Congenital and Congenital and Developmental Anomalies Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lung Pathology: Embryologic Abnormalities
Chapter2C Lung Pathology: Embryologic Abnormalities Content and Objectives Pulmonary Sequestration 2C-3 Chest X-ray Findings in Arteriovenous Malformation of the Great Vein of Galen 2C-7 Situs Inversus Totalis 2C-10 Congenital Cystic Adenomatoid Malformation of the Lung 2C-14 VATER Association 2C-20 Extralobar Sequestration with Congenital Diaphragmatic Hernia: A Complicated Case Study 2C-24 Congenital Chylothorax: A Case Study 2C-37 Continuing Nursing Education Test CNE-1 Objectives: 1. Explain how the diagnosis of pulmonary sequestration is made. 2. Discuss the types of imaging studies used to diagnose AVM of the great vein of Galen. 3. Describe how imaging studies are used to treat AVM. 4. Explain how situs inversus totalis is diagnosed. 5. Discuss the differential diagnosis of congenital cystic adenomatoid malformation. (continued) Neonatal Radiology Basics Lung Pathology: Embryologic Abnormalities 2C-1 6. Describe the diagnosis work-up for VATER association. 7. Explain the three classifications of pulmonary sequestration. 8. Discuss the diagnostic procedures for congenital chylothorax. 2C-2 Lung Pathology: Embryologic Abnormalities Neonatal Radiology Basics Chapter2C Lung Pathology: Embryologic Abnormalities EDITOR Carol Trotter, PhD, RN, NNP-BC Pulmonary Sequestration pulmonary sequestrations is cited as the 1902 theory of Eppinger and Schauenstein.4 The two postulated an accessory he clinician frequently cares for infants who present foregut tracheobronchia budding distal to the normal buds, Twith respiratory distress and/or abnormal chest x-ray with caudal migration giving rise to the sequestered tissue. The findings of undetermined etiology. One of the essential com- type of sequestration, intralobar or extralobar, would depend ponents in the process of patient evaluation is consideration on the timing of the accessory foregut budding (Figure 2C-1). -
Current Management and Outcome of Tracheobronchial Malacia and Stenosis Presenting to the Paediatric Intensive Care Unit
Intensive Care Med 52001) 27: 722±729 DOI 10.1007/s001340000822 NEONATAL AND PEDIATRIC INTENSIVE CARE David P.Inwald Current management and outcome Derek Roebuck Martin J.Elliott of tracheobronchial malacia and stenosis Quen Mok presenting to the paediatric intensive care unit Abstract Objective: To identify fac- but was not related to any other fac- Received: 10 July 2000 Final Revision received: 14 Oktober 2000 tors associated with mortality and tor. Patients with stenosis required a Accepted: 24 October 2000 prolonged ventilatory requirements significantly longer period of venti- Published online: 16 February 2001 in patients admitted to our paediat- latory support 5median length of Springer-Verlag 2001 ric intensive care unit 5PICU) with ventilation 59 days) than patients tracheobronchial malacia and with malacia 539 days). stenosis diagnosed by dynamic con- Conclusions: Length of ventilation Dr Inwald was supported by the Medical Research Council. This work was jointly trast bronchograms. and bronchographic diagnosis did undertaken in Great Ormond Street Hos- Design: Retrospective review. not predict survival. The only factor pital for Children NHSTrust, which re- Setting: Tertiary paediatric intensive found to contribute significantly to ceived a proportion of its funding from the care unit. mortality was the presence of com- NHSExecutive; the views expressed in this Patients: Forty-eight cases admitted plex cardiac and/or syndromic pa- publication are those of the authors and not to our PICU over a 5-year period in thology. However, patients with necessarily those of the NHSexecutive. whom a diagnosis of tracheobron- stenosis required longer ventilatory chial malacia or stenosis was made support than patients with malacia. -
Prospective Isolation of NKX2-1–Expressing Human Lung Progenitors Derived from Pluripotent Stem Cells
The Journal of Clinical Investigation RESEARCH ARTICLE Prospective isolation of NKX2-1–expressing human lung progenitors derived from pluripotent stem cells Finn Hawkins,1,2 Philipp Kramer,3 Anjali Jacob,1,2 Ian Driver,4 Dylan C. Thomas,1 Katherine B. McCauley,1,2 Nicholas Skvir,1 Ana M. Crane,3 Anita A. Kurmann,1,5 Anthony N. Hollenberg,5 Sinead Nguyen,1 Brandon G. Wong,6 Ahmad S. Khalil,6,7 Sarah X.L. Huang,3,8 Susan Guttentag,9 Jason R. Rock,4 John M. Shannon,10 Brian R. Davis,3 and Darrell N. Kotton1,2 2 1Center for Regenerative Medicine, and The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA. 3Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA. 4Department of Anatomy, UCSF, San Francisco, California, USA. 5Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA. 6Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA. 7Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA. 8Columbia Center for Translational Immunology & Columbia Center for Human Development, Columbia University Medical Center, New York, New York, USA. 9Department of Pediatrics, Monroe Carell Jr. Children’s Hospital, Vanderbilt University, Nashville, Tennessee, USA. 10Division of Pulmonary Biology, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA. It has been postulated that during human fetal development, all cells of the lung epithelium derive from embryonic, endodermal, NK2 homeobox 1–expressing (NKX2-1+) precursor cells. -
427 © Springer Nature Switzerland AG 2020 R. H. Cleveland, E. Y. Lee
Index A Arterial hypertensive vasculopathy ABCA3 deficiency, 158 imaging features, 194 pathological features, 194 Aberrant coronary artery, 22 Aspergillosis, 413 Acinar dysplasia, 147–150 Aspergillus, 190, 369, 414 Acquired bronchobiliary fistula (aBBF), 79, 80 Aspergillus fumigatus, 110, 358, 359 Acquired immunodeficiency, 191, 192 Aspergillus-related lung disease, 413 Aspiration pneumonia, 136 Acrocyanosis, 1 Aspiration syndromes, 248 Actinomycosis, 109, 110 causes, 172 Acute cellular rejection (ACR), 192, 368 imaging features, 172 Acute eosinophilic pneumonia, 172 pathological features, 172 Acute infectious disease Associated with pulmonary arterial hypertension (APAH), 257 imaging features, 167 Asthma pathological features, 167 ABPA, 343 Acute interstitial pneumonia (AIP), 146, 173, 176 airway biopsy, 339 imaging features, 176 airway edema, 337 pathological features, 176 airway hyperresponsiveness, 337 symptoms, 176 airway inflammation, 337 Acute Langerhans cell histiocytosis (LCH), 185 allergy testing, 339 Acute pulmonary embolism, 386, 387 anxiety and depression, 344 complications, 388 API, 339 mortality rates, 388 biodiversity hypothesis, 337 pre-operative management, 387 bronchial challenge tests, 338 technique, 387, 388 bronchoconstriction, 337 treatment, 387 bronchoscopy, 339 Acute rejection, 192 clinical manifestations, 337 Adenoid cystic carcinoma, 306, 307 clinical presentation, 338 Adenotonsillar hypertrophy, 211 comorbid conditions, 342, 343 Air bronchograms, 104 definition, 337 Air leak syndromes, 53, 55 diagnosis, 338–340, -
Diagnostic Issues in Systemic Lupus Erythematosis
266 Postgrad Med J 2001;77:266–285 Postgrad Med J: first published as 10.1136/pmj.77.906.268 on 1 April 2001. Downloaded from SELF ASSESSMENT QUESTIONS Diagnostic issues in systemic lupus erythematosis N Sofat, C Higgens Answers on p 274. A 24 year old woman was diagnosed with sys- (4) What other tests (apart from 24 hour urine temic lupus erythematosis (SLE) based on a creatinine clearance) are available to measure few months’ history of a photosensitive skin the glomerular filtration rate? rash, predominantly on her face, arthralgia The patient had a 24 hour urinary protein col- involving both hands and wrists, a positive lection, which showed a 24 hour protein measure- antinuclear antibody (ANA) test and a raised ment of 1.8 g. There was no evidence of cellular antinative double stranded DNA antibody casts on urine microscopy. Her blood results were binding level. She was treated with oral as below (normal values are in parentheses): hydroxychloroquine 400 mg daily and short x Sodium 134 mmol/l (135–145) courses of prednisolone during flare-ups. x Potassium 4.5 mmol/l (3.5–5.0) She was reviewed in clinic for her regular x Urea 7.0 mmol/l (2.5–6.7) follow up appointment when she was found to x Creatinine 173 µmol/l (70–115) be hypertensive on repeated measurements of x Haemoglobin 108 g/l (115–160) her blood pressure, an average value being x White cell count 4.5 × 109/l (4.0–11.0) 150/90 mm Hg. She was also urine dipstick x Platelets 130 × 109/l (150–400) positive for blood and protein. -
Extralobar Pulmonary Sequestration Infected with Mycobacterium Gordonae
Brief Communications Extralobar pulmonary sequestration infected with Mycobacterium gordonae Yukio Umeda, MD, PhD,a Yukihiro Matsuno, MD, PhD,a Matsuhisa Imaizumi, MD, PhD,a Yoshio Mori, MD, PhD,a Hitoshi Iwata, MD, PhD,b and Hiroshi Takiya, MD, PhD,a Gifu, Japan Pulmonary sequestration is a malformation composed of lung was found except around the left lower pulmonary dysplastic lung tissue without normal communication with vein. We diagnosed it as extralobar sequestration and the tracheobronchial tree and with an anomalous systemic planned a simple excision of the sequestrated lung. We di- arterial supply.1 Few cases of pulmonary sequestration in- vided the aberrant artery and drainage vein and excised the fected with tuberculous or nontuberculous mycobacterium sequestrated lung using a linear stapler. The postoperative have been reported.2-4 However, all of those reports were course was uneventful. of intralobar pulmonary sequestrations. In the present article, Histopathologic study revealed destruction of alveolar we describe the first case of extralobar sequestration infected and reconstruction of respiratory epithelium within its own with Mycobacterium gordonae. pleura. The alveolar spaces were filled by mucoid or mono- nuclear cells. Caseating epithelioid granulomas and Lan- ghans’ giant cells were also observed (Figure 2). The CLINICAL SUMMARY diagnosis was of an extralobar pulmonary sequestration in- In August of 2005, a 72-year-old woman was referred to fected with Mycobacterium. M. gordonae was identified the Gifu Prefectural General Medical Center for abnormal from the culture of preoperatively collected sputum and sur- shadow on chest x-ray. Contrast media-enhanced com- gical specimen by the DNA–DNA hybridization method. -
Recurrent Pneumonia (Recurrent Lower Respiratory Tract Infections)
Recurrent Pneumonia (Recurrent lower respiratory tract infections) Guideline developed by Gulnur Com, MD, and Jeanne Velasco, MD in collaboration with the ANGELS team. Last reviewed by Jeanne Velasco, MD, on May 15, 2017. Key Points A single episode of uncomplicated pneumonia in an otherwise healthy child does not require investigation. Recurrent pneumonia is not an uncommon presenting symptom in general pediatric practice and one of the most common reasons for referral to pediatric pulmonologists. Recurrent pneumonia is usually defined as ≥2 episodes of pneumonia in a year or ≥3 in life.1 Many children with recurrent pneumonia do not need a full diagnostic work up, either because pneumonia episodes are not frequent or severe enough or because eventually children become asymptomatic. Evaluation of children with recurrent pneumonias begins by taking a careful history, an examination while the child is sick, and confirmation that the child is truly experiencing recurrent pneumonia. The majority of recurrent pneumonia causes in children have predictable risk factors (e.g., psychomotor retardation with feeding problems). Extensive investigations may not identify an underlying cause in up to 30% of children with recurrent pneumonia.1 The initial step in evaluating a child with recurrent respiratory symptoms includes distinguishing between recurrent wheezing versus recurrent infections. Studies show that asthma is being over diagnosed in children with recurrent respiratory symptoms. Patients with atypical asthma that does not respond to therapy should be investigated further. The evaluation of children with recurrent pneumonia should not be focused only on the respiratory tract. 1 Investigation for other organ system involvement may help for ultimate diagnosis (e.g., cystic fibrosis). -
The Diseases of Airway-Tracheal Diverticulum: a Review of the Literature
Review Article The diseases of airway-tracheal diverticulum: a review of the literature Asli Tanrivermis Sayit, Muzaffer Elmali, Dilek Saglam, Cetin Celenk Department of Radiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey Contributions: (I) Conception and design: A Tanrivermis Sayit; (II) Administrative support: M Elmali, C Celenk; (III) Provision of study materials or patients: A Tanrivermis Sayit; (IV) Collection and assembly of data: A Tanrivermis Sayit, D Saglam; (V) Data analysis and interpretation: A Tanrivermis Sayit, M Elmali, C Celenk; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Asli Tanrivermis Sayit. Department of Radiology, Faculty of Medicine, Ondokuz Mayis University, 55139, Atakum/Samsun, Turkey. Email: [email protected]. Abstract: Tracheal diverticulum (DV) is a type of paratracheal air cyst (PTAC) that is often asymptomatic and usually detected incidentally by imaging methods. Tracheal DV are divided into two subgroups: congenital and acquired. Dysphagia, odynophagia, neck pain, hoarseness, hemoptysis, choking, and recurrent episodes of hiccups and burping can also be seen in symptomatic patients. Thin-section multidetector computed tomography (MDCT) is useful for diagnosis of tracheal diverticulum. The relationship between DV and tracheal lumen can be demonstrated by axial, coronal, and sagittal reformat multiplanar images. Bronchoscopy can also be used in diagnosis for tracheal DV. However, the connection between DV and tracheal lumen can not be shown easily with bronchoscopy. Conservative treatment is the preferred treatment in asymptomatic patients. Surgical or conservative treatment can be performed for symptomatic patients, depending on patient age and physical condition. Keywords: Trachea; diverticulum (DV); thorax; multidetector computed tomography; tracheal diseases; chronic obstructive pulmonary disease (CODP) Submitted Sep 17, 2016. -
ERS Statement on Tracheomalacia and Bronchomalacia in Children
ERS OFFICIAL DOCUMENT ERS STATEMENT ERS statement on tracheomalacia and bronchomalacia in children Colin Wallis1,EfthymiaAlexopoulou2,JuanL.Antón-Pacheco3,JayeshM.Bhatt 4, Andrew Bush5,AnneB.Chang6,7,8,Anne-MarieCharatsi9, Courtney Coleman10, Julie Depiazzi11, Konstantinos Douros12,ErnstEber13,MarkEverard14, Ahmed Kantar15,IanB.Masters6,7,FabioMidulla16, Raffaella Nenna 16,17, Derek Roebuck18, Deborah Snijders19 and Kostas Priftis12 @ERSpublications This statement provides a comprehensive review of the causes, presentation, recognition and management of children with tracheobronchomalacia written by a multidisciplinary Task Force in keeping with ERS methodology http://bit.ly/2LPTQCk Cite this article as: Wallis C, Alexopoulou E, Antón-Pacheco JL, et al. ERS statement on tracheomalacia and bronchomalacia in children. Eur Respir J 2019; 54: 1900382 [https://doi.org/10.1183/13993003.00382- 2019]. ABSTRACT Tracheomalacia and tracheobronchomalacia may be primary abnormalities of the large airways or associated with a wide variety of congenital and acquired conditions. The evidence on diagnosis, classification and management is scant. There is no universally accepted classification of severity. Clinical presentation includes early-onset stridor or fixed wheeze, recurrent infections, brassy cough and even near-death attacks, depending on the site and severity of the lesion. Diagnosis is usually made by flexible bronchoscopy in a free-breathing child but may also be shown by other dynamic imaging techniques such as low-contrast volume bronchography, computed tomography or magnetic resonance imaging. Lung function testing can provide supportive evidence but is not diagnostic. Management may be medical or surgical, depending on the nature and severity of the lesions, but the evidence base for any therapy is limited. While medical options that include bronchodilators, anti-muscarinic agents, mucolytics and antibiotics (as well as treatment of comorbidities and associated conditions) are used, there is currently little evidence for benefit. -
Respiratory Complications and Goldenhar Syndrome
breathe case presentations.qxd 06/03/2007 17:56 Page 15 CASE PRESENTATION Respiratory complications and Goldenhar syndrome Case report W. Jacobs1 A 29-year-old female was referred to hospital A. Vonk Noordegraaf1 with progressive asthmatic complaints. On pre- R.P. Golding2 sentation, the patient had been experiencing J.G. van den Aardweg3 orthopnoea, an audible wheeze during daily P.E. Postmus1 activities, and sporadic coughing without spu- tum production. The patient had a history of recurrent airway infections and a 5-kg weight Depts of 1Pulmonary Medicine loss during the previous year, and had stopped and 2Radiology, Vrije Universiteit smoking several years before. She was known to Medisch Centrum, Amsterdam, have oculo-auriculo-vertebral (OAV) syndrome, and 3Dept of Pulmonary i.e. Goldenhar syndrome, which is a develop- Medicine, Medisch Centrum mental disorder involving mainly first and sec- Alkmaar, The Netherlands. ond branchial arch anomalies. On physical examination, she was not dys- pnoeic at rest, and had a respiratory rate of Correspondence: -1 -1 14 breaths·min , pulse 80 beats·min , blood W. Jacobs pressure 110/70 mmHg and temperature Dept of Pulmonary Medicine Figure 1 37.9°C. The left hemifacial structures and the Vrije Universiteit Medisch Centrum Postero-anterior chest radiograph. left hemithorax were underdeveloped. A chest Postbus 7057 examination revealed a systolic heart murmur 1007 MB Amsterdam grade 2/6 over the apex, and inspiratory and The Netherlands expiratory wheezing over both lungs. There was Task 1 Fax: 31 204444328 E-mail: [email protected] no oedema or clubbing. Arterial blood gas analy- Interpret the chest radiograph. -
Surfactant Abnormalities in ALTE and SIDS Arch Dis Child: First Published As 10.1136/Adc.71.6.501 on 1 December 1994
Archives ofDisease in Childhood 1994; 71: 501-505 501 Surfactant abnormalities in ALTE and SIDS Arch Dis Child: first published as 10.1136/adc.71.6.501 on 1 December 1994. Downloaded from I B Masters, J Vance, B A Hills Abstract mechanical stability of the distal airspaces.2 Abnormalities in the relative concentra- Reduced concentrations of surfactant, in tions ofthe components ofsurfactant have particular disaturated phosphatidylcholine been implicated in prolonged expiratory (DPPC) have been described in infants apnoea (PEA) and sudden infant death with PEA and SIDS.3-9 Southall et al have syndrome (SIDS). Controversy has, implicated low concentrations of DPPC and however, surrounded these findings, as postulated lung mechanic, neurosensory, and they may be secondary to terminal pulmonary vascular mechanisms for these life events. In this study the physical events.5 6 properties of surfactant were measured in Previously we have shown that both an children with recurrent apparent life infant and young child with prolonged threatening events (ALTEs), PEA, and expiratory apnoea had significant quantitative SIDS. Bronchial lavage samples were and qualitative abnormalities in their obtained from 21 children with recurrent surfactant.'I These findings were similar to the ALTEs, two SIDS victims, and 26 control low concentrations of DPPC found in other patients. Lipid components were immedi- studies.2-5 The reliability of such findings, ately elutriated from these samples however, is questionable in both those and with liquid chloroform. The physical our own observations, as the ability to extract properties of the extracted surfactant surfactant with lung washings in a standardised were studied on a Langmuir trough in fashion from the living subject's lung is which the area (A) of the monolayer was difficult. -
Tracheobronchomegaly
Thorax: first published as 10.1136/thx.23.3.320 on 1 May 1968. Downloaded from Thorax (1968), 23, 320. Tracheobronchomegaly ZAKI AL-MALLAH1 AND 0. P. QUANTOCK From the University of Mosul, Iraq, and Sully Hospital, Wales Two cases of the rare condition of tracheobronchomegaly are reported. They occurred in people of completely different racial origin and residence. They showed the characteristic features of this condition-loud, rasping, prolonged, remarkably ineffective cough, abnormally wide trachea and major bronchi, laxity of the cartilaginous rings and membranous part of these airways demonstrable on straight chest radiographs and bronchoscopy and confirmed at bronchography. Evidence is submitted of congenital aetiology. Tracheobronchomegaly is a rare congenital apparently healthy young man with no finger club- abnormality with marked widening of the trachea bing. There were scattered wheezes and bilateral basal and major bronchi, in most cases associated with crepitations, mainly anteriorly. No abnormality was chronic recurrent respiratory tract infection. This detected in any other system. The tuberculin test (100 T.U.) was negative and a chest radiograph rare syndrome was first described by Mounier- showed small nodular opacities in the right lung: Kuhn in 1932, but was then given different names these subsequently cleared. Bronchoscopy showed until Katz, LeVine, and Herman (1962), in an reddening and oedema of the mucosa which was excellent review, clearly defined this entity and covered with thick, mucopurulent secretions. No suggested the name tracheobronchomegaly. We intrinsic lesion was seen in the tracheobronchial have been unable to find a report of this syndrome passages, but an abnormal mobility of the posterior http://thorax.bmj.com/ in the British literature and are therefore present- tracheal wall was noted.