Series of Laryngomalacia, Tracheomalacia, and Bronchomalacia Disorders and Their Associations with Other Conditions in Children

Total Page:16

File Type:pdf, Size:1020Kb

Series of Laryngomalacia, Tracheomalacia, and Bronchomalacia Disorders and Their Associations with Other Conditions in Children Pediatric Pulmonology 34:189-195 (2002) Series of Laryngomalacia, Tracheomalacia, and Bronchomalacia Disorders and Their Associations With Other Conditions in Children I.B. Masters, MBBS, FRACP,1* A.B. Chang, PhD, FRACP,2 L. Patterson, MBBS, FANZCAC,1 С Wainwright, MD, FRACP,1 H. Buntain, MBBS,1 B.W. Dean, MSC,1 and P.W. Francis, MD, FRACP1 Summary. Laryngomalacia, bronchomalacia, and tracheomalacia are commonly seen in pediatric respiratory medicine, yet their patterns and associations with other conditions are not well-understood. We prospectively video-recorded bronchoscopic data and clinical information from referred patients over a 10-year period and defined aspects of interrelationships and associations. Two hundred and ninety-nine cases of malacia disorders (34%) were observed in 885 bronchoscopic procedures. Cough, wheeze, stridor, and radiological changes were the most common symptoms and signs. The lesions were most often found in males (2:1) and on the left side (1.6:1). Concomitant malacia lesions ranged from 24%forlaryngotracheobronchomalaciato 47% for tracheobronchomalacia. The lesions were found in association with other disorders such as congenital heart disorders (13.7%), tracheo-esophageal fistula (9.6%), and various syndromes (8%). Even though the understanding of these disorders is in its infancy, pediatricians should maintain a level of awareness for malacia lesions and consider the possibility of multiple lesions being present, even when one symptom predominates or occurs alone. Pediatr Pulmonol Pediatr Pulmonol. 2002; 34:189-195. © 2002 wiiey-Liss. inc. Key words: laryngomalacia; tracheomalacia; bronchomalacia; malacia disorders; syndromes. INTRODUCTION The aim of this report is to describe an extensive experience of various forms of laryngomalacia, tracheo­ Tracheomalacia, bronchomalacia, and laryngomalacia malacia, and bronchomalacia and explore some of the disorders are commonly seen in tertiary pediatric respira­ interrelationships that exist between these conditions with tory practice. These disorders of the large airways are respect to their anatomical sites and associations, associated with cough, wheeze, and stridor, covering most of the common respiratory symptoms seen in children. The importance of diagnosing tracheomalacia, broncho­ METHODS malacia, and laryngomalacia ranges from life-threatening A detailed review of the prospectively recorded cli­ disease requiring major diagnostic and surgical interven­ nical features and videotaped bronchoscopic lesions of tions to parental reassurance and withdrawal of drugs the airways from children referred to the authors over a 7 often used to treat these disorders unnecessarily.' ~ In our 10-year period was undertaken. The children were collective experience, many children are only referred for referred to the Royal Children's Hospital and Mater assessment after repeated failures of trials of asthma drug therapies and antibiotics. Department of Respiratory Medicine. Royal Children's Hospital, Herston. However, with the symptoms involved often over­ Brisbane. Queensland, Australia. lapping other respiratory disorders, it is not surprising that the management of these disorders could be viewed as "Flinders University Northern Territory Clinical School, /Mice Springs suboptimal. In addition, the prevalence of these disorders Hospital, Alice Springs, Australia. is not known, and just what relationships exist between "Correspondence to: Dr. I.B. Masters. MBBS, FRACP, Department of these disorders and vascular and cardiovascular disor­ Respiratory Medicine, Royal Children's Hospital. Hcrston. Brisbane 4029. ders, immunological disorders, recurrent bronchitis, bron­ Queensland. Australia. E-mail: [email protected] chiolitis, asthma, chronic suppurative lung disease and pneumonia are also not known, making decisions of Received 27 November 200 I; Accepted 23 May 2002. management even more difficult in terms of diagnostic DOI l0.U)02/ppuU0!5o precision, drug therapies, and long-term prognostication, Published online in Wiley InterScience Avww.intcrscience.wilev.com) © 2002 Wiley-Liss, Inc. 190 Masters et al. Children's Hospital, Brisbane, from throughout the state the bronchoscope or applied positive airway pressures. of Queensland, Australia, where the total population is The usual appearance of malacia in the left main stem approximately 3 million, of whom 500,000 are children. was that of an "inverted teardrop," with partial or These referral centers handle almost all complex pedi­ complete apposition of the mucosal superior and inferior atric respiratory medicine for the state. surfaces producing a slit-like opening (Fig. 9a,b). Lobar Children with the endoscopic diagnosis of laryngoma- or segmental lesions usually had slit-like or "lunar lacia, bronchomalacia, or tracheomalacia were selected crescent appearances" (Fig. 10a,b). from all bronchoscopic procedures performed. The endoscopic diagnostic features are outlined below, Materials and Bronchoscopic Procedure and examples are given in Figures 1-10. For the purposes of this report, we introduce the term "malacia disorders" All diagnostic information was obtained during flexible to cover the lesions as a group. bronchoscopic procedures performed during spontaneous breathing under gaseous general anesthesia. The anes­ Definition 1 thetic agents used were halothane and or sevoflurane. The vocal cords and trachea were sprayed with lignocaine Laryngomalacia is a long, curved epiglottis, short ary- from a Cass needle or direct spray. Generally, the children epiglottic folds (false cords), prominent and or bulky breathed spontaneously throughout the procedure, and arytenoids and degrees of prolapse of the arytenoids, and positive end expiratory pressure was not usually applied changes in epiglottic appearance and position seen during except during periods of assessment of malacia. The inspiration and returning to the original position during bronchoscope was passed into the airway through a port expiration. in the connector to the facemask. The same four anesthetists were involved in all procedures. All cases Definition 2 were videotaped for later perusal. Anatomical sites and Tracheomalacia is a membranosa deformity in the type of lesion were detailed in each case. All bron­ trachea, maintained during spontaneous respiration but choscopic procedures were performed when the children which could be altered by the passage of the broncho­ were clinically well or stable. A Pentax FB10X 3.5 mm scope or positive airway pressure changes. The descrip­ or Olympus BF 3C40 3.6 mm bronchoscope was used in tive appearances accepted as tracheomalacia are as each case. follows: triangular (Fig. 1), oval/flattening (Fig. 2a-c), localized extrathoracic raised and dynamically bulging Statistics pars membranosa (tracheal dyskinesia) (Fig. 3a,b), and an "Eifel Tower" appearance (Fig. 4a,b). All data were expressed as simple percentages, medi­ Pericarinal tracheobronchomalacia was defined as a ans, and ranges. flattening in the anterior/posterior plane of the trachea, extending into the left and right main-stem bronchi RESULTS (Figs. 5a,b, 6a-c). Tracheomalacia associated with tracheo-esophageal fistula is usually seen as a combina­ Two hundred and ninety-nine cases of laryngomalacia, tion of a dynamically bulging pars membranosa and tracheomalacia, bronchomalacia, and/or combinations of anterior flattening or triangular appearances (Figs. 7a- the three were defined from a total of 885 bronchoscopies d, 8a-c). performed over a 10-year period. This represents 34% of the procedures being defined a "malacia disorder." Definition 3 Malacia disorders were defined in 205 males and 94 females, i.e., a male to female ratio of 2:1. In recognized Bronchomalacia is an appearance of deformity in the syndromes and related disorders, the male predominance large right or left main-stem bronchi, and/or their res­ ranged from 1.6:1 to 8:1. The ratios and associated pective divisions at the lobar or segmental level. The conditions are shown in Tables 1 and 2. appearance of deformity could be altered by a passage of The median age of this cohort was 9 months (range, 1 day to 240 months), with the median age of males being ABBREVIATIONS 9 months, and that of females being 9.6 months. Stridor was reported in 127 (42.5%), and of these, 58 CLE Congenital lobar emphysema CT Cono-truncal (19.4%) reported stridor alone. Wheeze and cough LMS Left main .stem symptomatology was reported in 130 (43.4%) and 212 RMS Right main stem (71%), respectively, while 34 (11.7%) reported all three SYN Syndrome symptoms. These signs were not usually present in very TEF Tracheo-esophageal lislula sick patients, particularly cardiac patients, where unex- Malacia Disorders in Children 191 Fig. 1. Triangular appearance of tracheomalacia. Fig. 4. "Eifel tower" appearance of tracheomalacia (a), and progressive expiratory closure with mucosal surfaces apposed (b). Fig. 5. Pericarinal right main-stem malacia (a), and progressive closure of right main stem on expiration (b). Fig. 2. Pericarinal and right and left main-stem malacia. Oval shape (a) and progressive flattening on expiration of pericarinal and right and left main-stem bronchi (b), and complete closure of L main stem bronchi (c). r Fig. 3. Bulging pars membranosa: subglottis and proximal trachea: "posterior tracheomalacia." Dynamically bulging pars Fig. 6. Pericarinal and left main-stem malacia (a),and progres­ starting in the subglottis (a), and progressing to less prominent sive closure of left main
Recommended publications
  • Current Management and Outcome of Tracheobronchial Malacia and Stenosis Presenting to the Paediatric Intensive Care Unit
    Intensive Care Med 52001) 27: 722±729 DOI 10.1007/s001340000822 NEONATAL AND PEDIATRIC INTENSIVE CARE David P.Inwald Current management and outcome Derek Roebuck Martin J.Elliott of tracheobronchial malacia and stenosis Quen Mok presenting to the paediatric intensive care unit Abstract Objective: To identify fac- but was not related to any other fac- Received: 10 July 2000 Final Revision received: 14 Oktober 2000 tors associated with mortality and tor. Patients with stenosis required a Accepted: 24 October 2000 prolonged ventilatory requirements significantly longer period of venti- Published online: 16 February 2001 in patients admitted to our paediat- latory support 5median length of Springer-Verlag 2001 ric intensive care unit 5PICU) with ventilation 59 days) than patients tracheobronchial malacia and with malacia 539 days). stenosis diagnosed by dynamic con- Conclusions: Length of ventilation Dr Inwald was supported by the Medical Research Council. This work was jointly trast bronchograms. and bronchographic diagnosis did undertaken in Great Ormond Street Hos- Design: Retrospective review. not predict survival. The only factor pital for Children NHSTrust, which re- Setting: Tertiary paediatric intensive found to contribute significantly to ceived a proportion of its funding from the care unit. mortality was the presence of com- NHSExecutive; the views expressed in this Patients: Forty-eight cases admitted plex cardiac and/or syndromic pa- publication are those of the authors and not to our PICU over a 5-year period in thology. However, patients with necessarily those of the NHSexecutive. whom a diagnosis of tracheobron- stenosis required longer ventilatory chial malacia or stenosis was made support than patients with malacia.
    [Show full text]
  • The Role of Larygotracheal Reconstruction in the Management of Recurrent Croup in Patients with Subglottic Stenosis
    International Journal of Pediatric Otorhinolaryngology 82 (2016) 78–80 Contents lists available at ScienceDirect International Journal of Pediatric Otorhinolaryngology jo urnal homepage: www.elsevier.com/locate/ijporl The role of larygotracheal reconstruction in the management of recurrent croup in patients with subglottic stenosis a,b,c, a,b a,d,e Bianca Siegel *, Prasad Thottam , Deepak Mehta a Department of Pediatric Otolaryngology, Childrens Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA b Children’s Hospital of Michigan, Detroit, MI, USA c Wayne State University School of Medicine Department of Otolaryngology, Detroit, MI, USA d Texas Children’s Hospital, Houston, TX, USA e Baylor University School of Medicine Department of Otolaryngology, Houston, TX, USA A R T I C L E I N F O A B S T R A C T Article history: Objectives: To determine the role of laryngotracheal reconstruction for recurrent croup and evaluate Received 16 October 2015 surgical outcomes in this cohort of patients. Received in revised form 4 January 2016 Methods: Retrospective chart review at a tertiary care pediatric hospital. Accepted 6 January 2016 Results: Six patients who underwent laryngotracheal reconstruction (LTR) for recurrent croup with Available online 13 January 2016 underlying subglottic stenosis were identified through a search of our IRB-approved airway database. At the time of diagnostic bronchoscopy, all 6 patients had grade 2 subglottic stenosis. All patients were Keywords: treated for reflux and underwent esophageal biopsies at the time of diagnostic bronchoscopy; 1 patient Laryngotracheal reconstruction had eosinophilic esophagitis which was treated. All patients had a history of at least 3 episodes of croup Recurrent croup in a 1 year period requiring multiple hospital admissions.
    [Show full text]
  • 1 British Thoracic Society Guidelines Recommendations for The
    Thorax Online First, published on September 28, 2007 as 10.1136/thx.2007.077370 Thorax: first published as 10.1136/thx.2007.077370 on 28 September 2007. Downloaded from British Thoracic Society Guidelines Recommendations for the assessment and management of cough in children MD Shields, A Bush, ML Everard, S McKenzie and R Primhak on behalf of the British Thoracic Society Cough Guideline Group Michael D Shields Dept. of Child Health, Queen’s University of Belfast, Clinical Institute, Grosvenor Road, Belfast, BT12 6BJ Email: [email protected] Andrew Bush Royal Brompton Hospital, Sydney Street, London, SW3 6NP Email: [email protected] Mark L Everard Dept of Paediatrics, Sheffield Children’s Hospital, Western Bank, Sheffield, S. Yorkshire, S10 2TH. Email: [email protected] Sheila McKenzie Queen Elizabeth Children’s Services, http://thorax.bmj.com/ The Royal London Hospital, Whitechapel, London, E1 1BB Email: [email protected] Robert Primhak Dept. of Paediatrics, Sheffield Children’s Hospital, on September 29, 2021 by guest. Protected copyright. Western Bank, Sheffield, S. Yorkshire, S10 2TH. Email: [email protected] “the Corresponding Author (Michael D Shields) has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in [THORAX] editions and any other BMJPG Ltd products to exploit all subsidiary rights, as set out in our licence 1 Copyright Article author (or their employer) 2007.
    [Show full text]
  • Diagnostic Issues in Systemic Lupus Erythematosis
    266 Postgrad Med J 2001;77:266–285 Postgrad Med J: first published as 10.1136/pmj.77.906.268 on 1 April 2001. Downloaded from SELF ASSESSMENT QUESTIONS Diagnostic issues in systemic lupus erythematosis N Sofat, C Higgens Answers on p 274. A 24 year old woman was diagnosed with sys- (4) What other tests (apart from 24 hour urine temic lupus erythematosis (SLE) based on a creatinine clearance) are available to measure few months’ history of a photosensitive skin the glomerular filtration rate? rash, predominantly on her face, arthralgia The patient had a 24 hour urinary protein col- involving both hands and wrists, a positive lection, which showed a 24 hour protein measure- antinuclear antibody (ANA) test and a raised ment of 1.8 g. There was no evidence of cellular antinative double stranded DNA antibody casts on urine microscopy. Her blood results were binding level. She was treated with oral as below (normal values are in parentheses): hydroxychloroquine 400 mg daily and short x Sodium 134 mmol/l (135–145) courses of prednisolone during flare-ups. x Potassium 4.5 mmol/l (3.5–5.0) She was reviewed in clinic for her regular x Urea 7.0 mmol/l (2.5–6.7) follow up appointment when she was found to x Creatinine 173 µmol/l (70–115) be hypertensive on repeated measurements of x Haemoglobin 108 g/l (115–160) her blood pressure, an average value being x White cell count 4.5 × 109/l (4.0–11.0) 150/90 mm Hg. She was also urine dipstick x Platelets 130 × 109/l (150–400) positive for blood and protein.
    [Show full text]
  • Pulmonary Manifestations of Collagen Vascular Diseases
    July 2009; Volume 3(1) Review Article Pulmonary Manifestations of Collagen Vascular Diseases C. P. Dokwal1 The collagen vascular diseases (CVDs) include a patients with long-standing SLE in the past 5, however recent heterogeneous group of chronic inflammatory HRCT series reveal that about 1/3rd of patients with SLE immunologically-mediated systemic diseases, such as have ILD, most having early sub clinical disease.6 It usually rheumatoid arthritis (RA), systemic lupus erythematosus develops insidiously and is associated with recurrent pleural (SLE), systemic sclerosis (SSc), Sjogren's syndrome (SS), effusions. polymyositis (PM)/dermatomyositis (DM), and mixed Chest radiographs typically show diffuse alveolar opacities. connective tissue disease (MCTD). They present with a wide HRCT of chest often reveals a cellular, fibrotic, or mixed non- range of clinical manifestations. The clinical features in specific interstitial pneumonia (NSIP) pattern.7 Usual CVDs frequently overlap causing much clinical confusion. interstitial pneumonia (UIP) and lymphoid pneumonia (LIP), The lung is frequently affected in CVDs and is the cause of particularly in those with associated secondary Sjogren's significant morbidity and mortality. The common pulmonary syndrome, have also been described.7, 8 Rarely, organizing manifestations include pleural disease, pulmonary fibrosis, pneumonia has also been reported. bronchiolitis obliterans, obliterans, organizing pneumonia, Diffuse Alveolar Haemorrhage bronchiectasis, aspiration pneumonia, and diaphragmatic weakness.
    [Show full text]
  • Left Bronchial with Bronchomalacia, Intractable Wheeze
    Thorax 1991;46:459-461 459 heart disease.7 This report describes a boy Left bronchial who had had intractable wheezing from infancy as a result of widespread discrete areas isomerism associated of bronchomalacia without bronchiectasis, Thorax: first published as 10.1136/thx.46.6.459 on 1 June 1991. Downloaded from and who also had some minor congenital with bronchomalacia, malformations and a rare combination of bronchial, atrial, and abdominal anatomical presenting with arrangements. We report this case because of the unusual anatomy and other congenital intractable wheeze malformations, and to emphasise the care needed in assessing wheezy children. Philip Lee, Andrew Bush, John 0 Warner Case report This 12 year old boy was referred as a case of steroid resistant asthma. He had had recurrent episodes of coughing and noisy breathing from the age of 5 months, usually precipitated by an upper respiratory infection. At 22 months a Abstract murmur was noted during an episode of right The cause of the Williams Campbell syn- lower lobe pneumonia, and he subsequently drome (bronchomalacia with bronchi- underwent ligation ofa patent arterial duct. He ectasis) is controversial. A boy with subsequently developed wheezing in the early bronchomalacia, bifid ribs, and left bron- morning, a chronic cough, and breathlessness chial isomerism presented with intract- on minimal exertion, despite inhaling sal- able wheeze mimicking asthma. The butamol and beclomethasone. A trial of oral combination of the abdominal, bron- prednisolone, 30 mg daily for one week, failed chial, and atrial anatomy seen in this to improve his symptoms. The only physical child has been described only once finding of note was widespread inspiratory and previously.
    [Show full text]
  • Complications of Different Ventilation Strategies in Endoscopic Laryngeal
    Anesthesiology 2006; 104:52–9 © 2005 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Complications of Different Ventilation Strategies in Endoscopic Laryngeal Surgery A 10-year Review Yves Jaquet, M.D.,* Philippe Monnier, M.D.,† Guy Van Melle, M.D., Ph.D.,‡ Patrick Ravussin, M.D.,§ Donat R. Spahn, M.D., F.R.C.A.,࿣ Madeleine Chollet-Rivier, M.D.# Background: Spontaneous ventilation, mechanical controlled tracheal tube offers adequate airway protection and ventilation, apneic intermittent ventilation, and jet ventilation gas exchange, but the endotracheal tube prevents are commonly used during interventional suspension micro- optimal vision and access to the larynx. Furthermore, laryngoscopy. The aim of this study was to investigate specific 1–4 complications of each technique, with special emphasis on endotracheal fire may still be encountered with transtracheal and transglottal jet ventilation. the use of carbon dioxide laser despite the develop- Methods: The authors performed a retrospective single-insti- ment of nonflammable endotracheal tubes.5–7 tution analysis of a case series of 1,093 microlaryngoscopies 2. Spontaneous ventilation offers a free access to the performed in 661 patients between January 1994 and January larynx, but with a moving surgical field and a risk of 2004. Data were collected from two separate prospective data- bases. Feasibility and complications encountered with each inhalation of anesthetic gases and laser fumes by the technique of ventilation were analyzed as main outcome mea- patient
    [Show full text]
  • Diagnosis and Therapy for Airway Obstruction in Children with Down Syndrome
    ORIGINAL ARTICLE Diagnosis and Therapy for Airway Obstruction in Children With Down Syndrome Ron B. Mitchell, MD; Ellen Call, MS, CFNP; James Kelly, PhD Objectives: To document the causes of upper airway children had subglottic stenosis. Laryngomalacia was the obstruction in a population of children with Down syn- primary diagnosis in 10 children (43%), 8 of whom were drome and to highlight the role of associated comorbidi- younger than 1 month. Obstructive sleep apnea was the ties. primary diagnosis in 11 children (48%), 8 of whom were older than 2 years. All children with obstructive sleep ap- Design and Setting: Review of 23 cases involving chil- nea and 4 children with laryngomalacia had a second- dren with Down syndrome who were referred for upper ary ear, nose, and throat disorder. Gastroesophageal re- airway obstruction over a 21⁄2-year period to the Pediat- flux was a comorbidity in 14 children (61%). ric Otolaryngology Service of the University of New Mexico, Albuquerque. Conclusions: The causes, severity, and presentation of upper airway obstruction in children with Down syn- Methods: Data on the following variables were ob- drome are related to the age of the child and to associ- tained: reason for referral, demographics, diagnosis, sur- ated comorbidities. The treatment of comorbidities and gical procedures, complications, and comorbidities. secondary ear, nose, and throat disorders is an integral component of the surgical management of upper airway Results: The children ranged in age from 1 day to 10.2 obstruction in such cases. years (mean age, 1.8 years; median age, 6 months). Thir- teen children were male and 10 were female.
    [Show full text]
  • Revision Tracheobronchoplasty: Case Report
    4 Case Report Page 1 of 4 Revision tracheobronchoplasty: case report Ammara A. Watkins, Jennifer L. Wilson, Mihir Parikh, Adnan Majid, Sidhu P. Gangadharan Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess, Harvard Medical School, Boston, MA, USA Correspondence to: Sidhu P. Gangadharan, MD. Chief, Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, 185 Pilgrim Rd. W/DC 201 Boston, MA 02215, USA. Email: [email protected]. Abstract: Tracheobronchoplasty, or posterior splinting of the airway with mesh, is a durable solution for patients with severe tracheobronchomalacia (TBM). Recurrent symptoms of TBM following tracheobronchoplasty are uncommon; however, when they occur can have significant impact on quality of life. Appropriate management of recurrent TBM requires a systematic and multidisciplinary collaborative approach. We present a patient with postoperative symptom recurrence requiring revisional tracheobronchoplasty to highlight the complexity of the disease’s presentation, workup and treatment. Keywords: Reoperative; revision; tracheobronchoplasty; tracheobronchomalacia (TBM); case report Received: 06 October 2019; Accepted: 18 December 2019; Published: 25 November 2020. doi: 10.21037/ccts.2019.12.14 View this article at: http://dx.doi.org/10.21037/ccts.2019.12.14 Introduction her tracheobronchoplasty she reported recurrent wheezing, cough and shortness of breath. By four years following Tracheobronchomalacia is an increasingly recognized her operation, the progressive symptoms considerably abnormality of the central airway that can cause dyspnea, impacted her quality of life. She was unable to walk 2 cough, recurrent respiratory infections and respiratory blocks without shortness of breath and had been admitted insufficiency (1,2). The hallmark of the disease is expiratory at least six times in the past year due to respiratory distress.
    [Show full text]
  • [Intrinsic] Tracheomalacia in Children
    Interventions for primary (intrinsic) tracheomalacia in children (Review) Masters IB, Chang AB This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2005, Issue 4 http://www.thecochranelibrary.com Interventions for primary (intrinsic) tracheomalacia in children (Review) Copyright © 2008 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 BACKGROUND .................................... 2 OBJECTIVES ..................................... 3 METHODS ...................................... 3 RESULTS....................................... 5 DISCUSSION ..................................... 5 AUTHORS’CONCLUSIONS . 6 ACKNOWLEDGEMENTS . 6 REFERENCES ..................................... 6 CHARACTERISTICSOFSTUDIES . 7 DATAANDANALYSES. 9 ADDITIONALTABLES. 9 WHAT’SNEW..................................... 9 HISTORY....................................... 10 CONTRIBUTIONSOFAUTHORS . 10 DECLARATIONSOFINTEREST . 10 SOURCESOFSUPPORT . 10 INDEXTERMS .................................... 10 Interventions for primary (intrinsic) tracheomalacia in children (Review) i Copyright © 2008 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. [Intervention Review] Interventions for primary (intrinsic) tracheomalacia in children I Brent Masters1, Anne B Chang2 1Respiratory Medicine, Royal Children’s Hospital, Brisbane, Australia.
    [Show full text]
  • Supraglottoplasty Home Care Instructions Hospital Stay Most Children Stay Overnight in the Hospital for at Least One Night
    10914 Hefner Pointe Drive, Suite 200 Oklahoma City, OK 73120 Phone: 405.608.8833 Fax: 405.608.8818 Supraglottoplasty Home Care Instructions Hospital Stay Most children stay overnight in the hospital for at least one night. Bleeding There is typically very little to no bleeding associated with this procedure. Though very unlikely to happen, if your child were to spit or cough up blood you should contact your physician immediately. Diet After surgery your child will be able to eat the foods or formula that they usually do. It is important after surgery to encourage your child to drink fluids and remain hydrated. Daily fluid needs are listed below: • Age 0-2 years: 16 ounces per day • Age 2-4 years: 24 ounces per day • Age 4 and older: 32 ounces per day It is our experience that most children experience a significant improvement in eating after this procedure. However, we have found about that approximately 4% of otherwise healthy infants may experience a transient onset of coughing or choking with feeding after surgery. In our experience these symptoms resolve over 1-2 months after surgery. We have also found that infants who have other illnesses (such as syndromes, prematurity, heart trouble, or other congenital abnormalities) have a greater risk of experiencing swallowing difficulties after a supraglottoplasty (this number can be as high as 20%). In time the child usually will return to normal swallowing but there is a small risk of feeding difficulties. You will be given a prescription before you leave the hospital for an acid reducing (anti-reflux) medication that must be filled before you are discharged.
    [Show full text]
  • Stridor in the Newborn
    Stridor in the Newborn Andrew E. Bluher, MD, David H. Darrow, MD, DDS* KEYWORDS Stridor Newborn Neonate Neonatal Laryngomalacia Larynx Trachea KEY POINTS Stridor originates from laryngeal subsites (supraglottis, glottis, subglottis) or the trachea; a snoring sound originating from the pharynx is more appropriately considered stertor. Stridor is characterized by its volume, pitch, presence on inspiration or expiration, and severity with change in state (awake vs asleep) and position (prone vs supine). Laryngomalacia is the most common cause of neonatal stridor, and most cases can be managed conservatively provided the diagnosis is made with certainty. Premature babies, especially those with a history of intubation, are at risk for subglottic pathologic condition, Changes in voice associated with stridor suggest glottic pathologic condition and a need for otolaryngology referral. INTRODUCTION Families and practitioners alike may understandably be alarmed by stridor occurring in a newborn. An understanding of the presentation and differential diagnosis of neonatal stridor is vital in determining whether to manage the child with further observation in the primary care setting, specialist referral, or urgent inpatient care. In most cases, the management of neonatal stridor is outside the purview of the pediatric primary care provider. The goal of this review is not, therefore, to present an exhaustive review of causes of neonatal stridor, but rather to provide an approach to the stridulous newborn that can be used effectively in the assessment and triage of such patients. Definitions The neonatal period is defined by the World Health Organization as the first 28 days of age. For the purposes of this discussion, the newborn period includes the first 3 months of age.
    [Show full text]