Cassini/Huygens Program Archieve Plan for Science Data

Total Page:16

File Type:pdf, Size:1020Kb

Cassini/Huygens Program Archieve Plan for Science Data Cassini / Huygens Program Archive Plan for Science Data PD 699-068 JPL D-15976 Version 3 June 2004 National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California Appendix A: Archive Plan for Science Data, 699-068, June 2004 Prepared By: ___________________________ Diane Conner, Cassini Program Archive Engineer Approved By: ___________________________ Susan Linick, Cassini Project Instrument Operations Manager ___________________________ Dennis Matson, Cassini Project Scientist ___________________________ Kathryn Weld, Cassini Project Science and Uplink Operations Manager ___________________________ Robert Mitchell, Cassini Program Manager ___________________________ Jean-Pierre Lebreton, Huygens Project Scientist ___________________________ Laverne Hall, Planetary Data System Project Manager Concurred by: ___________________________ Reta Beebe, Planetary Data System Project Scientist ___________________________ Don Sawyer, National Space Science Data Center Manager ___________________________ Denis Bogan, Cassini Program Scientist ___________________________ Mark Dahl, Cassini Program Executive ii Appendix A: Archive Plan for Science Data, 699-068, June 2004 Change Record for 699-068 Revision No. Date Changes Sections Affected Draft 1 7/15/98 First version for review All Draft 2 8/1/98 Minor updates, All Appendix A -- added definition of processing Appendix C -- added Archive schedule Draft 3 9/16/98 Reorganization -- Updated signature page, All replaced references to SO and DOI with the new “Instrument Operations Team”, replaced references to MSO and Science Office with “Science Operations Office” Section 2, item 2 -- states that Cassini provides volumes to PDS CN who in turn provides copies to the relevant PDS DNs. It should be noted that this is still listed as a TBD Incorporated PDS comments Draft 4 10/5/98 Section 2, item 5 Added cruise archive All policy & included in delivery of cruise science in Archive schedule OTLs and MSOCs listed as archive contacts for each instrument Preliminary 4/1/99 Changed document title All Revised signature page Changed instances of “Cassini Project” to “Cassini Program” Updated applicable document listing Preliminary V1 12/27/99 Updated Signature page All Major changes to Roles and Responsibility section 2.0 Some changes to policy section 3.0 Review and comment on To be Supplied list Formatting changes Preliminary 4/1/00 Incorporated updates throughout the All V2 document as requested by reviewers. Incorporated Huygens data in the plan. Updated distribution list. Updated archive policies. Initial Release, 4/25/00 Clarified PDS CN and PDS DN roles and All Version 0 responsibilities throughout document. UNSIGNED Updated table 1.5.2 data product levels to reflect CODMAC and PDS definitions. (see unresolved list) Clarified the project intent to archive level 1A and level 1B data products in section 6. Reorganized dataset tables in appendices. Added new issues to unresolved issues list. Added High-Level Catalog documents to schedule. iii Appendix A: Archive Plan for Science Data, 699-068, June 2004 Revision No. Date Changes Sections Affected Initial Release, 8/3/00 Higher level product archive. 6.4 Version 1 Version 2 8/12/02 Clarified Policies All. UNSIGNED Clarified Roles and Responsibilities Updated products list Updated archive contacts Added Huygens archive contacts Added Huygens Products list Added Mission and instrument overview Moved CODMAC data level to NASA levels table to appendix. Removed data level references from document in lieu of descriptions of products. Added Peer Review and Validation Process Clarified archive terms Removed Data Flow that appeared to cause confusion. Added standard values for PDS High-Level Catalog files Added PDS label keyword requirements section. Added coordinate system designations. Clarified roles and responsibilities. Added a detailed data delivery schedule. Version 3 6/04 Incorporate many editorial changes All requested by reviewers of version 2: Updated Mission overview to correct tense. Updated Dist list and acronym list. Updated Contacts list. Updated Appendices. Added Huygens Archive Plan to Appendix. Added Cassini data volume Section. Changed policy of when pipeline production should be ready. Added data distribution section. Added/Clarified definitions of terms. Updated Press Release products section. Added Requirements section. Eliminated reference to the MIFT. The SAWG will perform the production coordination function. Defined "Cassini Program" in scope. Merged sections 9 and 10. iv Appendix A: Archive Plan for Science Data, 699-068, June 2004 TBDs ITEM Related section Standard keywords for labels and index files. (MASTER 9.2.2 INDEX) v Appendix A: Archive Plan for Science Data, 699-068, June 2004 Distribution List Judd, David UVIS Achilleos, Nick MAG Kazeminejad, Bobby Huygens Acton, Charles NAIF Kellock, Steve MAG Adams, Steven PDS CN Kempf, Sascha CDA A'Hearn, Mike PDS Kirk, Randy USGS/IMG Alanis, Rafael JPL/IMG Kliore, Arv RSS Anabtawi, Aseel RSS Krimigis, Tom MIMI Anderson, Theresa SE Kunde, Virgil CIRS Armstrong, Thomas FTECS Kurth, Bill RPWS Arvidson, Ray PDS/GEO LaVoie, Sue JPL, Imaging Asmar, Sami RSS Lebreton, Jean-Pierre Huygens Atkinson, Dave Huygens Linick, Susan IO Barbinis, Elias RSS Lorenz, Ralph Huygens Beebe, Reta PDS/ATM Lunine, Jonathan IDS Blanc, Michel IDS Maize, Earl Deputy PM Bogan, Denis NASA Matson, Dennis JPL Bohlin, David NASA McCloskey, Rick VIMS Bolton, Scott SCI McFarlane, Lisa DISR Brown, Robert VIMS Mitchell, Don MIMI Brown, Tyler PDS CN Mitchell, Robert JPL Brun, Jean-Francis ACP Nixon, Conor CIRS Bunker, Anne RADAR Owen, Tobias IDS Burton, Marcia CIRS Peterson, Joe ISS Cabane, Michel ACP Pieri, Leslie ISS Callahan, Phil RADAR Porco, Carolyn ISS Chin, Greg MSSO Rappaport, Nicole RSS Colombatti, Giacomo HASI Raulin, Francois IDS Conner, Diane IO Romani, Paul CIRS Cuzzi, Jeff IDS Rye, Elizabeth JPL, Imaging Dougherty, Michele MAG Sawyer, Don NSSDC Dutta-Roy, Robin DWE Sesplaukis, Tadas SE Edberg, Steve JPL Showalter, Mark PDS Elachi, Charles RADAR Simpson, Richard PDS Radio Science Eliason, Eric USGS/IMG Slootweg, Peter MAG Elson, Lee NAIF Soderblom, Larry IDS Esposito, Larry UVIS Southwood, David MAG Flasar, Michael CIRS Spilker, Linda JPL Fletcher, Greg INMS Srama, Ralf CDA French, Dick RSS Stiles, Bryan RADAR Furman, Judy CAPS Strobel, Darrell IDS Garcia, Patricia USGS/IMG Sykes, Mark SBN/DUST Gautier, Daniel IDS Tingley, Jim CIRS Gell, David INMS Waite, Hunter INMS Goltz, Gene RSS Walker, Ray UCLA/PPI Gombosi, Tamas IDS Wall, Steve RADAR Gordon, Mitch PDS Rings Weld, Kathryn JPL Gurnett, Don RPWS West, Rich RADAR Haberman, John GCMS Witasse, Olivier ESTEC Hall, Laverne PDS Young, David CAPS Hansen, Candy UVIS Zarnecki, John SSP Huber, Lyle PDS/ATM Zinsmeyer, Charles CAPS Ivens, John VIMS CEL (2) Jouchoux, Alain UVIS Joy, Steve UCLA/PPI vi Appendix A: Archive Plan for Science Data, 699-068, June 2004 1 Introduction ............................................................................................................................. 1 1.1 Purpose .......................................................................................................................................... 1 1.2 Scope .............................................................................................................................................. 1 1.3 Applicable Documents .................................................................................................................. 1 1.4 Document Change Control .......................................................................................................... 2 2 Mission Overview .................................................................................................................... 3 3 Science Instruments Overview ................................................................................................ 4 3.1 Cassini Orbiter Science Instruments .......................................................................................... 4 3.2 Huygens Probe Science Instruments .......................................................................................... 5 4 Archive Terms Defined ........................................................................................................... 6 5 Cassini Data Volume Estimates .............................................................................................. 8 5.1 Cassini Orbiter .............................................................................................................................. 8 5.2 Huygens Probe .............................................................................................................................. 8 6 Validation ................................................................................................................................ 9 6.1 Project Design Peer Review ......................................................................................................... 9 6.2 PDS Peer Review .......................................................................................................................... 9 6.3 Production Validation ................................................................................................................ 10 7 Delivery to PDS ..................................................................................................................... 10 8 Distribution ...........................................................................................................................
Recommended publications
  • The Contribution of Global Ocean Observation of Continuity of HY-2
    CGMS-XXXVI-CNSA-WP-04 Prepared by CNSA Agenda Item: III/3&4 The contribution of global ocean observation of continuity of HY-2 satellite HY-2 satellite, an ocean dynamic environment observation satellite, mainly ` objective is monitoring and detecting the parameters of ocean dynamic environment. These parameters include sea surface wind fields, sea surface height, wave height, gravity field, ocean circulation and sea surface temperature etc. The contribution of global ocean observation of continuity of HY-2 satellite 1. Introduction HY-2 satellite scatterometer provides sea surface wind fields, which can offset the observation gap of the plan of global scatterometer. At the same time, HY-2 satellite altimeter provides sea surface height, significant wave height, sea surface wind speed and polar ice sheet elevation, which can offset the observation gap of the plan of global altimeter around 2012, and can offset the observation gap of JASON-1&2 at polar area. More details as follows. 2. Observation of sea surface wind fields The analysis accuracy of wind field for ocean-atmosphere can improve 10-20% by using the satellite scatterometer data, by which can improve greatly the quality of initial wind field of numerical atmospheric forecast model in coastal ocean. Satellite scatterometer data has play important role on study of large-scale ocean phenomenon, such as sea-air interactions, ocean circulation, EI Nino etc. The figure 1 shows that QuikSCAT scatterometer has operational application in 1999, but it has not the following plan. ERS-2 scatterometer mission has transferred to METOP ASCAT in 2006. GCOM-B1 will launch in 2008, one of its payloads is an ocean vector wind measurement (OVWM) instruments, and it also called AlphaScat.
    [Show full text]
  • In Brief Modified to Increase Engine Reliability
    r bulletin 102 — may 2000 3rd Space Station ESA, together with a European industrial Element to be Launched consortium headed by DaimlerChrysler (D) and including Belgian, Dutch and French NASA and the Russian Aviation and partners, was responsible for the design, Space Agency (Rosaviakosmos) plan that development and delivery of the core data the next component of the International management system, which provides Space Station (ISS) – the Zvezda service Zvezda’s main computer. module – will be launched on 12 July from the Baikonur Cosmodrome in Kazakhstan. ESA also has a contract with Rosaviakosmos and RSC-Energia for Following a Joint Programme Review and performing system and interface a General Designers’ Review in Moscow, it integration tasks required for docking with was agreed that Zvezda (Russian for Zvezda by ESA’s Automated Transfer ‘star’) will be launched by a Proton rocket Vehicle (ATV), which will be used for ISS with the second and third stage engines re-boost and logistics support missions In Brief modified to increase engine reliability. from 2003 onwards. Through its ATV industrial consortium led by Aerospatiale Zvezda will provide the early living quarters Matra Lanceurs (F), ESA is also procuring for ISS crew, together with the life sup- some Russian hardware and software for port, electrical power distribution, data use with the ATV. management, flight control, and propul- sion systems for the ISS. On the scientific side, ESA has concluded contracts with Rosaviakosmos and RSC- Energia for the conduct of scientific experiments on Zvezda, including the Global Timing System (GTS) and a radiobiology experiment (called Matroshka) to monitor and analyse radiation doses in ISS crew.
    [Show full text]
  • JUICE Red Book
    ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat.
    [Show full text]
  • On the Use of Scatterometer Winds in Nwp
    ON THE USE OF SCATTEROMETER WINDS IN NWP Ad Stoffelen KNMI, de Bilt, the Netherlands, Email: [email protected] Lars Isaksen, Didier le Meur ECMWF, Reading, UK ABSTRACT Over the last years the processing of ERS scatterometer winds has been refined. Subsequently, High Resolution Limited Area Model, HIRLAM, and ECMWF model data assimilation experiments have been carried out to assess the impact of one scatterometer, ERS-1 and of two scatterometers, ERS-1 and ERS-2, on the analyses and forecasts. We found that scatterometer winds have a clear and beneficial impact in the data assimilation cycle and on the forecasts. Furthermore, ECMWF has shown that ERS scatterometer data improve the prediction of tropical cyclones in 4Dvar, where unprecedented skillful medium-range forecasts result of potential large social-economic value. Nevertheless, scatterometer winds contain much sub-synoptic scale information where the smallest scales resolved are difficult to assimilate into a Numerical Weather Prediction, NWP, model. This is mainly due to the otherwise general sparsity of the observing system over the ocean. In line with this it is found that scatterometer data coverage is very important for obtaining a large impact. In that respect future scatterometer systems such as SeaWinds on QuikSCAT and ADEOS- II, and ASCAT on EPS are promising. 1. INTRODUCTION After the launch of ERS-1 much improvement has been made in the interpretation of scatterometer backscatter measurements and a good quality wind product has emerged (Stoffelen and Anderson, 1997a, 1997b and 1997c). The consistency of the scatterometer winds over the swath makes them particularly useful for nowcasting purposes and several examples of the usefulness of the direct visual presentation of scatterometer winds to a meteorologist can be given.
    [Show full text]
  • From the Hubble Space Telescope
    Teacher’s Guide From the Hubble Space Telescope Exploring Space and Cyberspace An electronic field trip via interactive television and on-line networks into America’s classrooms Project Notes Programs and Initial Air Dates and Times Contingency Announcement Program 2 Making YOUR Observations Field research on a scientific frontier is March 14, 1996, 13:00-14:00 Eastern inherently unpredictable. Even traditional school trips are subject to weather and dis- Program 3 Announcing YOUR Results ruptions. An electronic field trip is no dif- Live from the Hubble Space April 23, 1996, 13:00-14:00 Eastern ferent: the Telescope programs are dependent on the Please Note: HST operating normally, NASA’s Tracking and Data Relay Satellites being available, Program 1 The Great Planet Debate and all domestic satellite links holding (see first aired November 9, 1995, as an introduction Activity 2D, page 24 below, for more to the entire project. (For videotapes, see below) background on how the electronic images get from Pluto to you!) The production Primary Satellite Coordinates team has put in place contingency plans for most eventualities. In the event of tempo- Ku-band: PBS K-12 Learning Services:Telstar 401, 97 degrees rary loss of signal, live programming will West, transponder 8, horizontal, 11915 Mhz, audio on 6.2 and 6.8 continue from ground sites, interspersed Please note: this refers to carriage on the primary satellite used by PBS. Carriage on with pre-taped segments. the satellite itself does not guarantee broadcast by any individual PBS station. Please Register for on-line Live from the check local listings well in advance of air time to verify local arrangements! An on-line Hubble Space Telescope updates or check listing of confirmed carriage by local stations and educational networks will be acces- our Web site: sible between March 1, 1996 and April 23, 1996.
    [Show full text]
  • ASCAT – Metop's Advanced Scatterometer
    ascat ASCAT – Metop’s Advanced Scatterometer R.V. Gelsthorpe Earth Observation Programmes Development Department, ESA Directorate of Application Programmes, ESTEC, Noordwijk, The Netherlands E. Schied Dornier Satelllitensysteme*, Friedrichshafen, Germany J.J.W. Wilson Eumetsat, Darmstadt, Germany Introduction Figure 1 indicates the form of the variation of Wind scatterometers already flown on ESA’s backscattering coefficient with relative wind ERS-1 and ERS-2 satellites have demonstrated direction (at a fixed incidence angle) for a range the value of such instruments for the global of wind speeds. determination of sea-surface wind vectors. These highly successful instruments – part of If an instrument were to be constructed that the Active Microwave Instrument (AMI) – were determined the sea-surface backscattering conceived about twenty years ago. During coefficient from a single look direction, the the intervening period, there has been a overlapping nature of the curves would limit considerable evolution in the capabilities of its capabilities to providing a rather coarse spaceborne hardware. estimate of wind speed and no information on wind direction. The earliest successful space- ASCAT is an advanced scatterometer that will fly as part of the borne wind scatterometer, that of Seasat, used payload of the Metop satellites, which in turn form part of the two dual-polarised antennas pointed at 45 and Eumetsat Polar System. It is developed by Dornier Satellitensysteme 135 deg with respect to the satellite’s direction under the leadership of Matra Marconi Space**, the satellite Prime of flight to determine sea-surface scattering Contractor, for ESA. From its polar orbit, ASCAT will measure sea- coefficients from two directions separated by surface winds in two 500 km wide swaths and will achieve global 90 deg.
    [Show full text]
  • Cassini RADAR Sequence Planning and Instrument Performance Richard D
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 6, JUNE 2009 1777 Cassini RADAR Sequence Planning and Instrument Performance Richard D. West, Yanhua Anderson, Rudy Boehmer, Leonardo Borgarelli, Philip Callahan, Charles Elachi, Yonggyu Gim, Gary Hamilton, Scott Hensley, Michael A. Janssen, William T. K. Johnson, Kathleen Kelleher, Ralph Lorenz, Steve Ostro, Member, IEEE, Ladislav Roth, Scott Shaffer, Bryan Stiles, Steve Wall, Lauren C. Wye, and Howard A. Zebker, Fellow, IEEE Abstract—The Cassini RADAR is a multimode instrument used the European Space Agency, and the Italian Space Agency to map the surface of Titan, the atmosphere of Saturn, the Saturn (ASI). Scientists and engineers from 17 different countries ring system, and to explore the properties of the icy satellites. have worked on the Cassini spacecraft and the Huygens probe. Four different active mode bandwidths and a passive radiometer The spacecraft was launched on October 15, 1997, and then mode provide a wide range of flexibility in taking measurements. The scatterometer mode is used for real aperture imaging of embarked on a seven-year cruise out to Saturn with flybys of Titan, high-altitude (around 20 000 km) synthetic aperture imag- Venus, the Earth, and Jupiter. The spacecraft entered Saturn ing of Titan and Iapetus, and long range (up to 700 000 km) orbit on July 1, 2004 with a successful orbit insertion burn. detection of disk integrated albedos for satellites in the Saturn This marked the start of an intensive four-year primary mis- system. Two SAR modes are used for high- and medium-resolution sion full of remote sensing observations by a dozen instru- (300–1000 m) imaging of Titan’s surface during close flybys.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Newsletter 110 ª June 2002 NEWSLETTER
    Newsletter 110 ª June 2002 NEWSLETTER The American Astronomical Societys2000 Florida Avenue, NW, Suite 400sWashington, DC [email protected] AAS NEWS PRESIDENT’S COLUMN Wallerstein is Anneila I. Sargent, Caltech, [email protected] My term as President of the American Astronomical Society Russell Lecturer will end with our meeting in Albuquerque in June 2002. Usually This year, the AAS this letter would be the appropriate place to consider my bestows its highest honor, expectations and goals when I took up the gavel and compare the Henry Norris Russell these with what actually happened. Lectureship on George The events of 11 September 2001 caused me to write that kind Wallerstein, Professor of reflective letter in the December issue of this Newsletter.I Emeritus of Astronomy at won’t repeat myself here except to note that at that time there the University of seemed to be less enthusiasm to fund research in the physical Washington. Wallerstein is sciences than we had grown to expect when I took office. recognized in the award citation for “...his As I write this column, the prospects look much less bleak. In contributions to our another part of this Newsletter, Kevin Marvel discusses how understanding of the astronomy fared in the President’s FY ’03 budget request. George Wallerstein of the University of NASA’s Office of Space Science is doing very well indeed. In Washington will deliver his Russell Lecture abundances of the at the Seattle Meeting in January 2003. elements in stars and fact, the OSS budget has been increasing steadily since 1996 and clusters.
    [Show full text]
  • MOONS of the SOLAR SYSTEM Europa Narrator: Ever Since Man First Looked Into the Heavens, the Most Intriguing Question Has Alway
    MOONS OF THE SOLAR SYSTEM Europa Narrator: Ever since man first looked into the heavens, the most intriguing question has always been, "Are we alone?". An icy world, circling Jupiter, could answer that age old question. Professor Michele Dougherty: Moons in our Solar system are very important so that we can understand how they formed and what their interiors are made of, then we'll better understand how our planets formed, and so we'll better understand where we came from. Dr Lewis Dartnell: We now think that beneath the frozen shell of Europa there lies an ocean with more liquid water in it than al the seas and lakes and rivers and oceans for the whole of the Earth put together. And on Earth, where there's water there's life. Narrator: Europa first attracted attention back in the 1970s, when the Voyager spacecraft flew past Jupiter and took the first close up images of its moons. Dr David Rothery: The Voyager fly bys showed that Europa had a young surface and we already knew it was icy and we already knew that the ice couldn't be more than about a 100 kilometres thick. The question was, is it ice all the way the to the rock or is the ice sitting on top of some water? And because it looks like though the surface has moved around a little bit, a lot of people including Arthur C Clarke, the famous science fiction author, were suggesting there is water down there below the ice. Mission Audio: The spacecraft is stable.
    [Show full text]
  • Leonid Gurvits JIVE and TU Delft June 3, 2021 ©Cristian Fattinanzi Piter Y Moons Xplorer
    Leonid Gurvits JIVE and TU Delft June 3, 2021 ©Cristian Fattinanzi piter y moons xplorer Why a mission to Jupiter? Bits of history Mission challenges Where radio astronomy comes in • ~2000–2005: success of Cassini and Huygens missions (NASA, ESA, ASI) • 2006: Europlanet meeting in Berlin – “thinking aloud” on a Jovian mission • 2008: ESA-NASA jointly exploring a mission to giant planets’ satellites • ESA "Laplace" mission proposal (Blanc et al. 2009) • ESA Titan and Enceladus Mission (TandEM, Coustenis et al., 2009) • NASA Titan Explorer • 2009: two joint (ESA+NASA) concepts selected for further studies: • Europa Jupiter System Mission (EJSM) • Titan Saturn System Mission (TSSM: Coustenis et al., 2009) • 2010: EJSM-Laplace selected, consisting of two spacecraft: • ESA’s Jupiter Ganymede Orbiter (JGO) • NASA’s Jupiter Europa Orbiter (JEO) • 2012: NASA drops off; EJSM-Laplace/JGO becomes JUICE • 2013: JUICE payload selection completed by ESA; JUICE becomes an L-class mission of ESA’s Vision 2015-2025 • 2015: NASA selects Europa Clipper mission (Pappalardo et al., 2013) Voyager 1, 1979 ©NASA HOW DOES IT SEARCH FOR ORIGINS & WORK? LIFE FORMATION HABITABILITY Introduction Overarching questions JUICE JUICE Science Themes • Emergence of habitable worlds around gas giants • Jupiter system as an archetype for gas giants JUICE concept • European-led mission to the Jovian system • First orbiter of an icy moon • JGO/Laplace scenario with two Europa flybys and moderate-inclination phase at Jupiter • Science payload selected in Feb 2013, fully compatible
    [Show full text]
  • The Future of Space Imaging
    The FutureofSpaceImaging The Future of Space Imaging Report of a Community-Based Study of an Advanced Camera for the Hubble Space Telescope hen Lyman Spitzer first proposed a great, W earth-orbiting telescope in , the nuclear energy source of stars had been known for just six years. Knowledge of galaxies beyond our own and the understanding that our universe is expanding were only about twenty years of age in the human consciousness. The planet Pluto was seventeen. Quasars, black holes, gravitational lenses, and detection of the Big Bang were still in the future—together with much of what constitutes our current understanding of the solar system and the cos- mos beyond it. In , forty-seven years after it was conceived in a for- gotten milieu of thought, the Hubble Space Telescope is a reality. Today, the science of the Hubble attests to the forward momentum of astronomical exploration from ancient times. The qualities of motion and drive for knowledge it exemplifies are not fixed in an epoch or a gen- eration: most of the astronomers using Hubble today were not born when the idea of it was first advanced, and many were in the early stages of their education when the glass for its mirror was cast. The commitments we make today to the fu- ture of the Hubble observatory will equip a new generation of young men and women to explore the astronomical frontier at the start of the st century. 1 2 3 4 5 6 7 8 9 FRONT & BACK COVER 1.Globular clusters containing young stars at the core of elliptical galaxy NGC 1275.
    [Show full text]