Metchnikoff and the Phagocytosis Theory

Total Page:16

File Type:pdf, Size:1020Kb

Metchnikoff and the Phagocytosis Theory PERSPECTIVES TIMELINE Metchnikoff and the phagocytosis theory Alfred I. Tauber Metchnikoff’s phagocytosis theory was less century. Indeed, the clonal selection theory and an explanation of host defence than a the elucidation of the molecular biology of the proposal that might account for establishing immune response count among the great and maintaining organismal ‘harmony’. By advances in biology during our own era5. tracing the phagocyte’s various functions Metchnikoff has been assigned to the wine cel- Figure 1 | Ilya Metchnikoff, at ~45 years of through phylogeny, he recognized that eating lar of history, to be pulled out on occasion and age. This figure is reproduced from REF. 14. the tadpole’s tail and killing bacteria was the celebrated as an old hero. same fundamental process: preserving the However, to cite Metchnikoff only as a con- integrity, and, in some cases, defining the tributor to early immunology distorts his sem- launched him into the turbulent waters of evo- identity of the organism. inal contributions to a much wider domain. lutionary biology. He wrote his dissertation on He recognized that the development and func- the development of invertebrate germ layers, I first encountered the work of Ilya tion of the individual organism required an for which he shared the prestigious van Baer Metchnikoff (1845–1916; FIG. 1) in Paul de understanding of physiology in an evolution- Prize with Alexander Kovalevski. By the age of Kruif’s classic, The Microbe Hunters 1.Who ary context. The crucial precept: the organism 22 years, he was appointed to the position of would not be struck by the description of this was composed of various elements, each vying docent at the new University of Odessa, where, fiery Russian championing his theory of for dominance. In such a world of competi- apart from four years at St. Petersburg, he phagocytes? His description of mobile cells tion, Darwin’s ‘struggle of species’ was enacted remained until 1882, pursuing comparative battling invading pathogens was visually within the organism. But instead of a sim- embryological investigations as a means of immediate and dramatic. Written in the style plisitic ‘survival of the fittest’, Metchnikoff understanding evolutionary relationships. He of an adventure story, his findings made for sought a theory to account for the harmoniz- joined the Pasteur Institute in Paris in 1888 and great reading. But the drama extended beyond ing of the elements required for the satisfactory remained there until his death in 1916. the microscope. De Kruif vividly portrayed function of the organism. How does such inte- Metchnikoff’s developmental biology Metchnikoff as a controversialist; the mad sci- gration and coordination of cells, structures research was eventually joined to another entist, flailing away at the German scientific and physiological processes occur? What is its branch of evolutionary biology, one that community led by Robert Koch, the imperial mechanism? How, indeed, were new challenges directly impacted on human welfare. In the scientific Bismarck of the period. Metchnikoff met by physiological structures and how were mid-1870s, pathogenic bacteria were identified was cast as the ‘country bumpkin who made the functions of these structures adapted to, as the aetiological agents of infectious diseases. good’ thanks to his extraordinary scientific and used for, different purposes and under dif- This momentous discovery (see TIMELINE) gave imagination. He shared the Nobel Prize with ferent demands? These were new questions, birth to several modern disciplines: microbiol- Paul Ehrlich in 1908, largely to call a truce in a and by asking them and offering a solution, ogy, inflammatory pathology, infectious dis- divisive war 2.Francophile immunologists had Metchnikoff must be counted as one of the ease as a medical discipline, and — most championed Metchnikoff’s cellular theory great theorists of nineteenth century biology. importantly for Metchnikoff’s story — against those of their German competitors, immunology. Although these various fields who advocated the humoral theory of comple- Metchnikoff, the evolutionist diverged and commanded their own histories, ment and antibodies (see TIMELINE). The two Metchnikoff stands apart from other immu- the last decades of the nineteenth century were contending schools called a tentative truce nologists of the late nineteenth century dominated by research physicians such as Emil once phagocytes and opsonins (serum sub- because of his unique scientific background6. von Behring, who studied infectious diseases, stances, such as antibodies and complement, Born into a middle-class Russian family in and those, such as Paul Ehrlich, who laid the that increase the susceptibility of microbes for 1845, he soon distinguished himself as being foundations of the biochemistry of host phagocytosis) were conclusively shown to have intellectually gifted at Kharkov Lycee and pub- defence4,7.Metchnikoff, alone, was an embryol- a synergistic effect in killing bacteria. lished a book review of a geology text in the ogist. He was intrigued by the potential of Conventional histories see serology and the Journal de Moscow at the age of 16 years. Even defining phylogenetic relationships through biochemistry of immune specificity as the as an adolescent he had a keen interest in the study of the embryology of invertebrate dominant themes of the next four decades of Rudolf Virchow’s cellular theory, and the wun- species, and believed that a deeper understand- immunological research3,4.Metchnikoff derkind soon envisioned himself creating a ing of embryonic anatomical structures and receded as a founder of the subject, and grand theory of medicine. Metchnikoff accel- functions of these more primitive animals although phagocyte pathophysiology became erated his studies at Kharkov University, and might lead to insights about adult anatomy an active area of investigation in its own right, published his first research — on the possible and physiology. How these interests eventually the lymphocyte and its products dominated analogy between the stalk of Vorticella with centered on his ‘phagocytosis theory’ is a com- immunology in the latter half of the twentieth muscle — in Muellers Archives in 1863, which plex, but intriguing, story. NATURE REVIEWS | MOLECULAR CELL BIOLOGY VOLUME 4 | NOVEMBER 2003 | 897 © 2003 Nature Publishing Group PERSPECTIVES Timeline | Metchnikoff and the origins of immunology and infectious diseases Metchnikoff begins Bacterial aetiology of infectious Phagocytosis theory elaborated as a comparative embryological diseases established by Robert Koch: case of ‘physiological inflammation’; Discovery of antibacterial research. He shows a Staphylococcus (1873); Bacillis begins studies of phagocyte substance in the blood (George critical attitude towards anthracis (1876); Mycobacterium bactericidal capacity against certain Nuttal4); Metchnikoff contests Ilya Metchnikoff born. Darwinism. tuberculosis (1882); REF.29. microorganisms. the humoral theory of immunity. 1845 1859 1865 1872 1873 1873–78 1883 1881–92 1888 1890 Darwin publishes On Ernst Haeckel’s Metchnikoff publishes a series of papers on sponges; Metchnikoff extends Efficacy of immune serum the Origin of Species ‘gastrea’ theory attacks Haeckel’s gastrea hypothesis and argues for comparative embryological against diptheria and by Means of Natural proposed. ‘parenchymella’ as the primordial metazoan; focuses on the studies and embraces tetanus infections shown Selection. origin and function of mesodermal cells; turns to the Darwinism. (Emil von Behring4). problem of intracellular digestion; formulates a physiological approach to the task of genealogical reconstruction. Evolution and argument embryonic-layer formation. Using embryos Metchnikoff began his descriptive embryologi- from sponges, hydroids and lower medusae, cal studies shortly after the publication of On they saw cellular ‘introgression’ (unipolar or The Origin of Species by Means of Natural multi-polar) as the primordial process, and Selection in 1859. In late autobiographical argued that embryonic layers were formed accounts of his scientific career8, it is clear that from an initially undifferentiated cellular mass Gastraea Parenchymella/ Metchnikoff saw the development of his (parenchyma) that arose from cells migrating Phagocytella phagocytosis theory as a response to Darwin’s from the periphery in a less ordered fashion to thesis, and indeed it was. But in Metchnikoff’s fill the inner space of the gastrula sphere (FIG. 2, retrospective accounts of his research career, he right). Metchnikoff called his hypothetical ur- chose to ignore his initial ambivalence about metazoan parenchymella and, because he mod- The Origin of Species by Means of Natural elled it on more primitive animals than Selection in order to straighten the curves and Haeckel’s gastrea, the Russian could claim the switchbacks marking his investigative path and phylogenetic priority of introgression as a the various theoretical orientations he later more ancient mechanism of gastrulation. adopted6,9.In short, Metchnikoff re-wrote his Simply, in the competition to describe the ear- scientific biography with keen hindsight to liest metazoan, Metchnikoff upstaged Haeckel appear consistently close to Darwinism. on claims that the older ancestry showed a Putting aside how Metchnikoff finally arrived more basic developmental process. at his mature understanding of evolution, the phagocytosis theory arose from a theoretical Creating harmony
Recommended publications
  • October 24–26, 2021 2
    SCIENCE · INNOVATION · POLICIES WORLD HEALTH SUMMIT BERLIN, GERMANY & DIGITAL OCTOBER 24–26, 2021 2 “No-one is safe from COVID-19; “All countries have signed up to Universal no-one is safe until we are all Health Coverage by 2030. But we cannot safe from it. Even those who wait ten years. We need health systems conquer the virus within their that work, before we face an outbreak own borders remain prisoners of something more contagious than within these borders until it is COVID-19; more deadly; or both.” conquered everywhere.” ANTÓNIO GUTERRES Secretary-General, United Nations FRANK-WALTER STEINMEIER Federal President, Germany “We firmly believe that the “All pulling together—this must rights of women and girls be the hallmark of the European are not negotiable.” Health Union. I believe this can NATALIA KANEM be a test case for true global Executive Director, United Nations Population Fund (UNFPA) health compact. The need for leadership is clear and I believe the European Union must as- sume this responsibility.” “The lesson is clear: a strong health URSULA VON DER LEYEN system is a resilient health system. Health President, European Commission systems and preparedness are not only “Governments of countries an investment in the future, they are the that are doing well during foundation of our response today.” the pandemic have not TEDROS ADHANOM GHEBREYESUS Director-General, World Health Organization (WHO) only shown political leader- ship, but also have listened “If we don’t address the concerns and to scientists and followed fears we will not do ourselves a favor. their recommendations.” In the end, it is about how technology SOUMYA SWAMINATHAN Chief Scientist, World Health can be advanced as well as how Organization (WHO) we can make healthcare more human.” BERND MONTAG President and CEO, Siemens Healthineers AG, Germany “The pandemic has brought to light the “Academic collabo ration is importance of digital technologies and in place and is really a how it can radically bridging partnership.
    [Show full text]
  • Sir Charles Sherrington'sthe Integrative Action of the Nervous System: a Centenary Appreciation
    doi:10.1093/brain/awm022 Brain (2007), 130, 887^894 OCCASIONAL PAPER Sir Charles Sherrington’sThe integrative action of the nervous system: a centenary appreciation Robert E. Burke Formerly Chief of the Laboratory of Neural Control, National Institute of Neurological Disorders, National Institutes of Health, Bethesda, MD, USA Present address: P.O. Box 1722, El Prado, NM 87529,USA E-mail: [email protected] In 1906 Sir Charles Sherrington published The Integrative Action of the Nervous System, which was a collection of ten lectures delivered two years before at Yale University in the United States. In this monograph Sherrington summarized two decades of painstaking experimental observations and his incisive interpretation of them. It settled the then-current debate between the ‘‘Reticular Theory’’ versus ‘‘Neuron Doctrine’’ ideas about the fundamental nature of the nervous system in mammals in favor of the latter, and it changed forever the way in which subsequent generations have viewed the organization of the central nervous system. Sherrington’s magnum opus contains basic concepts and even terminology that are now second nature to every student of the subject. This brief article reviews the historical context in which the book was written, summarizes its content, and considers its impact on Neurology and Neuroscience. Keywords: Neuron Doctrine; spinal reflexes; reflex coordination; control of movement; nervous system organization Introduction The first decade of the 20th century saw two momentous The Silliman lectures events for science. The year 1905 was Albert Einstein’s Sherrington’s 1906 monograph, published simultaneously in ‘miraculous year’ during which three of his most celebrated London, New Haven and New York, was based on a series papers in theoretical physics appeared.
    [Show full text]
  • Diphtheria Serum and Serotherapy. Development, Production and Regulation in Fin De Siècle Germany
    Diphtheria serum and serotherapy. Development, Production and regulation in fin de siècle Germany Axel C. Hüntelmann Institute for the History of Medicine, Ruprecht-Karls-University Heidelberg. [email protected] Dynamis Fecha de recepción: 3 de enero de 2007 [0211-9536] 2007; 27: 107-131 Fecha de aceptación: 8 de marzo de 2007 SUMMARY: 1.—Introduction. 2.—The socio-cultural context of science in fin de siècle Germany. 3.— The development of diphtheria serum in Germany. 4.—The production of diphtheria serum in the German Empire. 5.—State control of diphtheria serum. 6.—Serum networks and indirect state regulation. ABSTRACT: The development, production and state regulation of diphtheria serum is outlined against the background of industrialisation, standardization, falling standards of living and rising social conflict in fin de siècle Germany. On one hand, diphtheria serum offered a cure for an infectious disease and was a major therapeutic innovation in modern medicine. On the other hand, the new serum was a remedy of biological origin and nothing was known about its side effects or long-term impact. Moreover, serum therapy promised high profits for manufacturers who succeeded in stabilizing the production process and producing large quantities of serum in so-called industrial production plants. To minimize public health risks, a broad system of state regulation was installed, including the supervision of serum production and distribution. The case of diphtheria serum illustrates the indirect forms of government supervision and influence adopted in the German Empire and the cooperation and networking among science, state and industry. PALABRAS CLAVE: suero antidiftérico, Alemania, regulacion estatal, seroterapia, redes entre ciencia, estado e industria, Emil Behring.
    [Show full text]
  • Commencement1991.Pdf (8.927Mb)
    TheJohns Hopkins University Conferring of Degrees At the Close of the 1 1 5th Academic Year MAY 23, 1991 Digitized by the Internet Archive in 2012 with funding from LYRASIS Members and Sloan Foundation http://archive.org/details/commencement1991 Contents Order of Procession 1 Order of Events 2 Johns Hopkins Society of Scholars 10 Honorary Degree Citations 12 Academic Regalia 15 Awards 17 Honor Societies 21 Student Honors 23 Degree Candidates 25 As final action cannot always be taken by the time the program is printed, the lists of candidates, recipients of awards and prizes, and designees for honors are tentative only. The University reserves the right to withdraw or add names. Order ofProcession MARSHALS Sara Castro-Klaren Peter B. Petersen Eliot A. Cohen Martin R. Ramirez Bernard Guyer Trina Schroer Lynn Taylor Hebden Stella M. Shiber Franklin H. Herlong Dianne H. Tobin Jean Eichelberger Ivey James W. Wagner Joseph L. Katz Steven Yantis THE GRADUATES * MARSHALS Grace S. Brush Warner E. Love THE FACULTIES **- MARSHALS Lucien M. Brush, Jr. Stewart Hulse, Jr. THE DEANS MEMBERS OF THE SOCIETY OF SCHOLARS OFFICERS OF THE UNIVERSITY THE TRUSTEES CHDZF MARSHAL Noel R. Rose THE VICE PRESIDENT OF THE JOHNS HOPKINS UNDTERSLTY ALUMNI ASSOCIATION THE CHAPLAINS THE PRESENTERS OF THE HONORARY DEGREE CANDIDATES THE HONORARY DEGREE CANDIDATES THE INTERIM PROVOST OF THE UNIVERSITY THE CHADIMAN OF THE BOARD OF TRUSTEES THE PRESIDENT OF THE UNDTERSLTY 1 Order ofEvents William (.. Richardson President of the University, presiding * * « PRELUDE Suite from the American Brass Band Journal G.W.E. Friederich (1821-1885) Suite from Funff— stimmigte blasenda Music JohannPezel (1639-1694) » PROCESSIONAL The audience is requested to stand as the Academic Procession moves into the area and to remain standing after the Invocation.
    [Show full text]
  • Balcomk41251.Pdf (558.9Kb)
    Copyright by Karen Suzanne Balcom 2005 The Dissertation Committee for Karen Suzanne Balcom Certifies that this is the approved version of the following dissertation: Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine Committee: E. Glynn Harmon, Supervisor Julie Hallmark Billie Grace Herring James D. Legler Brooke E. Sheldon Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine by Karen Suzanne Balcom, B.A., M.L.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August, 2005 Dedication I dedicate this dissertation to my first teachers: my father, George Sheldon Balcom, who passed away before this task was begun, and to my mother, Marian Dyer Balcom, who passed away before it was completed. I also dedicate it to my dissertation committee members: Drs. Billie Grace Herring, Brooke Sheldon, Julie Hallmark and to my supervisor, Dr. Glynn Harmon. They were all teachers, mentors, and friends who lifted me up when I was down. Acknowledgements I would first like to thank my committee: Julie Hallmark, Billie Grace Herring, Jim Legler, M.D., Brooke E. Sheldon, and Glynn Harmon for their encouragement, patience and support during the nine years that this investigation was a work in progress. I could not have had a better committee. They are my enduring friends and I hope I prove worthy of the faith they have always showed in me. I am grateful to Dr.
    [Show full text]
  • Emil Von Behring (1854–1917) the German Bacteriologist
    Emil von Behring (1854–1917) The German bacteriologist and Nobel Prize winner Emil von Behring ranks among the most important medical scientists. Behring was born in Hansdorff, West Prussia, as the son of a teacher in 1854. He grew up in narrow circumstances among eleven brothers and sisters. His desire to study medicine could only be realized by fulfilling the obligation to work as an military doctor for a longer period of time. Between 1874 and 1878 he studied medicine at the Akademie für das militärärztliche Bildungswesen in Berlin. In 1890, after having published his paper Ueber das Zustandekommen der Diphtherie- Immunität und der Tetanus-Immunität bei Thieren, he captured his scientific breakthrough. While having worked as Robert Koch’s scientific assistant at the Berlin Hygienic Institute he had been able to show – together with his Japanese colleague Shibasaburo Kitasato (1852–1931) – via experimentation on animal that it was possible to neutralize pathogenic germs by giving „antitoxins“. Behring demonstrated that the antitoxic qualities of blood are not seated in cells, but in the cell-free serum. Antitoxins recovered of human convalenscents or laboratorty animals, prove themselves as life-saving when being applied to diseased humans. At last – due to Behring’s discovery of the body’s own immune defence and due to his development of serotherapy against diphtheria and tetanus – a remedy existed which was able to combat via antitoxin those infectious diseases which had already broken out. Having developped a serum therapy against diphtheria and tetanus Behring won the first Nobel Prize in Medicine in 1901. Six years before, in 1895, he had become professor of Hygienics within the Faculty of Medicine at the University of Marburg, a position he would hold for the rest of his life.
    [Show full text]
  • Of Rabbits and Men: the Tale of Paul Ehrlich in Our Modern World Of
    Of Rabbits and Men: The Tale of Paul Ehrlich In our modern world of chemotherapy, antibiotics and antivirals, it might come as a surprise to find that the origin of all these treatments can be traced back to rabbits; the cute and fluffy kind. To understand why, we need to go all the way back to 1882 Berlin. A talented, if aimless, young German doctor, Paul Ehrlich, had just met the great microbiologist Robert Koch. Koch was giving a lecture in which he identified the pathogen responsible for tuberculosis. Ehrlich was instantly fascinated by Koch and microbiology. Unknown to himself, he had just taken the first step on a path that would help change the way disease is tackled forever1. The late 1800’s were a time of dynamic change in the sciences. Charles Darwin had proposed his Theory of Natural Selection and Thomas Edison had given us the light bulb. Amongst the many fashionable topics of the time, some biologists were fascinated by dyes; specifically the staining of living tissue. Spending all day bent over a microscope looking at the pretty colours might not seem like worthwhile science by modern standards, but these dyes had interesting properties. Dyes displayed a high level of specificity; they would only stain certain structures and pass through others. Ehrlich noticed this and soon started to think of applications for these properties. These were times when catching a chill could kill. Many well-known individuals of the time were killed in their prime due to infectious disease. Emily Brontë died from tuberculosis2, René Descartes from pneumonia3 and Pyotr Tchaikovsky died from cholera4.
    [Show full text]
  • Microbiology: Example Saqs
    Microbiology: Example SAQs Level 1: remembering. Frequently used task words: define, list, label, name. Can the student recall or remember the information? Identify TWO methods used to treat drinking water to reduce the risk of infection. This question just asks for the name of the methods, and nothing else is required. You don’t need to write an explanatory paragraph. You don’t even need to put the answer into a sentence. Boiling water Chlorination Microbiology: Example SAQs Level 2: understanding. Frequently used task words: describe, explain, identify & example. Can the student explain ideas or concepts? Explain the importance of using controls in microbial experiments. This question can have more than one answer and the length required is difficult to determine by looking at the question. Does your academic want an essay or do they want a one-liner? You can address this by looking at how much this question is worth. In an exam each mark is worth about a minute of time, so the amount you need to write depends on the mark value. Controls in microbial experiments allow us to validate the results. The control ensures that the microbial growth is a result of experimental conditions rather than contamination. For example, when testing the presence of microbes in food, the control agar plate is left unopened / unexposed. No growth in the control culture plate will make sure the microbial growth in experimental plates is from food rather than from the contamination of nutrient agar. Microbiology: Example SAQs Level 3: applying. Frequently used task words: apply, illustrate, solve, use & demonstrate.
    [Show full text]
  • Nobel Laureate Surgeons
    Literature Review World Journal of Surgery and Surgical Research Published: 12 Mar, 2020 Nobel Laureate Surgeons Jayant Radhakrishnan1* and Mohammad Ezzi1,2 1Department of Surgery and Urology, University of Illinois, USA 2Department of Surgery, Jazan University, Saudi Arabia Abstract This is a brief account of the notable contributions and some foibles of surgeons who have won the Nobel Prize for physiology or medicine since it was first awarded in 1901. Keywords: Nobel Prize in physiology or medicine; Surgical Nobel laureates; Pathology and surgery Introduction The Nobel Prize for physiology or medicine has been awarded to 219 scientists in the last 119 years. Eleven members of this illustrious group are surgeons although their awards have not always been for surgical innovations. Names of these surgeons with the year of the award and why they received it are listed below: Emil Theodor Kocher - 1909: Thyroid physiology, pathology and surgery. Alvar Gullstrand - 1911: Path of refracted light through the ocular lens. Alexis Carrel - 1912: Methods for suturing blood vessels and transplantation. Robert Barany - 1914: Function of the vestibular apparatus. Frederick Grant Banting - 1923: Extraction of insulin and treatment of diabetes. Alexander Fleming - 1945: Discovery of penicillin. Walter Rudolf Hess - 1949: Brain mapping for control of internal bodily functions. Werner Theodor Otto Forssmann - 1956: Cardiac catheterization. Charles Brenton Huggins - 1966: Hormonal control of prostate cancer. OPEN ACCESS Joseph Edward Murray - 1990: Organ transplantation. *Correspondence: Shinya Yamanaka-2012: Reprogramming of mature cells for pluripotency. Jayant Radhakrishnan, Department of Surgery and Urology, University of Emil Theodor Kocher (August 25, 1841 to July 27, 1917) Illinois, 1502, 71st, Street Darien, IL Kocher received the award in 1909 “for his work on the physiology, pathology and surgery of the 60561, Chicago, Illinois, USA, thyroid gland” [1].
    [Show full text]
  • Nobel Laureates in Physiology Or Medicine
    All Nobel Laureates in Physiology or Medicine 1901 Emil A. von Behring Germany ”for his work on serum therapy, especially its application against diphtheria, by which he has opened a new road in the domain of medical science and thereby placed in the hands of the physician a victorious weapon against illness and deaths” 1902 Sir Ronald Ross Great Britain ”for his work on malaria, by which he has shown how it enters the organism and thereby has laid the foundation for successful research on this disease and methods of combating it” 1903 Niels R. Finsen Denmark ”in recognition of his contribution to the treatment of diseases, especially lupus vulgaris, with concentrated light radiation, whereby he has opened a new avenue for medical science” 1904 Ivan P. Pavlov Russia ”in recognition of his work on the physiology of digestion, through which knowledge on vital aspects of the subject has been transformed and enlarged” 1905 Robert Koch Germany ”for his investigations and discoveries in relation to tuberculosis” 1906 Camillo Golgi Italy "in recognition of their work on the structure of the nervous system" Santiago Ramon y Cajal Spain 1907 Charles L. A. Laveran France "in recognition of his work on the role played by protozoa in causing diseases" 1908 Paul Ehrlich Germany "in recognition of their work on immunity" Elie Metchniko France 1909 Emil Theodor Kocher Switzerland "for his work on the physiology, pathology and surgery of the thyroid gland" 1910 Albrecht Kossel Germany "in recognition of the contributions to our knowledge of cell chemistry made through his work on proteins, including the nucleic substances" 1911 Allvar Gullstrand Sweden "for his work on the dioptrics of the eye" 1912 Alexis Carrel France "in recognition of his work on vascular suture and the transplantation of blood vessels and organs" 1913 Charles R.
    [Show full text]
  • Tabea Cornel 1
    Tabea Cornel 1 Betahistory The Historical Imagination of Neuroscience1 1. Introduction [T]he beta (β) of an investment is a measure of the risk arising from exposure to gen- eral market movements as opposed to idiosyncratic factors. The market portfolio of all investable assets has a beta of exactly 1. A beta below 1 can indicate either an in- vestment with lower volatility than the market, or a volatile investment whose price movements are not highly correlated with the market. … A beta above one generally means that the asset both is volatile and tends to move up and down with the mar- ket. … There are few fundamental investments with consistent and significant nega- tive betas, but some derivatives like equity put options can have large negative betas. (Wikipedia 2015) This paper inquires into how the history of neuroscience should be written. And it will not an- swer the question. Instead, it will draw together meta-histor(iograph)ical accounts and illustrate to what extent these could steer someone who aims at coming up with a qualified answer to this question in the right direction. Several old and not-so-old men have been wrestling with the problems of how history is or has been written and how it ought to be written. Before I embark on illustrations of different possible kinds of history-writing, previous work on which the elab- orations in this paper rest will be briefly introduced. Historian of medicine Roger Cooter published several reflections on the historiography of science and medicine, explicitly including neuroscience, over the course of the past years.
    [Show full text]
  • Awarded Nobel Prize for Contributions to Immunology
    History of Immunology Molecular Immunology (MIR 511) August 27, 2013 Sharon S. Evans, Ph.D. Department of Immunology, RPCI (X3421) [email protected] Required reading: Owens; Immunology(7TH Edition) Chapter 1 – Overview of the Immune System: A Historical Perspective of Immunity Objectives 1. To gain a historical perspective of seminal research that provided underpinnings of immunology discipline. 2. To introduce key concepts of tumor immunology. Assigned Reading . Arthur M. Silverstein, Ilya Metchnikoff, the Phogocytic theory, and how things often work in science. J Leuk Biol 90:409, 2011. Jen-Marc Cavaillon, The historical milestones in the undersanding of leukocyte biology initiated by Elie Metchnikoff. J Leuk Biol 90:413, 2011. Historical Paradigms in General Immunology and Tumor Immunology 500 B.C. 1700s-1800s A.D. 2000 A.D. Recognition of Active Immunity/ Protection from Infectious Agents Molecular Mechanisms of Immunity (Ab, cells, cytokines) Tumor Immunity Survival of Species Depends on Defense Mechanisms • Fight/flight • Barriers - skin • Immune response-complexity depends on organism Vertebrates: •Organized lymphoid organs (spleen, thymus, bone marrow, lymph nodes, Peyer’s patches) •Complex circulatory system (lymphocyte trafficking) Immunity (Latin)-immunis Legal term = free from tax burden General Properties of Immune Response: Protect, defend organism from infectious agents • Innate immunity (NK, PMN, MO, megakaryocytes) • Primitive, higher organism • Adaptive immunity (B, T cells) • Only vertebrates Recognize self
    [Show full text]