Feasibility Study for Production of Biogas from Wastewater and Sewage Sludge - Development of a Sustainability Assessment Framework and Its Application
Total Page:16
File Type:pdf, Size:1020Kb
Feasibility Study for Production of Biogas from Wastewater and Sewage Sludge - Development of a Sustainability Assessment Framework and its Application Akash Som Gupta Supervisors: Prof. Dilip Khatiwada Ronny Arnberg Master of Science Thesis KTH School of Industrial Engineering and Management Energy Technology EGI-2020-SEE Division of ECS SE-100 44 STOCKHOLM MJ244X Degree Project in Energy and Climate Studies TRITA-ITM-EX 2020:187 Feasibility Study for Production of Biogas from Wastewater and Sewage Sludge - Development of a Sustainability Assessment Framework and its Application Akash Som Gupta Approved Examiner Supervisor Dilip Khatiwada Dilip Khatiwada Commissioner Contact person Abstract Clean water and renewable energy are essential requirements to build resilience towards the adverse effects of climate change and global warming. Advanced wastewater treatment options may provide a unique opportunity to recover various useful resources such as energy (biogas), fertilizers, minerals, and metals embedded in the wastewater stream. However, considerable challenges remain when it comes to designing and planning sustainable wastewater treatment systems. This thesis focuses on the avenues of energy recovery from wastewater treatment plants (WWTP), by evaluating the potential for biogas recovery from wastewater and sewage sludge treatment in WWTPs. Various available technologies for biogas recovery are examined and evaluated to understand their viability in different applications and relative performance. Further, the methodologies and tools employed to assess such energy recovery systems are evaluated, covering the technical, economic, and environmental performance aspects. A sustainability assessment framework is then developed, using appropriate sustainability indicators to assess performance. The framework is applied to a case study of a WWTP in the emerging city of Tbilisi, Georgia. A spreadsheet tool is also developed to aid the sustainability (technoeconomic and environmental) assessments for the case study. The case study results reveal a significant biogas recovery potential, with annual energy generation potential of 130 GWh from combined heat and power (CHP) recovery, and a potential to avoid 28,200 tCO2eq emissions every year, when biogas is recovered only from the wastewater. The recovery potential increases when biogas is recovered from both wastewater and sewage sludge. Further, the contribution of overall resource (energy and nutrient) recovery in WWTPs to the Sustainable Development Goals is examined. By studying the linkage of various benefits to the different SDGs, the multilateral and cross-cutting nature of benefits from resource recovery is clearly illustrated. The thesis concludes with the discussion of possible future technologies and perspectives that can enhance th e sustainability of WWTPs and help transform them into Wastewater Resource Recovery Facilities (WRRFs). Keywords: resource recovery, wastewater treatment, biogas, anaerobic digestion, energy recovery, sustainability assessment, SDG Sammanfattning Rent vatten och förnybar energi är väsentliga krav för att bygga motståndskraft mot de negativa effekterna av klimatförändringar och global uppvärmning. Avancerade avloppsreningsalternativ kan ge en unik möjlighet att återvinna olika användbara resurser som energi (biogas), gödselmedel, mineraler och metaller inbäddade i avloppsvatten strömmen. Det finns emellertid stora utmaningar när det gäller att utforma och planera hållbara reningssystem. Denna avhandling fokuserar på möjligheterna till energiåtervinning från avloppsreningsverk (WWTP), genom att utvärdera potentialen för biogasåtervinning från avloppsvatten- och avloppssrening i WWTP. Olika tillgängliga tekniker för återvinning av biogas undersöks och utvärderas för att förstå deras livskraft i olika applikationer och relativa prestanda. Vidare utvärderas de metoder och verktyg som används för att utvärdera sådana system för energiåtervinning som täcker de tekniska, ekonomiska och miljömässiga aspekterna. En ram för hållbarhetsbedömning utvecklas sedan med hjälp av lämpliga hållbarhetsindikatorer för att bedöma prestanda. Ramverket tillämpas på en fallstudie av en WWTP i den framväxande staden Tbilisi, Georgien. Ett kalkylarkverktyg utvecklas också för att underlätta bedömningarna av hållbarhet (teknisk ekonomi och miljö) för fallstudien. Resultaten från fallstudien avslöjar en betydande återvinningspotential för biogas, med en årlig energiproduktions potential på 130 GWh från kombinerad värme och kraft (CHP), och en potential att undvika 28.200 ton CO2-utsläpp varje år, när biogas endast återvinns från avloppsvattnet. Återvinningspotentialen ökar när biogas utvinns från både avloppsvatten och avloppsslam. Vidare undersöks bidraget från den totala återhämtningen av energi (energi och näringsämnen) i WWTP till målen för hållbar utveckling. Genom att studera kopplingen mellan olika fördelar till de olika SDG: erna illustreras den multilaterala och tvärgående karaktären av fördelarna med resursåtervinning. Avhandlingen avslutas med diskussionen om möjliga framtida tekniker och perspektiv som kan förbättra WWTP: s hållbarhet och hjälpa till att omvandla dem till anläggning för återvinning av resurser från avloppsvatten. Acknowledgements This master’s thesis project was made in collaboration with IVL Environmental Research Institute, Stockholm and KTH Royal Institute of Technology in Stockholm, Sweden. I would like to thank my supervisor at IVL, Ronny Arnberg for entrusting me with an interesting project and ensuring a smooth execution of the thesis research. His feedback and guidance were valuable inputs during the entire project. Further, I would like to express my deep gratitude to my supervisor Prof. Dilip Khatiwada for his continued support and unwavering confidence in my abilities. His active supervision, inputs, and guidance throughout the thesis tenure were crucial for completion of this thesis. I would also like to thank Zuka Natmeladze at Gardabani Wastewater Treatment Plant, Georgia, for all the support and help during my time in Georgia. Lastly, my friends and family have been a tremendous emotional support and I would not have been able to finish this project without them. A special thanks to my brother, Divyansh Gupta for endless rounds of proofreading and critical feedback. Akash Som Gupta 15th May 2020 Contents 1 Introduction ............................................................................................................................................ 1 1.1 Background information and problem statement ....................................................................... 2 1.2 Aim and research objectives ......................................................................................................... 3 1.3 Research questions ........................................................................................................................ 4 1.4 Methodology ................................................................................................................................. 4 1.5 Scope and limitations .................................................................................................................... 6 2 Literature Review ................................................................................................................................... 8 2.1 Wastewater treatment – global status .......................................................................................... 8 2.2 Resource recovery potential ....................................................................................................... 10 2.2.1 Nutrient recovery as biosolids ........................................................................................... 12 2.2.2 Phosphorous recovery ........................................................................................................ 13 2.2.3 Water recovery and reuse as treated wastewater .............................................................. 14 2.3 Energy recovery potential through biogas ................................................................................ 15 3 SDG Linkages to Resource Recovery from Wastewater Management Systems .............................. 18 3.1 Method used ................................................................................................................................. 19 3.2 Contributions to biosphere level SDGs .................................................................................... 21 3.3 Contributions to society level SDGs ......................................................................................... 21 3.4 Contributions to economic level SDGs ..................................................................................... 27 3.5 Guiding principles for sustainable resource recovery systems ................................................ 28 4 Technologies for Energy Recovery Through Biogas ......................................................................... 30 4.1 Anaerobic digestion technologies for wastewater treatment ................................................... 33 4.2 Anaerobic digestion for sludge treatment ................................................................................. 37 4.2.1 Factors affecting anaerobic digestion ............................................................................... 39 4.2.2 Advanced Anaerobic Digestion Processes .......................................................................