Wastewater Technology Fact Sheet: High-Efficiency Toilets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Combined Vermifiltration-Hydroponic System
applied sciences Article A Combined Vermifiltration-Hydroponic System for Swine Wastewater Treatment Kirill Ispolnov 1,*, Luis M. I. Aires 1,Nídia D. Lourenço 2 and Judite S. Vieira 1 1 Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), School of Technology and Management (ESTG), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; [email protected] (L.M.I.A.); [email protected] (J.S.V.) 2 Applied Molecular Biosciences Unit (UCIBIO)-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT), NOVA University of Lisbon, 2829-516 Caparica, Portugal; [email protected] * Correspondence: [email protected] Abstract: Intensive swine farming causes strong local environmental impacts by generating ef- fluents rich in solids, organic matter, nitrogen, phosphorus, and pathogenic bacteria. Insufficient treatment of hog farm effluents has been reported for common technologies, and vermifiltration is considered a promising treatment alternative that, however, requires additional processes to remove nitrate and phosphorus. This work aimed to study the use of vermifiltration with a downstream hydroponic culture to treat hog farm effluents. A treatment system comprising a vermifilter and a downstream deep-water culture hydroponic unit was built. The treated effluent was reused to dilute raw wastewater. Electrical conductivity, pH, and changes in BOD5, ammonia, nitrite, nitrate, phosphorus, and coliform bacteria were assessed. Plants were monitored throughout the experiment. Electrical conductivity increased due to vermifiltration; pH stayed within a neutral to mild alkaline range. Vermifiltration removed 83% of BOD5, 99% of ammonia and nitrite, and increased nitrate by Citation: Ispolnov, K.; Aires, L.M.I.; 11%. -
Reuse: a Safe and Effective Way to Save Water
SOUTH FLORIDA WATER MANAGEMENT DISTRICT Water Reuse: A safe and effective way to save water ON THE INSIDE The demand for water is projected to increase over the long term in n Reclaimed water and reuse explained South Florida. Urban populations, agricultural operations and the environment depend on adequate water supplies. Fresh ground n Reuse success stories water and surface water will not be sufficient to satisfy all future n Reuse on a regional level demands. Meeting this growing thirst hinges on efforts to develop How water is reclaimed n alternative water sources. This brochure looks at one of the ways to n Purple pipes signify conserve Florida’s water resources — reclaiming water for reuse. reclaimed water Consider what happens to the water used inside the home. Once down the drain, this water is piped to the local wastewater treatment plant where it undergoes treatment to meet state standards for disposal. Historically, most of the water was disposed by injecting it deep underground or by discharging to surrounding waters or to the ocean. This is a wasteful way to treat such a valuable resource. More and more communities are finding that wastewater need not be wasted. They are reclaiming this water for irrigation of residential lots, golf courses, sports fields and orange groves; industrial cooling; car washing; fire protection; and Reclaimed water sign in Collier County groundwater recharge. Reuse is also beneficial to the environment. Success Stories During times of drought, reclaimed water •Pompano Beach – The city takes is a dependable source of water because wastewater being piped to the ocean, its availability is not dependent on rainfall. -
Wastewater Treatment: Overview and Background
Wastewater Treatment: Overview and Background Claudia Copeland Specialist in Resources and Environmental Policy October 30, 2014 Congressional Research Service 7-5700 www.crs.gov 98-323 Wastewater Treatment: Overview and Background Summary The Clean Water Act prescribes performance levels to be attained by municipal sewage treatment plants in order to prevent the discharge of harmful wastes into surface waters. The act also provides financial assistance so that communities can construct treatment facilities to comply with the law. The availability of funding for this purpose continues to be a major concern of states and local governments. This report provides background on municipal wastewater treatment issues, federal treatment requirements and funding, and recent legislative activity. Meeting the nation’s wastewater infrastructure needs efficiently and effectively is likely to remain an issue of considerable interest to policymakers. Congressional Research Service Wastewater Treatment: Overview and Background Contents Introduction ...................................................................................................................................... 1 Federal Aid for Wastewater Treatment ............................................................................................ 1 How the SRF Works .................................................................................................................. 2 Other Federal Assistance .......................................................................................................... -
Flushing Money Away?
Florida Keys Aqueduct Authority Making Paradise Possible Are you flushing money away? WATER USE If every American home with older, inefficient toilets replaced them with new high efficiency toilets, we would SAVE save nearly 640 billion gallons 67% of water per year, equal to OLDER LOW more than two weeks of flow Toilets account for approximately 27 percent of a home’s TOILET FLOW over Niagara Falls. indoor water consumption. Toilets are also a major source of wasted water due to leaks or inefficiency. Jiggling the handle is not a solution! It’s a symptom of something that could cost you Replacement of older toilets with low flow models can hundreds of dollars while wasting thousands of gallons save approximately 4,000 gal per year per person. of water each year. A simple way to test your toilet for Whether you're remodeling a bathroom, building a new leaks is to add a few drops of food coloring to the top home, or simply replacing an old, leaky toilet, a Water- tank, wait a few hours and see if any color seeps down into the bowl. Sense labeled toilet is a great option. FKAA can help. WaterSense Florida Keys Aqueduct Authority has a wide variety of , a program Toilets use either a siphonic sponsored by the U.S. or a wash-down method to conservation tools and methods available for you to use. remove waste from the bowl. Please contact any of our offices and ask about how you Environmental Protection e siphonic method, more can start saving right away. -
What Happens When We Flush?
Anthropology Now ISSN: 1942-8200 (Print) 1949-2901 (Online) Journal homepage: http://www.tandfonline.com/loi/uann20 What Happens When We Flush? Nicholas C. Kawa To cite this article: Nicholas C. Kawa (2016) What Happens When We Flush?, Anthropology Now, 8:2, 34-43 To link to this article: http://dx.doi.org/10.1080/19428200.2016.1202580 Published online: 29 Sep 2016. Submit your article to this journal Article views: 17 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=uann20 Download by: [Tufts University] Date: 04 January 2017, At: 14:38 features reach far into our houses with their tentacles, they are carefully hidden from view, and we are happily ignorant of the invisible Venice What Happens When of shit underlying our bathrooms, bedrooms, dance halls, and parliaments.”1 We Flush? So what really happens when the mod- ern toilet goes “flush”? The human excreta it Nicholas C. Kawa handles most certainly does not disappear. Instead, a potential resource is turned into waste. But it hasn’t always been this way, and ost people who use a flush toilet prob- it doesn’t have to be. Mably don’t spend a lot of time thinking about where their bodily fluids and solids will journey after they deposit them. This is be- Dark Earths and Night Soils cause modern sanitation systems are designed to limit personal responsibilities when it Much of my research as an environmental comes to managing these most intimate forms anthropologist has focused on human rela- of excreta. -
Composting Toilets: a Review* of Their Use in Public Venues in the U.S
Composting Toilets: A Review* of Their Use in Public Venues in the U.S. (Updated November 8, 2016) Introduction :::::::::::::::::::::::::::::: 1 The Crystal Springs Golf Course :::::::::: 5 Manufacturers :::::::::::::::::::::::::::: 1 El Pol´ınSpring ::::::::::::::::::::::::::: 6 Buildings at the Vermont Law School ::::: 2 San Jose Environmental Innovation Center7 The Bronx Zoo Eco-Restroom ::::::::::::: 4 Frequently asked questions :::::::::::::::: 7 The University of Vermont :::::::::::::::: 5 Concluding remarks ::::::::::::::::::::: 11 Installations in California ::::::::::::::::: 5 Introduction Mention \composting toilet", and most people will think of something suitable for a summer cabin or a rural residence off the grid|a kind of classy outhouse|surely not something suitable for installation in an urban environment. As one person has remarked, flush toilets are the accepted social standard. The idea of collecting human excrement in a basement composting bin does not exactly square with the modern paradigm of gracious living. There is, however, more to the story. In what follows, we describe six composting toilet installations of varying types, currently installed for public use in locations in the United States, including three in California. We consider only those for institutional, industrial, municipal and commercial venues, i.e., those for which maintenance can be assured. We do not consider composting toilet installations for residential use. In our descriptions, we include comments by administrators, architects and users. As we shall see, every one of these six installations is positively viewed. We also include a section on frequently asked questions, including discussions of costs and possible legal barriers. Manufacturers: Clivus Multrum is the leader A comprehensive list of manufacturers of composting toilets is available as a pdf that may be downloaded from http://www.susana.org/en/resources/library/details/876. -
Community Wastewater Treatment by Using Vermifiltration Technique
International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017) © International Research Publication House http://www.irphouse.com Community Wastewater Treatment By Using Vermifiltration Technique Author 1 Nandini Misal Assistant Professor,Department of Civil Engineering,D.Y .Patil College of Engineering and Technology, KasabaBawada,Kolhapur Author 2 Mr.NitishA.Mohite Assistant Professor,Department of Civil Engineering,D.Y .Patil College of Engineering and Technology, KasabaBawada,Kolhapur Abstract cowdung,clay and loaded with vermis-Eisenia fetida Now-a-days many developing countries cannot afford the earthworms. wastewater treatment processes as they are costly,need more The wastewater is allowed to pass through the filter,the space to construct the treatment plant and in addition use of earthworms consume and metabolise oils,fats and other chemicals for the treatment.They need some more options at compounds.The water percolating through is collected in low cost,space saving and ecofriendly another container.Earlier report of Sinha et.al(2008) have techniques.Vermifiltration is one of the simple,low proved that the body of earthworms works as a “biofilter”and cost,ecofriendly,chemical free technique used to treat the the body walls absorbs the solids from wastewater.It has been canteen wastewater using the Eisenia fetida earthworm observed that the earthworms are potentially capable of species.The earthworms are potentially capable of digesting digesting the waste organic material and remove the 5days the waste organic material and reduce it through ingestion.It is BOD5 near about 90%,COD by 85-90%, TS by 90-95%,TDS considered to be an innovative ecofriendly technology that by 95%,TSS by 95-98%. -
In 1858, London Was Caught in the Grip of a Deadly Health Crisis: Its Largest River Was Overflowing with Poop
Paired Texts In 1858, London was caught in the grip of a deadly health crisis: Its largest river was overflowing with poop. By Allison Friedman UP years, Londoners have been dumping human CLOSE Synthesizing As you read these articles, think about how big problems can waste into the Thames [temz], the great river spark the creation of new inventions. that rushes through the city. Now, London is suffering the hottest summer in recent history. LOOK FOR WORD NERD’S 10 WORDS IN BOLD The steaming heat is cooking the filthy river into a bubbling, foul-smelling stew. Newspapers Let’s journey to the city of London, England, are calling this situation “The Great Stink.” in the summer of 1858. Horse-drawn carriages The problem isn’t merely gross. It’s also clip-clop through the streets. Ladies wearing deadly. Over the past 50 years, tens of thousands giant, tentlike skirts glide past shop windows. of people have died from drinking the polluted Kids stand on street corners, selling newspapers water of the Thames River. Can the Great and cigars and fried fish. Stink force the city to clean up the river before But you don’t notice any of that. All you thousands more are sickened? can think about is the overpowering, stomach- turning, eye-watering smell of poop. The Problem of Poop As you will soon discover, the entire city For as long as humans have walked the is caught in the grip of a stinky crisis. For earth, figuring out what to do with human GARY HANNA BY ILLUSTRATION 10 STORYWORKS waste has been one of our greatest into the Thames, to prevent challenges. -
Glossary of Wastewater Terms
Glossary of Wastewater Terms Activated Sludge Sludge that has undergone flocculation forming a bacterial culture typically carried out in tanks. Can be extended with aeration. Advanced Primary Treatment The use of special additives to raw wastewater to cause flocculation or clumping to help settling before the primary treatment such as screening. Advanced Wastewater Treatment Any advanced process used above and beyond the defacto typical minimum primary and secondary wastewater treatment. Aerobic Wastewater Treatment Oxygen dependent wastewater treatment requiring the presence of oxygen for aerobic bacterial breakdown of waste. Alkalinity A measure of a substances ability to neutralize acid. Water containing carbonates, bicarbonates, hydroxides, and occasionally borates, silicates, and phosphates can be alkaline. Alkaline substances have a pH value over 7 Anaerobic Wastewater Treatment Wastewater treatment in the absence of oxygen, anaerobic bacteria breakdown waste. Bacteria Single cell microscopic living organisms lacking chlorophyll, which digest many organic and inorganic substances. An essential part of the ecosystem including within human beings. Bioengineering The use of living plants as part of the system, be it wastewater treatment, erosion control, water polishing, habitat repair and on. Biosolids Rich organic material leftover from aerobic wastewater treatment, essentially dewatered sludge that can be re-used. BOD - Biochemical Oxygen Demand Since oxygen is required in the breakdown or decomposition process of wastewater, its "demand" or BOD, is a measure of the concentration of organics in the wastewater. Clarifier A piece of wastewater treatment equipment used to "clarify" the wastewater, usually some sort of holding tank that allows settling. Used when solids have a specific gravity greater than 1. -
Technology Review of Urine-Diverting Dry Toilets (Uddts) Overview of Design, Operation, Management and Costs
Technology Review of Urine-diverting dry toilets (UDDTs) Overview of design, operation, management and costs As a federally owned enterprise, we support the German Government in achieving its objectives in the field of international cooperation for sustainable development. Published by: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Registered offices Bonn and Eschborn, Germany T +49 228 44 60-0 (Bonn) T +49 61 96 79-0 (Eschborn) Friedrich-Ebert-Allee 40 53113 Bonn, Germany T +49 228 44 60-0 F +49 228 44 60-17 66 Dag-Hammarskjöld-Weg 1-5 65760 Eschborn, Germany T +49 61 96 79-0 F +49 61 96 79-11 15 E [email protected] I www.giz.de Name of sector project: SV Nachhaltige Sanitärversorgung / Sustainable Sanitation Program Authors: Christian Rieck (GIZ), Dr. Elisabeth von Münch (Ostella), Dr. Heike Hoffmann (AKUT Peru) Editor: Christian Rieck (GIZ) Acknowledgements: We thank all reviewers who have provided substantial inputs namely Chris Buckley, Paul Calvert, Chris Canaday, Linus Dagerskog, Madeleine Fogde, Robert Gensch, Florian Klingel, Elke Müllegger, Charles Niwagaba, Lukas Ulrich, Claudia Wendland and Martina Winker, Trevor Surridge and Anthony Guadagni. We also received useful feedback from David Crosweller, Antoine Delepière, Abdoulaye Fall, Teddy Gounden, Richard Holden, Kamara Innocent, Peter Morgan, Andrea Pain, James Raude, Elmer Sayre, Dorothee Spuhler, Kim Andersson and Moses Wakala. The SuSanA discussion forum was also a source of inspiration: http://forum.susana.org/forum/categories/34-urine-diversion-systems- -
2 the Robo-Toilet Revolution the Actress and the Gorilla
George, Rose, 2014, The Big Necessity: The Unmentionable World of Human Waste and Why It Matters (pp. 39-64). Henry Holt and Co.. Kindle Edition. 2 THE ROBO-TOILET REVOLUTION THE ACTRESS AND THE GORILLA The flush toilet is a curious object. It is the default method of excreta disposal in most of the industrialized, technologically advanced world. It was invented either five hundred or two thousand years ago, depending on opinion. Yet in its essential workings, this everyday banal object hasn’t changed much since Sir John Harington, godson of Queen Elizabeth I, thought his godmother might like something that flushed away her excreta, and devised the Ajax, a play on the Elizabethan word jakes, meaning privy. The greatest improvements to date were made in England in the later years of the eighteenth century and the early years of the next by the trio of Alexander Cumming (who invented a valve mechanism), Joseph Bramah (a Yorkshireman who improved on Cumming’s valve and made the best lavatories to be had for the next century), and Thomas Crapper (another Yorkshireman who did not invent the toilet but improved its parts). In engineering terms, the best invention was the siphonic flush, which pulls the water out of the bowl and into the pipe. For the user, the S-bend was the godsend, because the water that rested in the bend created a seal that prevented odor from emerging from the pipe. At the height of Victorian invention, when toilets were their most ornate and decorated with the prettiest pottery, patents for siphonic flushes, for example, were being requested at the rate of two dozen or so a year. -
Composting Toilets
Advanced Methods and Materials AMM201 Composting Toilets This Advanced Method and Material was developed jointly by the City of Bellingham SCOPE Building Department and Sustainable Connections to enhance water conservation ef- All habitable build- forts by providing a means for the installation of composting toilets. ings. DEFINITIONS Composting toilet: A BENEFITS human waste disposal system that utilizes a Composting toilets can help achieve zero waterless or low-fl ush toilet in conjunction water consumption. When used in com- with a tank in which bination with wastewater re-utilization aerobic bacteria break in irrigation and other household water down the waste. reduction techniques, costs can be cut by up to 60%. Additional benefi ts of com- PERMIT posting toilets include: REQUIREMENTS In general, the person Lower electricity costs (to pump water installing the com- and sewage) posting toilet obtains any required permits. Elimination of infrastructure costs For specifi c informa- to provide fresh water or collect and tion applicants should treat sewage contact the COB End state is a valuable fertilizer Permit Center/Build- ing Services Division Contribute up to 3 LEED® points for for more information: your project (360) 778-8300 or [email protected]. The average household spends as much as $500 per year on its water and sewer bill. A four-person household using a traditional 3.5 gallon fl ush toilet will fl ush some 70 gallons per day down the toilet (that’s an annual volume of over 25,000 gallons per year). Compared to sewage systems, on-site composting and greywater treatment has less impact on the environment (large effl uent releases into watercourses and oceans are avoided, disruption to soils systems through pipeline installation is eliminated and leakage of raw sewage into groundwater through pipe deterioration and breakage is eliminated).