).
    [Show full text]
  • Water Reclamation for Direct Re-Use in Urban and Industrial Applications in South Africa and Its Projected Impact Upon Water Demand
    Water Reclamation for Direct Re-Use in Urban and Industrial Applications in South Africa and its Projected Impact Upon Water Demand A Grobicki • B Cohen Report to the Water Research Commission by Abbott Grobicki (Pty) Ltd r WRC Report No KV118/99 -^r -^r -^r *^^ Disclaimer This report emanates from a project financed by ihe Waler Research Commission (WRC) and is approved for publication. Approval docs not signify that the contents necessarily reflect the views and policies of the WRC or the members of the project steering committee, nor does mention of trade names or commercial products constitute endorsement or recommendation tor use. Vrywaring Hierdie verslag spruit voort uit 'n navorsingsprojek wat deur die Waternavorsingskommissic (WNK) gefinansier is en goedgekeur is vir publikasie. Goedkeuring beteken nie noodwendig dat die inhoud die sicning en beleid van die WNK of die lede van die projek-loodskomitee weerspieel nie, of dat melding van handelsname of -ware deur die WNK vir gebruik goedgekeur n( aanbeveel word nie. WATER RECLAMATION FOR DIRECT RE-USE IN URBAN AND INDUSTRIAL APPLICATIONS IN SOUTH AFRICA, AND ITS PROJECTED IMPACT UPON WATER DEMAND A STUDY FOR THE WATER RESEARCH COMMISSION BY DR ANIA GROBICKI AND DR BRETT COHEN Abbott Grobicki (Pty) Ltd Kimberley House 34 Shortmarket Street 8001 Cape Town Tel: (021) 424-3892, Fax: (021) 424-3895 email: [email protected] OCTOBER 1998 ii EXECUTIVE SUMMARY Water reclamation, or the direct use of treated sewage effluent to replace a proportion of the fresh water demand, is regarded as a non-conventional approach to water management. However, water reclamation is becoming increasingly common internationally, especially in countries which have water shortages similar to that in South Africa.
    [Show full text]
  • Technical Support Document for Industrial Wastewater Treatment: Final Rule for Mandatory Reporting of Greenhouse Gases
    TECHNICAL SUPPORT DOCUMENT FOR INDUSTRIAL WASTEWATER TREATMENT: FINAL RULE FOR MANDATORY REPORTING OF GREENHOUSE GASES Climate Change Division Office of Atmospheric Programs U.S. Environmental Protection Agency June 2010 CONTENTS Page 1. INTRODUCTION AND BACKGROUND ..................................................................................1-1 2. INDUSTRY DESCRIPTION ...................................................................................................2-1 2.1 Industrial Wastewater Treatment.........................................................................2-1 2.2 Reporting Rule Applicability...............................................................................2-3 2.2.1 Processes Included in the Reporting Rule ...............................................2-3 2.2.2 Industries Included in the Reporting Rule ...............................................2-4 3. EMISSION ESTIMATES .......................................................................................................3-1 3.1 Pulp and Paper Mills............................................................................................3-1 3.2 Food Processing Facilities ...................................................................................3-2 3.3 Ethanol Production Facilities...............................................................................3-5 3.4 Petroleum Refineries............................................................................................3-6 3.5 Summary..............................................................................................................3-7
    [Show full text]
  • Wastewater Technology Fact Sheet: High-Efficiency Toilets
    United States Office of Water EPA 832-F-00-047 Environmental Protection Washington, D.C. September 2000 Agency Wastewater Technology Fact Sheet High-Efficiency Toilets INTRODUCTION ENVIRONMENTAL, PUBLIC, AND CONSUMER BENEFITS In 1992, Congress passed legislation requiring that all toilets sold in the United States meet a new Studies indicate that converting to water efficient water conservation standard of 1.6 gallons per flush toilets, showers and clothes washers, results in a (gpf). By 1992, in response to the growing need for household water savings of about 30% compared to conservation of drinking water supply resources, a conventional fixtures. A change to high-efficiency number of metropolitan regions and 17 states had toilets alone, reduces toilet water use by over 50% already instituted water conservation programs and indoor water use by an average of 16%. This which included high-efficiency toilet requirements. translates into a savings of 15,000 to 20,000 gallons per year for a family of four. Furthermore, more A national water use standard for a high-efficiency efficient plumbing products result in lower toilet was necessary to address the problems with wastewater flow and increase the available capacity different states and communities having established of sewage treatment plants and onsite wastewater different toilet water use standards. A national disposal systems. standard eliminated the need for plumbing fixture firms to manufacture, stock, and deliver different The general public also benefits directly from water products, and the difficulty for states in preventing conservation measures. Practiced on a wide basis, the importation of high-water-use fixtures. efficient use of water resources helps reduce the potential need during drought periods for water High efficiency designs have significantly improved restrictions such as bans on lawn watering and since they were first introduced.
    [Show full text]
  • Reclaimed Municipal Wastewater for the Production of Bioenergy in The
    Reclaimed Municipal Wastewater for the Production of Bioenergy in the United States — A Resource Assessment May Wu,* Miae Ha, and Yi-wen Chiu Argonne National Laboratory, Argonne, IL *[email protected] ABSTRACT The production of bioenergy requires a significant amount of freshwater to be withdrawn and consumed to irrigate conventional crops and be used in the conversion process in the biorefinery. Reclaimed wastewater has long been seen as an alternative to water and nutrient sources because it contains low levels of nitrogen and phosphorus. In drought-prone areas in the Western United States, reclaimed wastewater has been widely used to irrigate agricultural crops. The key issue in developing bioenergy feedstock is to consider the reuse of reclaimed wastewater to reduce the need for freshwater. This study assesses the large-scale potential for using reclaimed wastewater as the resource for biofuel feedstock production in the United States. Geospatial analysis was applied to estimate reuse potential at the county level. Technical and infrastructural challenges are highlighted. KEY WORDS: Reclaimed municipal wastewater, effluent, discharge, irrigation, bioenergy INTRODUCTION It is anticipated that the demand for freshwater for producing food and energy and meeting basic human needs will continue to grow as the world’s population increases and people’s economic status improves. Enabling the long-term viability of the energy system thus requires the development of energy resources that protect natural resources and achieve environmental sustainability. The production of bioenergy (particularly with regard to conventional starch- based or oil-seed-based feedstock, such as corn or soybeans) requires a significant amount of freshwater to be withdrawn and consumed for irrigation (USDA 2008).
    [Show full text]