Current Management and Outcome of Tracheobronchial Malacia and Stenosis Presenting to the Paediatric Intensive Care Unit

Total Page:16

File Type:pdf, Size:1020Kb

Current Management and Outcome of Tracheobronchial Malacia and Stenosis Presenting to the Paediatric Intensive Care Unit Intensive Care Med 52001) 27: 722±729 DOI 10.1007/s001340000822 NEONATAL AND PEDIATRIC INTENSIVE CARE David P.Inwald Current management and outcome Derek Roebuck Martin J.Elliott of tracheobronchial malacia and stenosis Quen Mok presenting to the paediatric intensive care unit Abstract Objective: To identify fac- but was not related to any other fac- Received: 10 July 2000 Final Revision received: 14 Oktober 2000 tors associated with mortality and tor. Patients with stenosis required a Accepted: 24 October 2000 prolonged ventilatory requirements significantly longer period of venti- Published online: 16 February 2001 in patients admitted to our paediat- latory support 5median length of Springer-Verlag 2001 ric intensive care unit 5PICU) with ventilation 59 days) than patients tracheobronchial malacia and with malacia 539 days). stenosis diagnosed by dynamic con- Conclusions: Length of ventilation Dr Inwald was supported by the Medical Research Council. This work was jointly trast bronchograms. and bronchographic diagnosis did undertaken in Great Ormond Street Hos- Design: Retrospective review. not predict survival. The only factor pital for Children NHSTrust, which re- Setting: Tertiary paediatric intensive found to contribute significantly to ceived a proportion of its funding from the care unit. mortality was the presence of com- NHSExecutive; the views expressed in this Patients: Forty-eight cases admitted plex cardiac and/or syndromic pa- publication are those of the authors and not to our PICU over a 5-year period in thology. However, patients with necessarily those of the NHSexecutive. whom a diagnosis of tracheobron- stenosis required longer ventilatory chial malacia or stenosis was made support than patients with malacia. by dynamic contrast bronchography D.P.Inwald 5)) 51994±1999). Key words Tracheal stenosis ´ Portex Anaesthesia, Intensive Therapy Interventions: Conservative man- Bronchomalacia ´ Tracheomalacia ´ and Respiratory Medicine Unit, Institute of Child Health, agement, tracheostomy and long- Tracheobronchomalacia ´ 30 Guilford Street London WC1N 1EH, term ventilation, surgical correction, Bronchogram ´ Ventilation ´ UK internal or external airway stenting. Mortality E-mail: [email protected] Measurements and results: Record- Phone: +44-20-74059200 ing of clinical details, length of inva- Fax: +44-20-78298634 sive ventilation and appearance at M.J.Elliott contrast bronchography. Five Department of Cardiothoracic Surgery, groups of patients were defined: iso- Great Ormond Street Hospital for lated primary airway pathology Children NHSTrust, Great Ormond Street, 5n = 7), ex-premature infants London WC1N 3JH, UK 5n = 11), vascular rings 5n = 9), com- plex cardiac and/or syndromic pa- D.Roebuck Department of Diagnostic Imaging, thology 5n = 17) and tracheo- Great Ormond Street Hospital for oesophageal fistulae 5n = 4). The Children NHSTrust, Great Ormond Street, overall mortality was 29%. Median London WC1N 3JH, UK length of invasive ventilation in sur- vivors was 38 days and in patients Q.Mok who died 45. Mortality was highest Paediatric Intensive Care Unit, Great Ormond Street Hospital for in the patients with complex cardiac Children NHSTrust, Great Ormond Street, and/or syndromic pathology London WC1N 3JH, UK 5p = 0.039 Cox regression analysis) 723 Introduction bronchus intermedius and peripheral bronchi). A pressure monitor was connected to the airway circuit via a Y connector and when Tracheobronchomalacia is a condition of dynamic air- collapse was found positive end-expiratory pressure 5PEEP) was applied and opening pressures noted. Airways were defined as way collapse during expiration. In tracheal stenosis, stenosed when the narrowing was fixed and unaffected by PEEP fixed airway narrowing causes airway obstruction in in- up to 25 cmH2O and malacic when the narrowing was dynamic spiration and in expiration. These conditions, first de- and improved with positive airway pressure. Infants with tracheal scribed in 1952 [1], may be primary, when cartilaginous stenosis with distal malacia were classified as tracheal stenosis for rings are congenitally malformed, or secondary, due to the purposes of this analysis since the numbers of patients with degeneration of previously normal cartilage. In neona- both forms of pathology was small 5n = 10). Our bronchograms are not stored as cine-films or videos but as static images, so no at- tal chronic lung disease, development of the tracheo- tempt was made at retrospective blinded severity scoring as this bronchial tree may be abnormal and the cartilage may was felt to be unlikely to yield any useful information. be weak [2]. Extrinsic airway compression by a vascular Data were analysed using SPSS 8.0 for Windows 5SPSS, UK). ring or by enlarged great vessels in the presence of a Analysis of survival and length of invasive ventilation was per- large shunt can result in permanent airway narrowing formed using Cox regression analysis. The Kruskal-Wallis test was [3]. Tracheo-oesophageal fistulae are often associated used to determine whether differences in the length of follow-up in survivors were significant. with malacia of a portion of the trachea at the point of insertion of the fistula. Airway abnormalities may de- velop in recurrent aspiration syndromes and in acquired cartilaginous disorders such as relapsing polychondritis. Results The severity of disease depends on the length, location and degree of narrowing in the affected airway seg- Of the 48 patients, 19 were female. The median age ments. at diagnosis was 137 days 5interquartile range Although primary isolated tracheobronchial malacia 62±213 days). The number of patients in each group rarely requires ventilatory support and is often self-lim- was as follows: isolated primary airway pathology 57), iting, infants with tracheobronchial malacia or stenosis ex-premature infants 511), vascular rings 59), complex with abnormal bronchograms who require ventilatory cardiac and/or syndromic pathology 517) and tracheo- support have been reported to have a high morbidity oesophageal fistulae 54). The overall mortality was and mortality, often related to airway obstruction and 14/48 529 %). Median length of follow-up in survivors respiratory failure [4]. This has not been our experience. was 439 days and was not significantly different between We therefore reviewed children admitted to our inten- any of the groups 5p = 0.635, Kruskal-Wallis test). Out- sive care unit with tracheobronchial malacia and stenos- come data is presented related to diagnosis and to oper- is, diagnosed at contrast bronchography, to determine ative procedure 5Tables 1 and 2). which factors affected outcome. Isolated primary airway pathology Materials and methods Seven patients with primary airway pathology were Following local ethics committee approval, the notes of 48 pa- identified. The median age at diagnosis was 66 days. tients, who had been admitted to our intensive care unit between One term infant was referred for surgical management 1994±1999 and in whom a diagnosis of tracheobronchial malacia of congenital subglottic stenosis, tracheobronchomala- or stenosis had been made at contrast bronchography, were re- cia being diagnosed when weaning difficulties were en- viewed. Information collected included underlying diagnosis, length of invasive ventilation around the time of diagnosis, surgical countered following surgery. Invasive ventilation was interventions, mortality, time between diagnosis and the present defined in this group as the time from first intubation day for survivors and time between diagnosis and death for those for airway obstruction to death or weaning to either who died. Underlying diagnostic categories were defined as isolat- extubation or continuous positive airway pressure ed primary airway pathology or airway pathology associated with 5CPAP) or biphasic positive airway pressure 5BiPAP) neonatal chronic lung disease, complex cardiac and/or syndromic via a tracheostomy. The median length of invasive venti- pathology, vascular rings or tracheo-oesophageal fistulae. Radiographic data were also reviewed. Bronchography was lation of survivors was 60 days. Five patients had isolat- performed as previously described [5]. The patients were lightly se- ed tracheobronchomalacia and two had tracheal stenos- dated, intubated and were breathing spontaneously. The endotra- is with airway malacia distal to the stenotic segment. cheal tube was maintained in a high position with the tip in the sub- Two patients with mild tracheobronchomalacia were ex- glottic region. Opacity was obtained by bolus injections of 0.5±2 ml tubated, one after a cricoid split procedure for congeni- of contrast medium 5Omnipaque, Nycomed, Birmingham, UK), tal subglottic stenosis, the other requiring no interven- injected into the airway via the endotracheal tube through a 3.7 Fr angiography catheter with a single end-hole. Contrast dis- tion. The latter patient was excluded from the statistical persal was obtained by hand ventilation. Up to five affected sites analysis as he had severe combined immune deficiency were identified 5trachea, left main bronchus, right main bronchus, and died from graft versus host disease following bone 724 Table 1 Outcome by primary surgical procedure Procedure No. Diagnosis Further procedures Invasive ventilation Dead Alive Still 5median, days, ventilated survivors only) Aortopexy 2 Tracheomalacia None 38 0 2 0 Division of vascular 1 Tracheal stenosis None 14 0 1 0 ring Slide tracheoplasty 4 Tracheal stenosis Tracheostomy
Recommended publications
  • The Role of Larygotracheal Reconstruction in the Management of Recurrent Croup in Patients with Subglottic Stenosis
    International Journal of Pediatric Otorhinolaryngology 82 (2016) 78–80 Contents lists available at ScienceDirect International Journal of Pediatric Otorhinolaryngology jo urnal homepage: www.elsevier.com/locate/ijporl The role of larygotracheal reconstruction in the management of recurrent croup in patients with subglottic stenosis a,b,c, a,b a,d,e Bianca Siegel *, Prasad Thottam , Deepak Mehta a Department of Pediatric Otolaryngology, Childrens Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA b Children’s Hospital of Michigan, Detroit, MI, USA c Wayne State University School of Medicine Department of Otolaryngology, Detroit, MI, USA d Texas Children’s Hospital, Houston, TX, USA e Baylor University School of Medicine Department of Otolaryngology, Houston, TX, USA A R T I C L E I N F O A B S T R A C T Article history: Objectives: To determine the role of laryngotracheal reconstruction for recurrent croup and evaluate Received 16 October 2015 surgical outcomes in this cohort of patients. Received in revised form 4 January 2016 Methods: Retrospective chart review at a tertiary care pediatric hospital. Accepted 6 January 2016 Results: Six patients who underwent laryngotracheal reconstruction (LTR) for recurrent croup with Available online 13 January 2016 underlying subglottic stenosis were identified through a search of our IRB-approved airway database. At the time of diagnostic bronchoscopy, all 6 patients had grade 2 subglottic stenosis. All patients were Keywords: treated for reflux and underwent esophageal biopsies at the time of diagnostic bronchoscopy; 1 patient Laryngotracheal reconstruction had eosinophilic esophagitis which was treated. All patients had a history of at least 3 episodes of croup Recurrent croup in a 1 year period requiring multiple hospital admissions.
    [Show full text]
  • Diagnostic Issues in Systemic Lupus Erythematosis
    266 Postgrad Med J 2001;77:266–285 Postgrad Med J: first published as 10.1136/pmj.77.906.268 on 1 April 2001. Downloaded from SELF ASSESSMENT QUESTIONS Diagnostic issues in systemic lupus erythematosis N Sofat, C Higgens Answers on p 274. A 24 year old woman was diagnosed with sys- (4) What other tests (apart from 24 hour urine temic lupus erythematosis (SLE) based on a creatinine clearance) are available to measure few months’ history of a photosensitive skin the glomerular filtration rate? rash, predominantly on her face, arthralgia The patient had a 24 hour urinary protein col- involving both hands and wrists, a positive lection, which showed a 24 hour protein measure- antinuclear antibody (ANA) test and a raised ment of 1.8 g. There was no evidence of cellular antinative double stranded DNA antibody casts on urine microscopy. Her blood results were binding level. She was treated with oral as below (normal values are in parentheses): hydroxychloroquine 400 mg daily and short x Sodium 134 mmol/l (135–145) courses of prednisolone during flare-ups. x Potassium 4.5 mmol/l (3.5–5.0) She was reviewed in clinic for her regular x Urea 7.0 mmol/l (2.5–6.7) follow up appointment when she was found to x Creatinine 173 µmol/l (70–115) be hypertensive on repeated measurements of x Haemoglobin 108 g/l (115–160) her blood pressure, an average value being x White cell count 4.5 × 109/l (4.0–11.0) 150/90 mm Hg. She was also urine dipstick x Platelets 130 × 109/l (150–400) positive for blood and protein.
    [Show full text]
  • Pulmonary Manifestations of Collagen Vascular Diseases
    July 2009; Volume 3(1) Review Article Pulmonary Manifestations of Collagen Vascular Diseases C. P. Dokwal1 The collagen vascular diseases (CVDs) include a patients with long-standing SLE in the past 5, however recent heterogeneous group of chronic inflammatory HRCT series reveal that about 1/3rd of patients with SLE immunologically-mediated systemic diseases, such as have ILD, most having early sub clinical disease.6 It usually rheumatoid arthritis (RA), systemic lupus erythematosus develops insidiously and is associated with recurrent pleural (SLE), systemic sclerosis (SSc), Sjogren's syndrome (SS), effusions. polymyositis (PM)/dermatomyositis (DM), and mixed Chest radiographs typically show diffuse alveolar opacities. connective tissue disease (MCTD). They present with a wide HRCT of chest often reveals a cellular, fibrotic, or mixed non- range of clinical manifestations. The clinical features in specific interstitial pneumonia (NSIP) pattern.7 Usual CVDs frequently overlap causing much clinical confusion. interstitial pneumonia (UIP) and lymphoid pneumonia (LIP), The lung is frequently affected in CVDs and is the cause of particularly in those with associated secondary Sjogren's significant morbidity and mortality. The common pulmonary syndrome, have also been described.7, 8 Rarely, organizing manifestations include pleural disease, pulmonary fibrosis, pneumonia has also been reported. bronchiolitis obliterans, obliterans, organizing pneumonia, Diffuse Alveolar Haemorrhage bronchiectasis, aspiration pneumonia, and diaphragmatic weakness.
    [Show full text]
  • Left Bronchial with Bronchomalacia, Intractable Wheeze
    Thorax 1991;46:459-461 459 heart disease.7 This report describes a boy Left bronchial who had had intractable wheezing from infancy as a result of widespread discrete areas isomerism associated of bronchomalacia without bronchiectasis, Thorax: first published as 10.1136/thx.46.6.459 on 1 June 1991. Downloaded from and who also had some minor congenital with bronchomalacia, malformations and a rare combination of bronchial, atrial, and abdominal anatomical presenting with arrangements. We report this case because of the unusual anatomy and other congenital intractable wheeze malformations, and to emphasise the care needed in assessing wheezy children. Philip Lee, Andrew Bush, John 0 Warner Case report This 12 year old boy was referred as a case of steroid resistant asthma. He had had recurrent episodes of coughing and noisy breathing from the age of 5 months, usually precipitated by an upper respiratory infection. At 22 months a Abstract murmur was noted during an episode of right The cause of the Williams Campbell syn- lower lobe pneumonia, and he subsequently drome (bronchomalacia with bronchi- underwent ligation ofa patent arterial duct. He ectasis) is controversial. A boy with subsequently developed wheezing in the early bronchomalacia, bifid ribs, and left bron- morning, a chronic cough, and breathlessness chial isomerism presented with intract- on minimal exertion, despite inhaling sal- able wheeze mimicking asthma. The butamol and beclomethasone. A trial of oral combination of the abdominal, bron- prednisolone, 30 mg daily for one week, failed chial, and atrial anatomy seen in this to improve his symptoms. The only physical child has been described only once finding of note was widespread inspiratory and previously.
    [Show full text]
  • Subglottic Stenosis: Current10.5005/Jp-Journals-10001-1272 Concepts and Recent Advances Review Article
    IJHNS Subglottic Stenosis: Current10.5005/jp-journals-10001-1272 Concepts and Recent Advances REVIEW ARTICLE Subglottic Stenosis: Current Concepts and Recent Advances 1Oshri Wasserzug, 2Ari DeRowe ABSTRACT Signs and Symptoms Subglottic stenosis is considered one of the most complex and The symptoms of SGS in children are closely related to challenging aspects of pediatric otolaryngology, with the most the degree of airway narrowing. Grade I SGS is usually common etiology being prolonged endotracheal intubation. The asymptomatic until an upper respiratory tract infection surgical treatment of SGS can be either endoscopic or open, but recent advances have pushed the limits of the endoscopic occurs, when respiratory distress and stridor, which are approach so that in practice an open laryngotracheal surgical the hallmarks of SGS, appear. Grades II and III stenosis approach is considered only after failed attempts with an can cause biphasic stridor, air hunger, dyspnea, and endoscopic approach. In this review we discuss these advances, suprasternal, intercostal, and diaphragmatic retractions. along with current concepts regarding the diagnosis and Prolonged or recurrent episodes of croup should raise treatment of subglottic stenosis in children. suspicion for SGS. Keywords: Direct laryngoscopy, Endoscopic surgery, Laryngo- At times, the appearance of SGS may be insidious and tracheal surgery, Prolonged intubation, Subglottic stenosis. progressive. It is important to recognize that a compro- How to cite this article: Wasserzug O, DeRowe A. Subglottic Stenosis: Current Concepts and Recent Advances. Int J Head mised airway in a child can lead to rapid deterioration Neck Surg 2016;7(2):97-103. and require immediate appropriate intervention to avoid Source of support: Nil a catastrophic outcome.
    [Show full text]
  • Revision Tracheobronchoplasty: Case Report
    4 Case Report Page 1 of 4 Revision tracheobronchoplasty: case report Ammara A. Watkins, Jennifer L. Wilson, Mihir Parikh, Adnan Majid, Sidhu P. Gangadharan Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess, Harvard Medical School, Boston, MA, USA Correspondence to: Sidhu P. Gangadharan, MD. Chief, Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, 185 Pilgrim Rd. W/DC 201 Boston, MA 02215, USA. Email: [email protected]. Abstract: Tracheobronchoplasty, or posterior splinting of the airway with mesh, is a durable solution for patients with severe tracheobronchomalacia (TBM). Recurrent symptoms of TBM following tracheobronchoplasty are uncommon; however, when they occur can have significant impact on quality of life. Appropriate management of recurrent TBM requires a systematic and multidisciplinary collaborative approach. We present a patient with postoperative symptom recurrence requiring revisional tracheobronchoplasty to highlight the complexity of the disease’s presentation, workup and treatment. Keywords: Reoperative; revision; tracheobronchoplasty; tracheobronchomalacia (TBM); case report Received: 06 October 2019; Accepted: 18 December 2019; Published: 25 November 2020. doi: 10.21037/ccts.2019.12.14 View this article at: http://dx.doi.org/10.21037/ccts.2019.12.14 Introduction her tracheobronchoplasty she reported recurrent wheezing, cough and shortness of breath. By four years following Tracheobronchomalacia is an increasingly recognized her operation, the progressive symptoms considerably abnormality of the central airway that can cause dyspnea, impacted her quality of life. She was unable to walk 2 cough, recurrent respiratory infections and respiratory blocks without shortness of breath and had been admitted insufficiency (1,2). The hallmark of the disease is expiratory at least six times in the past year due to respiratory distress.
    [Show full text]
  • [Intrinsic] Tracheomalacia in Children
    Interventions for primary (intrinsic) tracheomalacia in children (Review) Masters IB, Chang AB This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2005, Issue 4 http://www.thecochranelibrary.com Interventions for primary (intrinsic) tracheomalacia in children (Review) Copyright © 2008 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 BACKGROUND .................................... 2 OBJECTIVES ..................................... 3 METHODS ...................................... 3 RESULTS....................................... 5 DISCUSSION ..................................... 5 AUTHORS’CONCLUSIONS . 6 ACKNOWLEDGEMENTS . 6 REFERENCES ..................................... 6 CHARACTERISTICSOFSTUDIES . 7 DATAANDANALYSES. 9 ADDITIONALTABLES. 9 WHAT’SNEW..................................... 9 HISTORY....................................... 10 CONTRIBUTIONSOFAUTHORS . 10 DECLARATIONSOFINTEREST . 10 SOURCESOFSUPPORT . 10 INDEXTERMS .................................... 10 Interventions for primary (intrinsic) tracheomalacia in children (Review) i Copyright © 2008 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. [Intervention Review] Interventions for primary (intrinsic) tracheomalacia in children I Brent Masters1, Anne B Chang2 1Respiratory Medicine, Royal Children’s Hospital, Brisbane, Australia.
    [Show full text]
  • Stridor in the Newborn
    Stridor in the Newborn Andrew E. Bluher, MD, David H. Darrow, MD, DDS* KEYWORDS Stridor Newborn Neonate Neonatal Laryngomalacia Larynx Trachea KEY POINTS Stridor originates from laryngeal subsites (supraglottis, glottis, subglottis) or the trachea; a snoring sound originating from the pharynx is more appropriately considered stertor. Stridor is characterized by its volume, pitch, presence on inspiration or expiration, and severity with change in state (awake vs asleep) and position (prone vs supine). Laryngomalacia is the most common cause of neonatal stridor, and most cases can be managed conservatively provided the diagnosis is made with certainty. Premature babies, especially those with a history of intubation, are at risk for subglottic pathologic condition, Changes in voice associated with stridor suggest glottic pathologic condition and a need for otolaryngology referral. INTRODUCTION Families and practitioners alike may understandably be alarmed by stridor occurring in a newborn. An understanding of the presentation and differential diagnosis of neonatal stridor is vital in determining whether to manage the child with further observation in the primary care setting, specialist referral, or urgent inpatient care. In most cases, the management of neonatal stridor is outside the purview of the pediatric primary care provider. The goal of this review is not, therefore, to present an exhaustive review of causes of neonatal stridor, but rather to provide an approach to the stridulous newborn that can be used effectively in the assessment and triage of such patients. Definitions The neonatal period is defined by the World Health Organization as the first 28 days of age. For the purposes of this discussion, the newborn period includes the first 3 months of age.
    [Show full text]
  • ERS Statement on Tracheomalacia and Bronchomalacia in Children
    ERS OFFICIAL DOCUMENT ERS STATEMENT ERS statement on tracheomalacia and bronchomalacia in children Colin Wallis1,EfthymiaAlexopoulou2,JuanL.Antón-Pacheco3,JayeshM.Bhatt 4, Andrew Bush5,AnneB.Chang6,7,8,Anne-MarieCharatsi9, Courtney Coleman10, Julie Depiazzi11, Konstantinos Douros12,ErnstEber13,MarkEverard14, Ahmed Kantar15,IanB.Masters6,7,FabioMidulla16, Raffaella Nenna 16,17, Derek Roebuck18, Deborah Snijders19 and Kostas Priftis12 @ERSpublications This statement provides a comprehensive review of the causes, presentation, recognition and management of children with tracheobronchomalacia written by a multidisciplinary Task Force in keeping with ERS methodology http://bit.ly/2LPTQCk Cite this article as: Wallis C, Alexopoulou E, Antón-Pacheco JL, et al. ERS statement on tracheomalacia and bronchomalacia in children. Eur Respir J 2019; 54: 1900382 [https://doi.org/10.1183/13993003.00382- 2019]. ABSTRACT Tracheomalacia and tracheobronchomalacia may be primary abnormalities of the large airways or associated with a wide variety of congenital and acquired conditions. The evidence on diagnosis, classification and management is scant. There is no universally accepted classification of severity. Clinical presentation includes early-onset stridor or fixed wheeze, recurrent infections, brassy cough and even near-death attacks, depending on the site and severity of the lesion. Diagnosis is usually made by flexible bronchoscopy in a free-breathing child but may also be shown by other dynamic imaging techniques such as low-contrast volume bronchography, computed tomography or magnetic resonance imaging. Lung function testing can provide supportive evidence but is not diagnostic. Management may be medical or surgical, depending on the nature and severity of the lesions, but the evidence base for any therapy is limited. While medical options that include bronchodilators, anti-muscarinic agents, mucolytics and antibiotics (as well as treatment of comorbidities and associated conditions) are used, there is currently little evidence for benefit.
    [Show full text]
  • A Case of Tracheal Stenosis As an Isolated Form of Immunoproliferative Hyper-Igg4 Disease in a 17-Year-Old Girl
    children Case Report A Case of Tracheal Stenosis as an Isolated Form of Immunoproliferative Hyper-IgG4 Disease in a 17-Year-Old Girl Natalia Gabrovska 1,*, Svetlana Velizarova 1, Albena Spasova 1, Dimitar Kostadinov 1, Nikolay Yanev 1, Hristo Shivachev 2, Edmond Rangelov 2, Yanko Pahnev 2, Zdravka Antonova 2, Nikola Kartulev 2, Ivan Terziev 3 and Kaloyan Gabrovski 4 1 Department of Pulmonary Diseases, Multiprofile Hospital for Active Treatment of Pulmonary Diseases “St. Sofia”, Medical University–Sofia, 1431 Sofia, Bulgaria; [email protected] (S.V.); [email protected] (A.S.); [email protected] (D.K.); [email protected] (N.Y.) 2 Department of Pediatric Thoracic Surgery, Pediatric Surgery Clinic, University Multiprofile Hospital for Active Treatment and Emergency Medicine “N. I. Pirogov”, 1606 Sofia, Bulgaria; [email protected] (H.S.); [email protected] (E.R.); [email protected] (Y.P.); [email protected] (Z.A.); [email protected] (N.K.) 3 Department of Pathology, University Hospital ‘’Tsaritsa Uoanna–ISUL”, 1527 Sofia, Bulgaria; [email protected] 4 Department of Neurosurgery, University Hospital “St. Ivan Rilski”, Medical University–Sofia, 1431 Sofia, Bulgaria; [email protected] * Correspondence: [email protected]; Tel.: +359-887-931-009 Abstract: Immunoglobulin G4-related disease (IgG4-RD) is a lymphoproliferative disease which is described almost exclusively in adults. There are only a few pediatric patients who have been observed with this disorder. Here, we describe a rare case of IgG4-RD in a 17-year-old girl with Citation: Gabrovska, N.; Velizarova, a single manifestation—tracheal stenosis without previous intubation or other inciting event.
    [Show full text]
  • Respiratory Complications and Goldenhar Syndrome
    breathe case presentations.qxd 06/03/2007 17:56 Page 15 CASE PRESENTATION Respiratory complications and Goldenhar syndrome Case report W. Jacobs1 A 29-year-old female was referred to hospital A. Vonk Noordegraaf1 with progressive asthmatic complaints. On pre- R.P. Golding2 sentation, the patient had been experiencing J.G. van den Aardweg3 orthopnoea, an audible wheeze during daily P.E. Postmus1 activities, and sporadic coughing without spu- tum production. The patient had a history of recurrent airway infections and a 5-kg weight Depts of 1Pulmonary Medicine loss during the previous year, and had stopped and 2Radiology, Vrije Universiteit smoking several years before. She was known to Medisch Centrum, Amsterdam, have oculo-auriculo-vertebral (OAV) syndrome, and 3Dept of Pulmonary i.e. Goldenhar syndrome, which is a develop- Medicine, Medisch Centrum mental disorder involving mainly first and sec- Alkmaar, The Netherlands. ond branchial arch anomalies. On physical examination, she was not dys- pnoeic at rest, and had a respiratory rate of Correspondence: -1 -1 14 breaths·min , pulse 80 beats·min , blood W. Jacobs pressure 110/70 mmHg and temperature Dept of Pulmonary Medicine Figure 1 37.9°C. The left hemifacial structures and the Vrije Universiteit Medisch Centrum Postero-anterior chest radiograph. left hemithorax were underdeveloped. A chest Postbus 7057 examination revealed a systolic heart murmur 1007 MB Amsterdam grade 2/6 over the apex, and inspiratory and The Netherlands expiratory wheezing over both lungs. There was Task 1 Fax: 31 204444328 E-mail: [email protected] no oedema or clubbing. Arterial blood gas analy- Interpret the chest radiograph.
    [Show full text]
  • Tracheobronchomalacia and Excessive Dynamic Airway Collapse
    Blackwell Publishing AsiaMelbourne, AustraliaRESRespirology1323-77992006 Blackwell Publishing Asia Pty Ltd? 2006114388406Review ArticleTBM and EDACSD Murgu and HG Colt Respirology (2006) 11, 388–406 doi: 10.1111/j.1400-1843.2006.00862.x REVIEW ARTICLE Tracheobronchomalacia and excessive dynamic airway collapse Septimiu D. MURGU AND Henri G. COLT Pulmonary and Critical Care Medicine, Department of Medicine, University of California School of Medicine, Irvine, CA, USA Tracheobronchomalacia and excessive dynamic airway collapse MURGU SD, COLT HG. Respirology 2006; 11: 388–406 Abstract: Tracheobronchomalacia and excessive dynamic airway collapse are two separate forms of dynamic central airway obstruction that may or may not coexist. These entities are increasingly recognized as asthma and COPD imitators. The understanding of these disease processes, however, has been compromised over the years because of uncertainties regarding their definitions, patho- genesis and aetiology. To date, there is no standardized classification, diagnosis or management algorithm. In this article we comprehensively review the aetiology, morphopathology, physiology, diagnosis and treatment of these entities. Key words: airflow dynamics, bronchomalacia, excessive dynamic airway collapse, tracheobron- chomalacia, tracheomalacia. INTRODUCTION first is that most published studies are case series and retrospective descriptions, many of which report a The purpose of this systematic review is to clarify con- single investigator’s experience with diagnosis and founding issues pertaining to the definition, patho- management. In fact, it is puzzling that despite the physiology, histopathology, aetiology, diagnosis, relative frequency with which TBM and EDAC are pre- classification and treatment of acquired and idio- sumably encountered, multi-institutional or prospec- pathic forms of adult tracheobronchomalacia (TBM) tive studies have not been published.
    [Show full text]