Glossary of Wastewater Terms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Combined Vermifiltration-Hydroponic System
applied sciences Article A Combined Vermifiltration-Hydroponic System for Swine Wastewater Treatment Kirill Ispolnov 1,*, Luis M. I. Aires 1,Nídia D. Lourenço 2 and Judite S. Vieira 1 1 Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), School of Technology and Management (ESTG), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; [email protected] (L.M.I.A.); [email protected] (J.S.V.) 2 Applied Molecular Biosciences Unit (UCIBIO)-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT), NOVA University of Lisbon, 2829-516 Caparica, Portugal; [email protected] * Correspondence: [email protected] Abstract: Intensive swine farming causes strong local environmental impacts by generating ef- fluents rich in solids, organic matter, nitrogen, phosphorus, and pathogenic bacteria. Insufficient treatment of hog farm effluents has been reported for common technologies, and vermifiltration is considered a promising treatment alternative that, however, requires additional processes to remove nitrate and phosphorus. This work aimed to study the use of vermifiltration with a downstream hydroponic culture to treat hog farm effluents. A treatment system comprising a vermifilter and a downstream deep-water culture hydroponic unit was built. The treated effluent was reused to dilute raw wastewater. Electrical conductivity, pH, and changes in BOD5, ammonia, nitrite, nitrate, phosphorus, and coliform bacteria were assessed. Plants were monitored throughout the experiment. Electrical conductivity increased due to vermifiltration; pH stayed within a neutral to mild alkaline range. Vermifiltration removed 83% of BOD5, 99% of ammonia and nitrite, and increased nitrate by Citation: Ispolnov, K.; Aires, L.M.I.; 11%. -
Infiltration/Inflow Task Force Report
INFILTRATION/INFLOW TASK FORCE REPORT A GUIDANCE DOCUMENT FOR MWRA MEMBER SEWER COMMUNITIES AND REGIONAL STAKEHOLDERS MARCH 2001 INFILTRATION/INFLOW TASK FORCE REPORT A GUIDANCE DOCUMENT FOR MWRA MEMBER SEWER COMMUNITIES AND REGIONAL STAKEHOLDERS MARCH 2001 Executive Summary This report is the product of the Infiltration/Inflow (I/I) Task Force. It has been developed through the cooperative efforts of the 43 Massachusetts Water Resources Authority (MWRA) member sewer communities, MWRA Advisory Board, The Wastewater Advisory Committee (WAC) to the MWRA, Charles River Watershed Association (CRWA), Fore River Watershed Association (FRWA), Mystic River Watershed Association (MRWA), Neponset River Watershed Association (NRWA), South Shore Chamber of Commerce (SSCC), Massachusetts Department of Environmental Protection (DEP), United States Environmental Protection Agency (EPA), and MWRA. The I/I Task Force recommends implementation of the regional I/I reduction goals and implementation strategies detailed in this report. The report outlines a regional I/I reduction plan with appropriate burdens and benefits for stakeholders. The report is intended to be a guidance document for use by local sewer communities, as well as other regional stakeholders, who may tailor appropriate aspects of the report recommendations to their unique situations. Severe storms in October 1996 and June 1998 led to the unusual circumstance of numerous sanitary sewer overflows (SSOs) from local and MWRA collection systems. In the aftermath of these events, EPA and DEP began an aggressive effort to make MWRA regulate flows from community sewer systems. MWRA recommended cooperative efforts by local collection system operators, as well as regulators and environmental advocates, would be more effective than a prescriptive, enforcement based approach. -
Reuse: a Safe and Effective Way to Save Water
SOUTH FLORIDA WATER MANAGEMENT DISTRICT Water Reuse: A safe and effective way to save water ON THE INSIDE The demand for water is projected to increase over the long term in n Reclaimed water and reuse explained South Florida. Urban populations, agricultural operations and the environment depend on adequate water supplies. Fresh ground n Reuse success stories water and surface water will not be sufficient to satisfy all future n Reuse on a regional level demands. Meeting this growing thirst hinges on efforts to develop How water is reclaimed n alternative water sources. This brochure looks at one of the ways to n Purple pipes signify conserve Florida’s water resources — reclaiming water for reuse. reclaimed water Consider what happens to the water used inside the home. Once down the drain, this water is piped to the local wastewater treatment plant where it undergoes treatment to meet state standards for disposal. Historically, most of the water was disposed by injecting it deep underground or by discharging to surrounding waters or to the ocean. This is a wasteful way to treat such a valuable resource. More and more communities are finding that wastewater need not be wasted. They are reclaiming this water for irrigation of residential lots, golf courses, sports fields and orange groves; industrial cooling; car washing; fire protection; and Reclaimed water sign in Collier County groundwater recharge. Reuse is also beneficial to the environment. Success Stories During times of drought, reclaimed water •Pompano Beach – The city takes is a dependable source of water because wastewater being piped to the ocean, its availability is not dependent on rainfall. -
Recommended Standards for Wastewater Facilities
RECOMMENDED STANDARDS for WASTEWATER FACILITIES POLICIES FOR THE DESIGN, REVIEW, AND APPROVAL OF PLANS AND SPECIFICATIONS FOR WASTEWATER COLLECTION AND TREATMENT FACILITIES 2014 EDITION A REPORT OF THE WASTEWATER COMMITTEE OF THE GREAT LAKES - UPPER MISSISSIPPI RIVER BOARD OF STATE AND PROVINCIAL PUBLIC HEALTH AND ENVIRONMENTAL MANAGERS MEMBER STATES AND PROVINCE ILLINOIS NEW YORK INDIANA OHIO IOWA ONTARIO MICHIGAN PENNSYLVANIA MINNESOTA WISCONSIN MISSOURI PUBLISHED BY: Health Research, Inc., Health Education Services Division P.O. Box 7126 Albany, N.Y. 12224 Phone: (518) 439-7286 Visit Our Web Site http://www.healthresearch.org/store/ten-state-standards Copyright © 2014 by the Great Lakes - Upper Mississippi River Board of State and Provincial Public Health and Environmental Managers This document, or portions thereof, may be reproduced without permission if credit is given to the Board and to this publication as a source. ii TABLE OF CONTENTS CHAPTER PAGE FOREWORD ..................................................................................................................................... v 10 ENGINEERING REPORTS AND FACILITY PLANS 10. General ............................................................................................................................. 10-1 11. Engineering Report Or Facility Plan ................................................................................ 10-1 12. Pre-Design Meeting ....................................................................................................... 10-12 -
Wastewater Treatment: Overview and Background
Wastewater Treatment: Overview and Background Claudia Copeland Specialist in Resources and Environmental Policy October 30, 2014 Congressional Research Service 7-5700 www.crs.gov 98-323 Wastewater Treatment: Overview and Background Summary The Clean Water Act prescribes performance levels to be attained by municipal sewage treatment plants in order to prevent the discharge of harmful wastes into surface waters. The act also provides financial assistance so that communities can construct treatment facilities to comply with the law. The availability of funding for this purpose continues to be a major concern of states and local governments. This report provides background on municipal wastewater treatment issues, federal treatment requirements and funding, and recent legislative activity. Meeting the nation’s wastewater infrastructure needs efficiently and effectively is likely to remain an issue of considerable interest to policymakers. Congressional Research Service Wastewater Treatment: Overview and Background Contents Introduction ...................................................................................................................................... 1 Federal Aid for Wastewater Treatment ............................................................................................ 1 How the SRF Works .................................................................................................................. 2 Other Federal Assistance .......................................................................................................... -
Safe Use of Wastewater in Agriculture: Good Practice Examples
SAFE USE OF WASTEWATER IN AGRICULTURE: GOOD PRACTICE EXAMPLES Hiroshan Hettiarachchi Reza Ardakanian, Editors SAFE USE OF WASTEWATER IN AGRICULTURE: GOOD PRACTICE EXAMPLES Hiroshan Hettiarachchi Reza Ardakanian, Editors PREFACE Population growth, rapid urbanisation, more water intense consumption patterns and climate change are intensifying the pressure on freshwater resources. The increasing scarcity of water, combined with other factors such as energy and fertilizers, is driving millions of farmers and other entrepreneurs to make use of wastewater. Wastewater reuse is an excellent example that naturally explains the importance of integrated management of water, soil and waste, which we define as the Nexus While the information in this book are generally believed to be true and accurate at the approach. The process begins in the waste sector, but the selection of date of publication, the editors and the publisher cannot accept any legal responsibility for the correct management model can make it relevant and important to any errors or omissions that may be made. The publisher makes no warranty, expressed or the water and soil as well. Over 20 million hectares of land are currently implied, with respect to the material contained herein. known to be irrigated with wastewater. This is interesting, but the The opinions expressed in this book are those of the Case Authors. Their inclusion in this alarming fact is that a greater percentage of this practice is not based book does not imply endorsement by the United Nations University. on any scientific criterion that ensures the “safe use” of wastewater. In order to address the technical, institutional, and policy challenges of safe water reuse, developing countries and countries in transition need clear institutional arrangements and more skilled human resources, United Nations University Institute for Integrated with a sound understanding of the opportunities and potential risks of Management of Material Fluxes and of Resources wastewater use. -
Simplified Sewerage Systems and Potential Application to Rural Louisiana Communities
University of New Orleans ScholarWorks@UNO Senior Honors Theses Undergraduate Showcase 5-2018 Simplified Sewerage Systems and Potential Application to Rural Louisiana Communities Homero de Toledo Sobrinho University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/honors_theses Part of the Civil and Environmental Engineering Commons Recommended Citation de Toledo Sobrinho, Homero, "Simplified Sewerage Systems and Potential Application to Rural Louisiana Communities" (2018). Senior Honors Theses. 100. https://scholarworks.uno.edu/honors_theses/100 This Honors Thesis-Unrestricted is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Honors Thesis-Unrestricted in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Honors Thesis-Unrestricted has been accepted for inclusion in Senior Honors Theses by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. SIMPLIFIED SEWERAGE SYSTEMS AND POTENTIAL APPLICATION TO RURAL LOUISIANA COMMUNITIES An Honors Thesis Presented to the Department of Civil Engineering of the University of New Orleans In Partial Fulfillment of The Requirements for the Degree of Bachelor of Science, with University High Honors And Honors in Civil Engineering by Homero de Toledo Sobrinho May 2018 Acknowledgments I would like to express my great appreciation of the help given by Dr. -
The Biological Treatment Method for Landfill Leachate
E3S Web of Conferences 202, 06006 (2020) https://doi.org/10.1051/e3sconf/202020206006 ICENIS 2020 The biological treatment method for landfill leachate Siti Ilhami Firiyal Imtinan1*, P. Purwanto1,2, Bambang Yulianto1,3 1Master Program of Environmental Science, School of Postgraduate Studies, Diponegoro University, Semarang - Indonesia 2Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang - Indonesia 3Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang - Indonesia Abstract. Currently, waste generation in Indonesia is increasing; the amount of waste generated in a year is around 67.8 million tons. Increasing the amount of waste generation can cause other problems, namely water from the decay of waste called leachate. Leachate can contaminate surface water, groundwater, or soil if it is streamed directly into the environment without treatment. Between physical and chemical, biological methods, and leachate transfer, the most effective treatment is the biological method. The purpose of this article is to understand the biological method for leachate treatment in landfills. It can be concluded that each method has different treatment results because it depends on the leachate characteristics and the treatment method. These biological methods used to treat leachate, even with various leachate characteristics, also can be combined to produce effluent from leachate treatment below the established standards. Keywords. Leachate treatment; biological method; landfill leachate. 1. Introduction Waste generation in Indonesia is increasing, as stated by the Minister of Environment and Forestry, which recognizes the challenges of waste problems in Indonesia are still very large. The amount of waste generated in a year is around 67.8 million tons and will continue to grow in line with population growth [1]. -
Wastewater Irrigation on Farms Contaminates Food
Wastewater Irrigation on Farms Contaminates Food The use of recycled wastewater in agricultural fields has implications for human health and the environment by Nikita Naik of information on the chronic effects of CEC exposure on human health, their persistence in and effects on the environment, the ef- The use of recycled wastewater, an increasingly attractive op- fectiveness of various treatments in removing these contaminants tion in face of growing water shortages and droughts in the U.S. from wastewater effluents, lack of analytical detection methods, and abroad for uses such as agriculture, landscaping, and drink- and more. Additionally, the cost of decontamination, if techno- ing water, raises serious questions about dietary exposure to logically feasible, is typically left to taxpayers and local water and toxic chemicals such as antibacterial pesticides. Concerns about sewage authorities. chemical exposure through the food supply are being raised just as water recycling is being advanced as a sound environmental Background alternative that reduces strain on water resources and vulnerable The U.S. Environmental Protection Agency (EPA) describes the ecosystems, decreases wastewater discharge, and cuts down on recycling of wastewater or “water recycling” as “reusing treated pollution. wastewater for beneficial purposes such as agricultural and land- scape irrigation, industrial processes, toilet flushing, and replen- Recycled wastewater presents a risk to human health and the en- ishing a ground water basin.”2 While the terms “water recycling” vironment due to contaminants of emerging concern (CECs) that and “water reuse” may seem redundant since all water is reused are not removed even by high level water treatment processes, in one way or another within the water cycle, the distinction sug- and can persist in the water for long periods of time, especially gests the use of technology to hasten the reuse process or mul- when used for agricultural irrigation. -
Troubleshooting Activated Sludge Processes Introduction
Troubleshooting Activated Sludge Processes Introduction Excess Foam High Effluent Suspended Solids High Effluent Soluble BOD or Ammonia Low effluent pH Introduction Review of the literature shows that the activated sludge process has experienced operational problems since its inception. Although they did not experience settling problems with their activated sludge, Ardern and Lockett (Ardern and Lockett, 1914a) did note increased turbidity and reduced nitrification with reduced temperatures. By the early 1920s continuous-flow systems were having to deal with the scourge of activated sludge, bulking (Ardem and Lockett, 1914b, Martin 1927) and effluent suspended solids problems. Martin (1927) also describes effluent quality problems due to toxic and/or high-organic- strength industrial wastes. Oxygen demanding materials would bleedthrough the process. More recently, Jenkins, Richard and Daigger (1993) discussed severe foaming problems in activated sludge systems. Experience shows that controlling the activated sludge process is still difficult for many plants in the United States. However, improved process control can be obtained by systematically looking at the problems and their potential causes. Once the cause is defined, control actions can be initiated to eliminate the problem. Problems associated with the activated sludge process can usually be related to four conditions (Schuyler, 1995). Any of these can occur by themselves or with any of the other conditions. The first is foam. So much foam can accumulate that it becomes a safety problem by spilling out onto walkways. It becomes a regulatory problem as it spills from clarifier surfaces into the effluent. The second, high effluent suspended solids, can be caused by many things. It is the most common problem found in activated sludge systems. -
Chemical Industry Wastewater Treatment
CHEMICAL INDUSTRY WASTEWATER TREATMENT Fayza A. Nasr\ Hala S. Doma\ Hisham S Abdel-Halim", Saber A. El-Shafai* * Water Pollution Research department, National Research Centre, Cairo, Egypt "Faculty of Engineering, Cairo University, Cairo, Egypt Abstract Treatment of chemical industrial wastewater from building and construction chemicals factory and plastic shoes manufacturing factory was investigated. The two factories discharge their wastewater into the public sewerage network. The results showed the wastewater discharged from the building and construction chemicals factory was highly contaminated with organic compounds. The average values of COD and BOD were 2912 and 150 mg02/l. Phenol concentration up to 0.3 mg/l was detected. Chemical treatment using lime aided with ferric chloride proved to be effective and produced an effluent characteristics in compliance with Egyptian permissible limits. With respect to the other factory, industrial wastewater was mixed with domestic wastewater in order to lower the organic load. The COD, BOD values after mixing reached 5239 and 2615 mg02/l. The average concentration of phenol was 0.5 mg/l. Biological treatment using activated sludge or rotating biological contactor (RBC) proved to be an effective treatment system in terms of producing an effluent characteristic within the permissible limits set by the law. Therefore, the characteristics of chemical industrial wastewater determine which treatment system to utilize. Based on laboratory results TESCE, Vol. 30, No.2 <@> December 2004 engineering design of each treatment system was developed and cost estimate prepared. Key words: chemical industry, wastewater, treatment, chemical, biological Introduction The chemical industry is of importance in terms of its impact on the environment. -
Industrial Wastewater Treatment Technologies Fitxategia
INDUSTRIAL WASTEWATER TREATMENT TECHNOLOGIES Image by Frauke Feind from Pixabay licensed under CC0 Estibaliz Saez de Camara Oleaga & Eduardo de la Torre Pascual Faculty of Engineering Bilbao (UPV/EHU) Department of Chemical and Environmental Engineering Industrial Wastewaters (IWW) means the water or liquid that carries waste from industrial or processes, if it is distinct from domestic wastewater. Desalination plant “Rambla Morales desalination plant (Almería - Spain)” by David Martínez Vicente from Flickr licensed under CC BY 2.0 IWW may result from any process or activity of industry which uses water as a reactant or for transportation of heat or materials. 2 Characteristics of wastewater from industrial sources vary with the type and the size of the facility and the on-site treatment methods, if any. Because of this variation, it is often difficult to define typical operating conditions for industrial activities. Options available for the treatment of IWW are summarized briefly in next figure. To introduce in a logical order in the description of treatment techniques, the relationship between pollutants and respective typical treatment technology is taken as reference. 1. Removal of suspended solids and insoluble liquids 2. Removal of inorganic, non-biodegradable or poorly degradable soluble content 3. Removal of biodegradable soluble content 3 Range of wastewater treatments in relation to type of contaminants. Source: BREF http://eippcb.jrc.ec.europa.eu/reference/ 4 3.1. CLASSIFICATION OF INDUSTRIAL EFFLUENTS CLASSIFICATION OF EFFLUENTS