Anaerobic Treatment of Domestic Sewage In

Total Page:16

File Type:pdf, Size:1020Kb

Anaerobic Treatment of Domestic Sewage In Anaerobic treatment of domestic wastewater in subtropical regions Lucas Seghezzo Promotor: Prof. dr. ir. Gatze Lettinga, Hoogleraar in de anaërobe zuiveringstechnologie en hergebruik van afvalstoffen Co-promotoren: Dr. ir. Grietje Zeeman, Universitair docent bij de sectie Milieutechnologie Dr. Carlos Mario Cuevas, Universidad Nacional de Salta, Argentina Samenstelling promotiecommissie: Prof. dr. Henk Folmer (Wageningen Universiteit) Dr. ir. Ronald Mulder (Paques B.V., Nederland) Dr. ir. Bas van Vliet (Wageningen Universiteit) Prof. dr. Fernando Fernández-Polanco (Universidad de Valladolid, España) Dit onderzoek is uitgevoerd binnen de onderzoekschool WIMEK Anaerobic treatment of domestic wastewater in subtropical regions Lucas Seghezzo Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, prof. dr. ir. L. Speelman, in het openbaar te verdedigen op woensdag 26 mei 2004 des namiddags te vier uur in de Aula. CIP – DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG Author: Seghezzo, L. Title: Anaerobic treatment of domestic wastewater in subtropical regions Thesis Wageningen University, Wageningen, the Netherlands – with references – with summaries in English, Dutch, and Spanish. Publication year: 2004 ISBN: 90-8504-029-9 Subject headings: anaerobic treatment; domestic wastewater; sewage; UASB reactors; subtropical regions; sustainability assessment; sustainable development. Para Adriana, Natalia y Mateo “...que hay algunos que se cansan en saber y averiguar cosas que, una vez sabidas y averiguadas, no importan un ardite al entendimiento ni a la memoria...” (... because there are people who strive to know and find out things which, once known and found out, are not worth a straw to neither knowledge nor memory...) Don Quijote de la Mancha FOREWORD This thesis ends an era in my life and will hopefully open the doors of my future career. However, the story of this thesis has many “beginnings”. The first beginning goes as far back as the mid 60s. I was born in one of the “Communities of the Ark” founded by the Italian philosopher and spiritual leader Lanza del Vasto (Shantidas), a close disciple of Mahatma Gandhi. The community was based on the principles of non-violence, religious tolerance, simplicity, self-sufficiency, social justice, and respect for nature. Three decades later, these principles oriented my research to a subject related to sustainable development. The second beginning could be traced to the late 70s and early 80s. My mother used to tell me, with profound admiration, about the way her father, Augusto Raúl Cortazar, managed to obtain his Doctor degree at the University of Buenos Aires while working and taking care of the family. His perseverance, integrity, and outstanding scientific career have always been a source of inspiration to me. Somewhere in this period my father came out with the idea of building a little anaerobic digester to recycle our organic wastes and get energy for the family house in Villa Muñoz (Córdoba), former seat of the Community, and later in Vaqueros (Salta), where the family had moved in 1978. For a number of reasons this idea never materialized and I always felt that, eventually, it was going to be my task to build one. The third beginning stretches during my university years in Salta (1983-1990). I wrote my first paper on anaerobic digestion in 1983 for a course given by the late Ennio Pontussi, a pioneer of environmental concerns in Salta. Somewhat later, in the alternative magazine “Mutantia”, I read the story of a Mexican “ecological house” called “Xochicalli” where an anaerobic digester played a central role. This house/project was owned/directed by Jesús Arias Chávez, who I had the privilege to meet later in the Netherlands. With the sketches of Xochicalli, I finally built my own 1-m3 anaerobic digester with the help of some friends. It was quite a job to keep it running, and the energy rewards were very meager (just one or two kettles of hot water per day). In 1990, I defended my graduate thesis about the use of greenhouses to heat up anaerobic digesters. For some years, I kept doing research on anaerobic digestion and I started to run into more and more papers with the strange acronym “UASB” on them, written by someone called Gatze Lettinga and his co-workers. The last and definitive beginning started by the end of 1993, when I received a letter signed by Prof. Lettinga Himself inviting me for a course on anaerobic treatment (I have to admit that it was a photocopy). The costs were enormous to me, but I decided that attending this course was more an investment than a luxury. While doing this course I learnt about the M.Sc. program at Wageningen University. Back in Salta, on a sunny Saturday morning, after going through all the brochures I brought with me, my wife Adriana finally suggested: ¿…y si nos vamos a Holanda? (What if we go to the Netherlands?). And there we went, undeterred by the colossal amount of paperwork required, the entrance examination, the English test, and all the uncertainties ahead of us. While doing the M.Sc., I inevitably heard about the Ph.D. program! Es larga la carretera/cuando uno mira atrás/vas cruzando las fronteras/sin darte cuenta quizás. (The highway is long/when you look back/you cross frontiers/without noticing)1. 1 Charly García (1972) ACKNOWLEDGMENTS The work described in this thesis was mostly performed at the Laboratory of Environmental Studies (Laboratorio de Estudios Ambientales, LEA) belonging to the Research Council of the National University of Salta (Consejo de Investigación de la Universidad Nacional de Salta, CIUNSa). The LEA is located within the Research Institute on Non Conventional Energy Sources (Instituto de Investigación en Energía No Convencional, INENCO), directed by Dr. Luis Saravia. Wageningen University (the Netherlands), the Netherlands Foundation for the Advancement of Tropical Research (Wetenschappelijk Onderzoek van de Tropen en Ontwikkelingslanden, WOTRO), the International Foundation for Science (IFS), Aguas de Salta S.A., the Government of Salta, and the CIUNSa (through several research projects) funded this work. I am very grateful to many people who supported me in writing this thesis. First of all, I would like to thank my “promotor”, Prof. Dr. ir. Gatze Lettinga, for his inspiring and motivating guidance throughout this research. His passion for anaerobic wastewater treatment and his commitment to sustainable development and global justice encouraged me to start and go on with the long and painstaking process of doing a Ph.D. thesis on this subject. Gatze: we shall overcome!2 because The line it is drawn/the curse it is cast/the slow one now/will later be fast/as the present now/will later be past/the order is/rapidly fadin’./And the first one now/will later be last/for the times they are a-changin’.3 I would like to express my sincere gratitude to my “co-promotoren”, Dr. Grietje Zeeman and Dr. Carlos M. Cuevas, who managed to supervise my work in a framework of friendship, freedom, and openness. Without their support and helpful comments and criticisms of the typescript at various stages in its development, this thesis would never have been completed. My thanks to my colleagues and students from Salta whose input helped to shape this thesis, especially to Viviana Liberal, Walter Tejerina, Alejandra Torrea, María Laura Castañeda, Ana María Paroni, Raquel Guerra, Silvia González, Marcelo Gutiérrez, Ana Cristina da Silva Wilches, Patrick Todd (who also translated the summary to Dutch), Jimena Lasci, Martín Iribarnegaray, Carolina Carmona, Julio Cabral, and María Estela Figueroa. A special thanks goes to Aníbal Trupiano for his sustained interest on anaerobic treatment (no matter what), his skillful management of the most varied practical problems in the pilot plants, and his enduring friendship. I acknowledge the continuing support of the company Aguas de Salta S.A. and its CEO José Luis Guarch, not only for allowing the pilot plants to be built within the city’s main sewage treatment plant, but also for financial and logistic support. Within this company, thanks are also due to Raúl Escobar, Gastón Raimundo, Fernando Vera (siempre presente cuando se lo necesitaba), Oscar Alemán, Ernesto Lizárraga, Ricardo Sánchez, and all the employees in charge of the never-ending task of taking composite samples. A number of people have helped make this thesis better than it might have been, from the very beginning, and even before. I am especially grateful to Mario Kato (who suggested me to work first 2 Lyrics derived from Charles Tindley's gospel song "I'll Overcome Some Day" (1900) 3 Bob Dylan (1963) with pre-settled sewage), Pedro Córdoba (who introduced me into the world of chemical oxygen demand and volatile fatty acids), Nidal Mahmoud (with whom I learnt how to perform specific methanogenic activity tests), Elías Razo Flores, Jules van Lier, Bert Hamelers (whose desk I invaded for a while), Wendy Sanders, Luis Cardón, Irene Upton, Renato Leitão, and several anonymous referees, each of whom has provided constructive criticisms of earlier versions of one or more of the chapters. I am thus most grateful to all of them for making this text possible. I enjoyed the relaxed yet stimulating working atmosphere at the experimental hall in Bennekom, where I had the opportunity to have all kinds of interesting conversations, especially with Bas Buys, Claudia Pabón, Hardy Temmink, Adriaan Mels, Katarzyna Kujawa-Roeleveld, Elena Córdoba, and Katja Grolle. Thanks are also due to Hellen Elissen, Tarek Elmitwalli, Hamed El-Mashad, Marcel Zandvoort, Arie Janssen, Bert Willemsen (my roommate), Eun-Hee Choi, and Titia de Mes. I would also like to express my gratitude to the other members of the Sub-Department of Environmental Technology who, in a way or another, made a contribution to my work or well-being during my different stays in Wageningen: Joost van Buuren, Vinnie de Wilde, Dale Rudrum (my former roommate at IMAG), Adrie Veeken, Piet Lens, Look Hulshof Pol, Sjon Kortekaas, Marcus Vallero, Marina Marchioretto, and Esnati Chaggu.
Recommended publications
  • Infiltration/Inflow Task Force Report
    INFILTRATION/INFLOW TASK FORCE REPORT A GUIDANCE DOCUMENT FOR MWRA MEMBER SEWER COMMUNITIES AND REGIONAL STAKEHOLDERS MARCH 2001 INFILTRATION/INFLOW TASK FORCE REPORT A GUIDANCE DOCUMENT FOR MWRA MEMBER SEWER COMMUNITIES AND REGIONAL STAKEHOLDERS MARCH 2001 Executive Summary This report is the product of the Infiltration/Inflow (I/I) Task Force. It has been developed through the cooperative efforts of the 43 Massachusetts Water Resources Authority (MWRA) member sewer communities, MWRA Advisory Board, The Wastewater Advisory Committee (WAC) to the MWRA, Charles River Watershed Association (CRWA), Fore River Watershed Association (FRWA), Mystic River Watershed Association (MRWA), Neponset River Watershed Association (NRWA), South Shore Chamber of Commerce (SSCC), Massachusetts Department of Environmental Protection (DEP), United States Environmental Protection Agency (EPA), and MWRA. The I/I Task Force recommends implementation of the regional I/I reduction goals and implementation strategies detailed in this report. The report outlines a regional I/I reduction plan with appropriate burdens and benefits for stakeholders. The report is intended to be a guidance document for use by local sewer communities, as well as other regional stakeholders, who may tailor appropriate aspects of the report recommendations to their unique situations. Severe storms in October 1996 and June 1998 led to the unusual circumstance of numerous sanitary sewer overflows (SSOs) from local and MWRA collection systems. In the aftermath of these events, EPA and DEP began an aggressive effort to make MWRA regulate flows from community sewer systems. MWRA recommended cooperative efforts by local collection system operators, as well as regulators and environmental advocates, would be more effective than a prescriptive, enforcement based approach.
    [Show full text]
  • Safe Use of Wastewater in Agriculture: Good Practice Examples
    SAFE USE OF WASTEWATER IN AGRICULTURE: GOOD PRACTICE EXAMPLES Hiroshan Hettiarachchi Reza Ardakanian, Editors SAFE USE OF WASTEWATER IN AGRICULTURE: GOOD PRACTICE EXAMPLES Hiroshan Hettiarachchi Reza Ardakanian, Editors PREFACE Population growth, rapid urbanisation, more water intense consumption patterns and climate change are intensifying the pressure on freshwater resources. The increasing scarcity of water, combined with other factors such as energy and fertilizers, is driving millions of farmers and other entrepreneurs to make use of wastewater. Wastewater reuse is an excellent example that naturally explains the importance of integrated management of water, soil and waste, which we define as the Nexus While the information in this book are generally believed to be true and accurate at the approach. The process begins in the waste sector, but the selection of date of publication, the editors and the publisher cannot accept any legal responsibility for the correct management model can make it relevant and important to any errors or omissions that may be made. The publisher makes no warranty, expressed or the water and soil as well. Over 20 million hectares of land are currently implied, with respect to the material contained herein. known to be irrigated with wastewater. This is interesting, but the The opinions expressed in this book are those of the Case Authors. Their inclusion in this alarming fact is that a greater percentage of this practice is not based book does not imply endorsement by the United Nations University. on any scientific criterion that ensures the “safe use” of wastewater. In order to address the technical, institutional, and policy challenges of safe water reuse, developing countries and countries in transition need clear institutional arrangements and more skilled human resources, United Nations University Institute for Integrated with a sound understanding of the opportunities and potential risks of Management of Material Fluxes and of Resources wastewater use.
    [Show full text]
  • Simplified Sewerage Systems and Potential Application to Rural Louisiana Communities
    University of New Orleans ScholarWorks@UNO Senior Honors Theses Undergraduate Showcase 5-2018 Simplified Sewerage Systems and Potential Application to Rural Louisiana Communities Homero de Toledo Sobrinho University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/honors_theses Part of the Civil and Environmental Engineering Commons Recommended Citation de Toledo Sobrinho, Homero, "Simplified Sewerage Systems and Potential Application to Rural Louisiana Communities" (2018). Senior Honors Theses. 100. https://scholarworks.uno.edu/honors_theses/100 This Honors Thesis-Unrestricted is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Honors Thesis-Unrestricted in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Honors Thesis-Unrestricted has been accepted for inclusion in Senior Honors Theses by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. SIMPLIFIED SEWERAGE SYSTEMS AND POTENTIAL APPLICATION TO RURAL LOUISIANA COMMUNITIES An Honors Thesis Presented to the Department of Civil Engineering of the University of New Orleans In Partial Fulfillment of The Requirements for the Degree of Bachelor of Science, with University High Honors And Honors in Civil Engineering by Homero de Toledo Sobrinho May 2018 Acknowledgments I would like to express my great appreciation of the help given by Dr.
    [Show full text]
  • Chemical Industry Wastewater Treatment
    CHEMICAL INDUSTRY WASTEWATER TREATMENT Fayza A. Nasr\ Hala S. Doma\ Hisham S Abdel-Halim", Saber A. El-Shafai* * Water Pollution Research department, National Research Centre, Cairo, Egypt "Faculty of Engineering, Cairo University, Cairo, Egypt Abstract Treatment of chemical industrial wastewater from building and construction chemicals factory and plastic shoes manufacturing factory was investigated. The two factories discharge their wastewater into the public sewerage network. The results showed the wastewater discharged from the building and construction chemicals factory was highly contaminated with organic compounds. The average values of COD and BOD were 2912 and 150 mg02/l. Phenol concentration up to 0.3 mg/l was detected. Chemical treatment using lime aided with ferric chloride proved to be effective and produced an effluent characteristics in compliance with Egyptian permissible limits. With respect to the other factory, industrial wastewater was mixed with domestic wastewater in order to lower the organic load. The COD, BOD values after mixing reached 5239 and 2615 mg02/l. The average concentration of phenol was 0.5 mg/l. Biological treatment using activated sludge or rotating biological contactor (RBC) proved to be an effective treatment system in terms of producing an effluent characteristic within the permissible limits set by the law. Therefore, the characteristics of chemical industrial wastewater determine which treatment system to utilize. Based on laboratory results TESCE, Vol. 30, No.2 <@> December 2004 engineering design of each treatment system was developed and cost estimate prepared. Key words: chemical industry, wastewater, treatment, chemical, biological Introduction The chemical industry is of importance in terms of its impact on the environment.
    [Show full text]
  • Up Flow Anaerobic Filter (UAF) Treatment of Rural Domestic Sewage at Different Psychrophilic and Mesophilic Temperatures
    2016 International Conference on Environment, Climate Change and Sustainable Development (ECCSD 2016) ISBN: 978-1-60595-358-8 Up Flow Anaerobic Filter (UAF) Treatment of Rural Domestic Sewage at Different Psychrophilic and Mesophilic Temperatures John Leju Celestino LADU 1,2 , Xi-wu LU 1,* and Zhong-zhao PING 1 1School of Energy and Environment, Department of Environmental Science and Engineering, Southeast University, Nanjing, 210096, P. R. China 2College of Natural Resources and Environmental Studies, Department of Environmental Studies, University of Juba, Republic of South Sudan *Corresponding author Keywords: Anaerobic filter, Pschrophilic, Mesophilic , Sewage, HRT. Abstract. This empirical research paper revealed the findings from the up flow anaerobic filter (UAF) treatment of rural domestic sewage at different pschrophilic and mesophilic temperature. The reactor was operated at specific HRT of 24, 48 and 72 hours. In the first 14 days of the start-up, the results obtained from the reactor revealed good removal efficiency. At the mesophilic temperature, average COD removal reached 82.0%; while at psychrophilic temperature the reactor attained 68.7%. From the overall results, UAF reactor managed under mesophilic condition disclosed higher COD removal efficiency as compared to psychrophilic temperature which is similar to values obtained in hot regions. Experimentally, up flow anaerobic filter reactor operated at mesophilic temperature is recommended for rural domestic sewage treatment at a specific HRT of 3 days. Introduction In recent years, gigantic urban areas are served more readily than the medium and small city areas or rural communities in domestic sewage treatment. Since the population density is less in rural areas as compared with big urban cities, a small-scale dispersed up flow anaerobic (UAF) treatment system is opted to be the best option.
    [Show full text]
  • Glossary of Wastewater Terms
    Glossary of Wastewater Terms Activated Sludge Sludge that has undergone flocculation forming a bacterial culture typically carried out in tanks. Can be extended with aeration. Advanced Primary Treatment The use of special additives to raw wastewater to cause flocculation or clumping to help settling before the primary treatment such as screening. Advanced Wastewater Treatment Any advanced process used above and beyond the defacto typical minimum primary and secondary wastewater treatment. Aerobic Wastewater Treatment Oxygen dependent wastewater treatment requiring the presence of oxygen for aerobic bacterial breakdown of waste. Alkalinity A measure of a substances ability to neutralize acid. Water containing carbonates, bicarbonates, hydroxides, and occasionally borates, silicates, and phosphates can be alkaline. Alkaline substances have a pH value over 7 Anaerobic Wastewater Treatment Wastewater treatment in the absence of oxygen, anaerobic bacteria breakdown waste. Bacteria Single cell microscopic living organisms lacking chlorophyll, which digest many organic and inorganic substances. An essential part of the ecosystem including within human beings. Bioengineering The use of living plants as part of the system, be it wastewater treatment, erosion control, water polishing, habitat repair and on. Biosolids Rich organic material leftover from aerobic wastewater treatment, essentially dewatered sludge that can be re-used. BOD - Biochemical Oxygen Demand Since oxygen is required in the breakdown or decomposition process of wastewater, its "demand" or BOD, is a measure of the concentration of organics in the wastewater. Clarifier A piece of wastewater treatment equipment used to "clarify" the wastewater, usually some sort of holding tank that allows settling. Used when solids have a specific gravity greater than 1.
    [Show full text]
  • Safe Use of Wastewater in Agriculture Safe Use of Safe Wastewater in Agriculture Proceedings No
    A UN-Water project with the following members and partners: UNU-INWEH Proceedings of the UN-Water project on the Safe Use of Wastewater in Agriculture Safe Use of Wastewater in Agriculture Wastewater Safe of Use Proceedings No. 11 No. Proceedings | UNW-DPC Publication SeriesUNW-DPC Coordinated by the UN-Water Decade Programme on Capacity Development (UNW-DPC) Editors: Jens Liebe, Reza Ardakanian Editors: Jens Liebe, Reza Ardakanian (UNW-DPC) Compiling Assistant: Henrik Bours (UNW-DPC) Graphic Design: Katja Cloud (UNW-DPC) Copy Editor: Lis Mullin Bernhardt (UNW-DPC) Cover Photo: Untited Nations University/UNW-DPC UN-Water Decade Programme on Capacity Development (UNW-DPC) United Nations University UN Campus Platz der Vereinten Nationen 1 53113 Bonn Germany Tel +49-228-815-0652 Fax +49-228-815-0655 www.unwater.unu.edu [email protected] All rights reserved. Publication does not imply endorsement. This publication was printed and bound in Germany on FSC certified paper. Proceedings Series No. 11 Published by UNW-DPC, Bonn, Germany August 2013 © UNW-DPC, 2013 Disclaimer The views expressed in this publication are not necessarily those of the agencies cooperating in this project. The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of the UN, UNW-DPC or UNU concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Unless otherwise indicated, the ideas and opinions expressed by the authors do not necessarily represent the views of their employers.
    [Show full text]
  • Anaerobic Treatment of Municipal Wastewater
    November 1984 ^ Env. Eng. Report No. 76-83-7 Anaerobic Treatment of Municipal Wastewater Michael S. Switzenbaum Associate Professor of Civil Engineering Kevin C. Sheehan Research Engineer and Robert F. Mickey Graduate Research Assistant The research upon which this report is based was supported by the Massachusetts Department of Environmental Quality Engineering, Division of Water Pollution Control, Contract No. 80-32. ENVIRONMENTAL ENGINEERING PROGRAM DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MASSACHUSETTS AMHERST, MASSACHUSETTS 01003 November, 1981) Env. Eng. Report No. 76-83-7 Technical Report Anaerobic Treatment of Municipal Wastewater by Michael S. Switzenbaum Assistant Professor of Civil Engineering Kevin C. Sheehan Research Engineer and Robert F. Hickey Graduate Research Assistant Department of Civil Engineering Environmental Engineering Program University of Massachusetts Amherst, MA 01003 Submitted to: Massachusetts Department of Environmental Quality Engineering Division of Water Pollution Control S. Russell Sylva, Commissioner Thomas C. McMahon, Director November 1984 ACKNOWLEDGEMENTS This study was supported by Research and Demonstration Programs from the Massachusetts Division of Water Pollution Control (Project Number 80-32). The authors would like to thank MDWPC for their support. In addition, the authors would like to thank Ecolotrol, Inc., for lending the pilot reactor system used in this study. Thanks are also extended to Ms. Candy Balmer, Messrs. Kurt Kallmeyer, Kevin Scheuer, and Michael Shapiro, graduate students in the Environmental Engineering Program at UMASS/Amherst for their assistance in the operation and analysis of the pilot reactor. In addition, thanks are extended to Mr. Stephen Plotkin, who was instrumental in setting up this project. Finally, special thanks are extended to Mrs.
    [Show full text]
  • Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries
    Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries Biogas and Fuel Cell Brian Duff Workshop DOE Biomass Program NREL June 11,2012 1 | Biomass Program eere.energy.gov Outline • The Importance of Anaerobic Digestion for Fuels, Products, and Power • Biomass Program Perspective • The Potential for Biogas/Fuel Cell Integration at Biorefineries o Retrofit Applications for 1st-Generation Biofuels Plants o Integration Opportunities in Advance Biofuel Production • Potential for EERE Multi-Program Joint Solicitation 2 | Biomass Program eere.energy.gov Anaerobic Digestion: An Underappreciated and Underutilized Conversion Pathway for Biofuels, Bioproducts, and Bioenergy 3 | Biomass Program eere.energy.gov Anaerobic Digestion • Microbial bioconversion process generates methane • Emerging global technology • Has a “Bad Rep” in the US from numerous failed applications: still needs RD&D for widespread acceptance and commercialization • Reduces GHG emissions (22:1 vs. CO2) • Dependent on sales to grid like other distributed energy techs • Lack of national feed-in tariff retarding deployment • Lack of process reliability retarding financing and deployment 4 | Biomass Program eere.energy.gov Anaerobic Digestion Organic Recycling for Renewable Energy AD takes waste organic feedstocks… Into Renewable Energy… Municipal Operations Industrial And Recycles the Organics Electricity Operations Steam Institutions Correctional Organic Recycling Heat Homes and Renewable Pipeline Energy Facility Biogas Injection Restaurants
    [Show full text]
  • Decentralized Sewerage System
    CHAPTER 8:DECENTRALIZED Part A: Engineering SEWERAGE SYSTEM CHAPTER 8: DECENTRALIZED SEWERAGE SYSTEM 8.1 DEFINITION Decentralized sewerage system is defined as the collection, treatment, disposal / reuse of sewage from individual homes, clusters of homes, isolated communities or institutional facilities, as well as from portions of existing communities at or near the point of waste generation. Typical situation in which decentralized sewerage management should be considered or selected include: 1. Where the operation and maintenance of existing on-site systems must be improved. 2. Where individual on-site systems are failing and the community cannot afford the cost of a conventional sewage management system. 3. Where the community or facility is remote from existing sewers. 4. Where localized water reuse opportunities are available. 5. Where freshwater for domestic supply is in short supply. 6. Where existing STP capacity is limited and financing is not available for expansion. 7. Where, for environmental reasons, the quantity of effluent discharged to the environment must be limited. 8. Where the expansion of the existing sewage collection and treatment facilities would involve unnecessary disruption of the community. 9. Where the site or environmental conditions that require further sewage treatment or exportation of sewage are isolated to certain areas. 10. Where residential density is sparse. 11. Where regionalization would require political annexation that would be unacceptable to the community. 12. Where specific sewage constituents are treated or altered more appropriately at the point of generation. 8.2 CHALLENGES IN SUSTAINING A CENTRALIZED SEWERAGE A centralized sewerage de facto is perceived as an underground sewer system to collect the sewage from all over a habitation and involves the challenges as described below.
    [Show full text]
  • Proceedings of the First Young Water Professionals Symposium
    Proceedings of the First Young Water Professionals Symposium 22nd and 23rd November 2012 Galadari Hotel, Colombo Organized by Sri Lanka Water Partnership (Lanka Jalani) In association with International Water Management Institute (IWMI) and Unilever-Pureit i ISBN 978-955-4784-00-0 ii Table of Contents Page Abbreviations iv Foreword v Symposium Organization vi Report on Proceedings 1 Papers presented at Technical Sessions 12 Papers accepted but not presented 175 Annexes 1) Technical Sessions - Themes and aspects covered 215 2) Technical Sessions - Programme Agenda 216 3) Technical Sessions -Presentations - Summary of Discussion 219 4) List of Participants 227 iii Abbreviations CBO - Community Based Organization CKD-U - Chronic Kidney Diseases, Unknown COD - Chemical Oxygen Demand IPCC - Intergovernmental Panel on Climate Change IWMI -International Water Management Institute IWRM -Integrated Water Resources Management NGOs - Non Governmental Organizations NSF - National Science Foundation O&M - Operations and Maintenance PAC - Powdered Activated Carbon R & D - Research and Development SLWP - Sri Lanka Water Partnership SPI - Standard Precipitation Index SWARM - Sustainable Water Resources Management UDDT - Urine Diversion Dry Toilet YWPS - Young Water Professionals Symposium iv Foreword The Young Water Professionals Symposium (YWPS) was an outcome of the efforts of the Sri Lanka Water Partnership (SLWP) Programme Committee which in early 2012 had identified the limited opportunities available to young water professionals to contribute to water sector issues as a constraint to the development of the sector. The YWPS was planned as a platform where these mid- career water professionals could make their voices heard and present innovative solutions that could be adopted to better plan and manage water resources in Sri Lanka.
    [Show full text]
  • Feasibility Study for Production of Biogas from Wastewater and Sewage Sludge - Development of a Sustainability Assessment Framework and Its Application
    Feasibility Study for Production of Biogas from Wastewater and Sewage Sludge - Development of a Sustainability Assessment Framework and its Application Akash Som Gupta Supervisors: Prof. Dilip Khatiwada Ronny Arnberg Master of Science Thesis KTH School of Industrial Engineering and Management Energy Technology EGI-2020-SEE Division of ECS SE-100 44 STOCKHOLM MJ244X Degree Project in Energy and Climate Studies TRITA-ITM-EX 2020:187 Feasibility Study for Production of Biogas from Wastewater and Sewage Sludge - Development of a Sustainability Assessment Framework and its Application Akash Som Gupta Approved Examiner Supervisor Dilip Khatiwada Dilip Khatiwada Commissioner Contact person Abstract Clean water and renewable energy are essential requirements to build resilience towards the adverse effects of climate change and global warming. Advanced wastewater treatment options may provide a unique opportunity to recover various useful resources such as energy (biogas), fertilizers, minerals, and metals embedded in the wastewater stream. However, considerable challenges remain when it comes to designing and planning sustainable wastewater treatment systems. This thesis focuses on the avenues of energy recovery from wastewater treatment plants (WWTP), by evaluating the potential for biogas recovery from wastewater and sewage sludge treatment in WWTPs. Various available technologies for biogas recovery are examined and evaluated to understand their viability in different applications and relative performance. Further, the methodologies and tools employed to assess such energy recovery systems are evaluated, covering the technical, economic, and environmental performance aspects. A sustainability assessment framework is then developed, using appropriate sustainability indicators to assess performance. The framework is applied to a case study of a WWTP in the emerging city of Tbilisi, Georgia.
    [Show full text]