Tracheobronchomalacia and Excessive Dynamic Airway Collapse

Total Page:16

File Type:pdf, Size:1020Kb

Tracheobronchomalacia and Excessive Dynamic Airway Collapse Blackwell Publishing AsiaMelbourne, AustraliaRESRespirology1323-77992006 Blackwell Publishing Asia Pty Ltd? 2006114388406Review ArticleTBM and EDACSD Murgu and HG Colt Respirology (2006) 11, 388–406 doi: 10.1111/j.1400-1843.2006.00862.x REVIEW ARTICLE Tracheobronchomalacia and excessive dynamic airway collapse Septimiu D. MURGU AND Henri G. COLT Pulmonary and Critical Care Medicine, Department of Medicine, University of California School of Medicine, Irvine, CA, USA Tracheobronchomalacia and excessive dynamic airway collapse MURGU SD, COLT HG. Respirology 2006; 11: 388–406 Abstract: Tracheobronchomalacia and excessive dynamic airway collapse are two separate forms of dynamic central airway obstruction that may or may not coexist. These entities are increasingly recognized as asthma and COPD imitators. The understanding of these disease processes, however, has been compromised over the years because of uncertainties regarding their definitions, patho- genesis and aetiology. To date, there is no standardized classification, diagnosis or management algorithm. In this article we comprehensively review the aetiology, morphopathology, physiology, diagnosis and treatment of these entities. Key words: airflow dynamics, bronchomalacia, excessive dynamic airway collapse, tracheobron- chomalacia, tracheomalacia. INTRODUCTION first is that most published studies are case series and retrospective descriptions, many of which report a The purpose of this systematic review is to clarify con- single investigator’s experience with diagnosis and founding issues pertaining to the definition, patho- management. In fact, it is puzzling that despite the physiology, histopathology, aetiology, diagnosis, relative frequency with which TBM and EDAC are pre- classification and treatment of acquired and idio- sumably encountered, multi-institutional or prospec- pathic forms of adult tracheobronchomalacia (TBM) tive studies have not been published. The second is and excessive dynamic airway collapse (EDAC). that investigators rarely define and differentiate TBM Based on a thorough review of existing English lan- and EDAC as two separate entities, often using words guage literature since the mid-1960s, we submit that such as malacia and collapse interchangeably, TBM, although characterized by weakness of airway describing EDAC findings while calling it TBM or vice- cartilage, may occur either with or without an exces- versa. Recently available radiographic and broncho- sive dynamic invagination of the posterior membra- scopic imaging techniques however, enhance the cli- nous portion of the tracheobronchial tree. This latter nician’s ability to differentiate these two processes. A process, referred to as EDAC, appears to be a distinct third issue is the absence of a universally accepted clinicopathologic entity which may or may not result nomenclature and classification. Indeed, few investi- from hypotonia of myoelastic elements of the poste- gators classify TBM or EDAC using more than one rior membrane. We submit that TBM and EDAC can radiographic, bronchoscopic, or histopathologic occur independently from each other or together, and criterion. may be part of the same pathological process or result from very different mechanisms. Understanding the distinctions between these two METHODS entities has been challenging for several reasons. The All published literature pertaining to acquired or idio- pathic TBM was collected by searching PubMed (MEDLINE) from the mid-1960s to April 2005 using Correspondence: Henri G. Colt, UCI Medical Center, the following key words: tracheomalacia, broncho- 101 the City Drive South, Bldg 53, Rm 119, Rt 81, Orange, malacia, tracheobronchomalacia, adult, acquired, CA 92868, USA. Email: [email protected] dynamic airway collapse, choke point, tracheal col- Received 23 July 2005; invited to revise 6 October 2005; lapse, bronchial collapse and tracheobronchial col- revised 21 December 2005; accepted 31 December 2005 lapse. We also performed specific disease searches for (Associate Editor: YC Gary Lee). relapsing polychondritis, congenital tracheobron- Respirology (2006) © 2006 Asian Pacific Society of Respirology TBM and EDAC 389 chomegaly and thyroid disease because these condi- Distinguishing TBM from EDAC tions are known to be associated with TBM. Abstracts and case reports were included. When articles were In the literature, there is no clear distinction between published in a foreign language, however, only the EDAC and TBM. In fact, defining TBM as a narrowing English language abstracts were reviewed. Searches of the lumen by 50% or more while coughing as were augmented by manually reviewing the reference documented by fluoroscopic observations11 or by lists of all original research and all review articles. bronchoscopy12 may give rise to a missed diagnosis of Because the purpose of this systematic review was EDAC and to false positive cases of TBM in the neither to perform a meta-analysis nor to grade the absence of cartilaginous involvement. In one fre- evidence of the published literature, this methodol- quently quoted review article, the term TBM is used ogy is limited but not flawed by the fact that only a interchangeably to describe EDAC and malacia.1 single database for locating articles was used and that EDAC has been also referred to as TBM in several other electronic databases such as EMBASE, LILACS reports using bronchoscopy for diagnosis.2,12–14 In the or Best Evidence were excluded. radiology literature, TBM has also been classically defined as a reduction in airway CSA greater than 50% on expiratory images.6–8 It appears that prior investi- DEFINITIONS gators have often used the term TBM while referring to EDAC and vice versa.6–9 Tracheobronchomalacia The term malacia derives from the Greek word Morphologies of TBM and EDAC (Fig. 1) ‘malakia’, which means softness. TBM has been defined as a condition in which there is weakness of The radiology and bronchoscopy literature refer to the tracheal and bronchial walls due to softening of several morphological types of TBM.1,2,7,9,12–17 The cres- the supporting cartilage and hypotonia of myoelastic cent or membranous type is due to an apparent weak- elements.1,2 As a result, the trachea and main bronchi ness of the membranous part of the airway and felt to lose their usual degree of stiffness and the airway represent an atrophy of the longitudinal elastic fibres walls come closer together. This results in a reduction of the posterior wall.1,2,7,9,12–14 The cartilaginous type of of airway lumen and causes a disease state encom- TBM is caused by a weakness of the lateral and ante- passing intermittent or continuous dyspnoea, diffi- rior cartilaginous walls of the airways.7,15–17 This type culty clearing secretions, cough, wheezing, recurrent can have a crescent or saber-sheath appearance on bronchitis or pneumonia that has traditionally been bronchoscopic or radiographic examination depend- called TBM. ing on whether the anterior or lateral walls of the air- way are weakened. This is a dynamic process and is different from saber-sheath trachea which is a fixed Excessive dynamic airway collapse narrowing described in up to 5% of older males with COPD.18–20 A combined or circumferential type refers TBM is also referred to in the literature, however, as to a combination of crescent and saber-sheath type16 tracheobronchial collapse,3,4 expiratory tracheobron- or when a disease state, such as polychondritis, chial collapse, expiratory tracheobronchial stenosis,2 results in circumferential narrowing of the airway tracheobronchial dyskinesia,5 or described as lumen.21 dynamic airway collapse (DAC).1,6–9 This contributes to some confusion regarding these distinct entities. Dynamic CT measurements of the normal trachea PREVALENCE during forced expiration show a mean decrease of 35% (range 11–61%) in the cross sectional area (CSA) The reported prevalence of TBM and EDAC varies of the trachea between inspiration and expiration. with the study population, the diagnostic methodol- Thus, a certain degree of DAC characterized by invag- ogies employed, and the criteria used to define airway ination of the posterior membrane of the tracheo- collapse. Previous investigators often referred to TBM bronchial tree is physiological and probably as a narrowing of the anteroposterior diameter of enhances expectoration and secretion clearance. In the airways without specifying whether collapse was healthy individuals, cine-bronchography studies secondary to a cartilaginous process.2,11,13,22 This show, in fact, that the tracheobronchial lumen during describes a crescent-type abnormality, forcing the coughing is 18–39% narrower than the maximal reader to presume that saber-type malacia was not inspiratory lumen observed during restful respira- noted. In many of these papers, EDAC is described tion.10 DAC is exaggerated, however, in some patients but not identified as such.1,6–9 with obstructive pulmonary disease such as chronic In one study, expiratory collapse of the trachea bronchitis, emphysema, asthma and TBM. Excessive and main bronchi was noted to be greater than 50% collapse may also be seen as an isolated finding in during cough. This was seen during bronchoscopy patients during cough and forced expiration. A reduc- in 11 of 78 patients (14.1%) referred to a pulmonolo- tion of airway lumen by 50% or more in the sagittal gist for evaluation of chronic cough lasting an aver- diameter has been considered abnormal4,11 and, age of 72 months.23 This is a frequently quoted paper when due to invagination of the posterior
Recommended publications
  • Current Management and Outcome of Tracheobronchial Malacia and Stenosis Presenting to the Paediatric Intensive Care Unit
    Intensive Care Med 52001) 27: 722±729 DOI 10.1007/s001340000822 NEONATAL AND PEDIATRIC INTENSIVE CARE David P.Inwald Current management and outcome Derek Roebuck Martin J.Elliott of tracheobronchial malacia and stenosis Quen Mok presenting to the paediatric intensive care unit Abstract Objective: To identify fac- but was not related to any other fac- Received: 10 July 2000 Final Revision received: 14 Oktober 2000 tors associated with mortality and tor. Patients with stenosis required a Accepted: 24 October 2000 prolonged ventilatory requirements significantly longer period of venti- Published online: 16 February 2001 in patients admitted to our paediat- latory support 5median length of Springer-Verlag 2001 ric intensive care unit 5PICU) with ventilation 59 days) than patients tracheobronchial malacia and with malacia 539 days). stenosis diagnosed by dynamic con- Conclusions: Length of ventilation Dr Inwald was supported by the Medical Research Council. This work was jointly trast bronchograms. and bronchographic diagnosis did undertaken in Great Ormond Street Hos- Design: Retrospective review. not predict survival. The only factor pital for Children NHSTrust, which re- Setting: Tertiary paediatric intensive found to contribute significantly to ceived a proportion of its funding from the care unit. mortality was the presence of com- NHSExecutive; the views expressed in this Patients: Forty-eight cases admitted plex cardiac and/or syndromic pa- publication are those of the authors and not to our PICU over a 5-year period in thology. However, patients with necessarily those of the NHSexecutive. whom a diagnosis of tracheobron- stenosis required longer ventilatory chial malacia or stenosis was made support than patients with malacia.
    [Show full text]
  • The Role of Larygotracheal Reconstruction in the Management of Recurrent Croup in Patients with Subglottic Stenosis
    International Journal of Pediatric Otorhinolaryngology 82 (2016) 78–80 Contents lists available at ScienceDirect International Journal of Pediatric Otorhinolaryngology jo urnal homepage: www.elsevier.com/locate/ijporl The role of larygotracheal reconstruction in the management of recurrent croup in patients with subglottic stenosis a,b,c, a,b a,d,e Bianca Siegel *, Prasad Thottam , Deepak Mehta a Department of Pediatric Otolaryngology, Childrens Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA b Children’s Hospital of Michigan, Detroit, MI, USA c Wayne State University School of Medicine Department of Otolaryngology, Detroit, MI, USA d Texas Children’s Hospital, Houston, TX, USA e Baylor University School of Medicine Department of Otolaryngology, Houston, TX, USA A R T I C L E I N F O A B S T R A C T Article history: Objectives: To determine the role of laryngotracheal reconstruction for recurrent croup and evaluate Received 16 October 2015 surgical outcomes in this cohort of patients. Received in revised form 4 January 2016 Methods: Retrospective chart review at a tertiary care pediatric hospital. Accepted 6 January 2016 Results: Six patients who underwent laryngotracheal reconstruction (LTR) for recurrent croup with Available online 13 January 2016 underlying subglottic stenosis were identified through a search of our IRB-approved airway database. At the time of diagnostic bronchoscopy, all 6 patients had grade 2 subglottic stenosis. All patients were Keywords: treated for reflux and underwent esophageal biopsies at the time of diagnostic bronchoscopy; 1 patient Laryngotracheal reconstruction had eosinophilic esophagitis which was treated. All patients had a history of at least 3 episodes of croup Recurrent croup in a 1 year period requiring multiple hospital admissions.
    [Show full text]
  • Diagnostic Issues in Systemic Lupus Erythematosis
    266 Postgrad Med J 2001;77:266–285 Postgrad Med J: first published as 10.1136/pmj.77.906.268 on 1 April 2001. Downloaded from SELF ASSESSMENT QUESTIONS Diagnostic issues in systemic lupus erythematosis N Sofat, C Higgens Answers on p 274. A 24 year old woman was diagnosed with sys- (4) What other tests (apart from 24 hour urine temic lupus erythematosis (SLE) based on a creatinine clearance) are available to measure few months’ history of a photosensitive skin the glomerular filtration rate? rash, predominantly on her face, arthralgia The patient had a 24 hour urinary protein col- involving both hands and wrists, a positive lection, which showed a 24 hour protein measure- antinuclear antibody (ANA) test and a raised ment of 1.8 g. There was no evidence of cellular antinative double stranded DNA antibody casts on urine microscopy. Her blood results were binding level. She was treated with oral as below (normal values are in parentheses): hydroxychloroquine 400 mg daily and short x Sodium 134 mmol/l (135–145) courses of prednisolone during flare-ups. x Potassium 4.5 mmol/l (3.5–5.0) She was reviewed in clinic for her regular x Urea 7.0 mmol/l (2.5–6.7) follow up appointment when she was found to x Creatinine 173 µmol/l (70–115) be hypertensive on repeated measurements of x Haemoglobin 108 g/l (115–160) her blood pressure, an average value being x White cell count 4.5 × 109/l (4.0–11.0) 150/90 mm Hg. She was also urine dipstick x Platelets 130 × 109/l (150–400) positive for blood and protein.
    [Show full text]
  • Pulmonary Manifestations of Collagen Vascular Diseases
    July 2009; Volume 3(1) Review Article Pulmonary Manifestations of Collagen Vascular Diseases C. P. Dokwal1 The collagen vascular diseases (CVDs) include a patients with long-standing SLE in the past 5, however recent heterogeneous group of chronic inflammatory HRCT series reveal that about 1/3rd of patients with SLE immunologically-mediated systemic diseases, such as have ILD, most having early sub clinical disease.6 It usually rheumatoid arthritis (RA), systemic lupus erythematosus develops insidiously and is associated with recurrent pleural (SLE), systemic sclerosis (SSc), Sjogren's syndrome (SS), effusions. polymyositis (PM)/dermatomyositis (DM), and mixed Chest radiographs typically show diffuse alveolar opacities. connective tissue disease (MCTD). They present with a wide HRCT of chest often reveals a cellular, fibrotic, or mixed non- range of clinical manifestations. The clinical features in specific interstitial pneumonia (NSIP) pattern.7 Usual CVDs frequently overlap causing much clinical confusion. interstitial pneumonia (UIP) and lymphoid pneumonia (LIP), The lung is frequently affected in CVDs and is the cause of particularly in those with associated secondary Sjogren's significant morbidity and mortality. The common pulmonary syndrome, have also been described.7, 8 Rarely, organizing manifestations include pleural disease, pulmonary fibrosis, pneumonia has also been reported. bronchiolitis obliterans, obliterans, organizing pneumonia, Diffuse Alveolar Haemorrhage bronchiectasis, aspiration pneumonia, and diaphragmatic weakness.
    [Show full text]
  • Left Bronchial with Bronchomalacia, Intractable Wheeze
    Thorax 1991;46:459-461 459 heart disease.7 This report describes a boy Left bronchial who had had intractable wheezing from infancy as a result of widespread discrete areas isomerism associated of bronchomalacia without bronchiectasis, Thorax: first published as 10.1136/thx.46.6.459 on 1 June 1991. Downloaded from and who also had some minor congenital with bronchomalacia, malformations and a rare combination of bronchial, atrial, and abdominal anatomical presenting with arrangements. We report this case because of the unusual anatomy and other congenital intractable wheeze malformations, and to emphasise the care needed in assessing wheezy children. Philip Lee, Andrew Bush, John 0 Warner Case report This 12 year old boy was referred as a case of steroid resistant asthma. He had had recurrent episodes of coughing and noisy breathing from the age of 5 months, usually precipitated by an upper respiratory infection. At 22 months a Abstract murmur was noted during an episode of right The cause of the Williams Campbell syn- lower lobe pneumonia, and he subsequently drome (bronchomalacia with bronchi- underwent ligation ofa patent arterial duct. He ectasis) is controversial. A boy with subsequently developed wheezing in the early bronchomalacia, bifid ribs, and left bron- morning, a chronic cough, and breathlessness chial isomerism presented with intract- on minimal exertion, despite inhaling sal- able wheeze mimicking asthma. The butamol and beclomethasone. A trial of oral combination of the abdominal, bron- prednisolone, 30 mg daily for one week, failed chial, and atrial anatomy seen in this to improve his symptoms. The only physical child has been described only once finding of note was widespread inspiratory and previously.
    [Show full text]
  • The Diseases of Airway-Tracheal Diverticulum: a Review of the Literature
    Review Article The diseases of airway-tracheal diverticulum: a review of the literature Asli Tanrivermis Sayit, Muzaffer Elmali, Dilek Saglam, Cetin Celenk Department of Radiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey Contributions: (I) Conception and design: A Tanrivermis Sayit; (II) Administrative support: M Elmali, C Celenk; (III) Provision of study materials or patients: A Tanrivermis Sayit; (IV) Collection and assembly of data: A Tanrivermis Sayit, D Saglam; (V) Data analysis and interpretation: A Tanrivermis Sayit, M Elmali, C Celenk; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Asli Tanrivermis Sayit. Department of Radiology, Faculty of Medicine, Ondokuz Mayis University, 55139, Atakum/Samsun, Turkey. Email: [email protected]. Abstract: Tracheal diverticulum (DV) is a type of paratracheal air cyst (PTAC) that is often asymptomatic and usually detected incidentally by imaging methods. Tracheal DV are divided into two subgroups: congenital and acquired. Dysphagia, odynophagia, neck pain, hoarseness, hemoptysis, choking, and recurrent episodes of hiccups and burping can also be seen in symptomatic patients. Thin-section multidetector computed tomography (MDCT) is useful for diagnosis of tracheal diverticulum. The relationship between DV and tracheal lumen can be demonstrated by axial, coronal, and sagittal reformat multiplanar images. Bronchoscopy can also be used in diagnosis for tracheal DV. However, the connection between DV and tracheal lumen can not be shown easily with bronchoscopy. Conservative treatment is the preferred treatment in asymptomatic patients. Surgical or conservative treatment can be performed for symptomatic patients, depending on patient age and physical condition. Keywords: Trachea; diverticulum (DV); thorax; multidetector computed tomography; tracheal diseases; chronic obstructive pulmonary disease (CODP) Submitted Sep 17, 2016.
    [Show full text]
  • Revision Tracheobronchoplasty: Case Report
    4 Case Report Page 1 of 4 Revision tracheobronchoplasty: case report Ammara A. Watkins, Jennifer L. Wilson, Mihir Parikh, Adnan Majid, Sidhu P. Gangadharan Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess, Harvard Medical School, Boston, MA, USA Correspondence to: Sidhu P. Gangadharan, MD. Chief, Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, 185 Pilgrim Rd. W/DC 201 Boston, MA 02215, USA. Email: [email protected]. Abstract: Tracheobronchoplasty, or posterior splinting of the airway with mesh, is a durable solution for patients with severe tracheobronchomalacia (TBM). Recurrent symptoms of TBM following tracheobronchoplasty are uncommon; however, when they occur can have significant impact on quality of life. Appropriate management of recurrent TBM requires a systematic and multidisciplinary collaborative approach. We present a patient with postoperative symptom recurrence requiring revisional tracheobronchoplasty to highlight the complexity of the disease’s presentation, workup and treatment. Keywords: Reoperative; revision; tracheobronchoplasty; tracheobronchomalacia (TBM); case report Received: 06 October 2019; Accepted: 18 December 2019; Published: 25 November 2020. doi: 10.21037/ccts.2019.12.14 View this article at: http://dx.doi.org/10.21037/ccts.2019.12.14 Introduction her tracheobronchoplasty she reported recurrent wheezing, cough and shortness of breath. By four years following Tracheobronchomalacia is an increasingly recognized her operation, the progressive symptoms considerably abnormality of the central airway that can cause dyspnea, impacted her quality of life. She was unable to walk 2 cough, recurrent respiratory infections and respiratory blocks without shortness of breath and had been admitted insufficiency (1,2). The hallmark of the disease is expiratory at least six times in the past year due to respiratory distress.
    [Show full text]
  • [Intrinsic] Tracheomalacia in Children
    Interventions for primary (intrinsic) tracheomalacia in children (Review) Masters IB, Chang AB This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2005, Issue 4 http://www.thecochranelibrary.com Interventions for primary (intrinsic) tracheomalacia in children (Review) Copyright © 2008 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 BACKGROUND .................................... 2 OBJECTIVES ..................................... 3 METHODS ...................................... 3 RESULTS....................................... 5 DISCUSSION ..................................... 5 AUTHORS’CONCLUSIONS . 6 ACKNOWLEDGEMENTS . 6 REFERENCES ..................................... 6 CHARACTERISTICSOFSTUDIES . 7 DATAANDANALYSES. 9 ADDITIONALTABLES. 9 WHAT’SNEW..................................... 9 HISTORY....................................... 10 CONTRIBUTIONSOFAUTHORS . 10 DECLARATIONSOFINTEREST . 10 SOURCESOFSUPPORT . 10 INDEXTERMS .................................... 10 Interventions for primary (intrinsic) tracheomalacia in children (Review) i Copyright © 2008 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. [Intervention Review] Interventions for primary (intrinsic) tracheomalacia in children I Brent Masters1, Anne B Chang2 1Respiratory Medicine, Royal Children’s Hospital, Brisbane, Australia.
    [Show full text]
  • ERS Statement on Tracheomalacia and Bronchomalacia in Children
    ERS OFFICIAL DOCUMENT ERS STATEMENT ERS statement on tracheomalacia and bronchomalacia in children Colin Wallis1,EfthymiaAlexopoulou2,JuanL.Antón-Pacheco3,JayeshM.Bhatt 4, Andrew Bush5,AnneB.Chang6,7,8,Anne-MarieCharatsi9, Courtney Coleman10, Julie Depiazzi11, Konstantinos Douros12,ErnstEber13,MarkEverard14, Ahmed Kantar15,IanB.Masters6,7,FabioMidulla16, Raffaella Nenna 16,17, Derek Roebuck18, Deborah Snijders19 and Kostas Priftis12 @ERSpublications This statement provides a comprehensive review of the causes, presentation, recognition and management of children with tracheobronchomalacia written by a multidisciplinary Task Force in keeping with ERS methodology http://bit.ly/2LPTQCk Cite this article as: Wallis C, Alexopoulou E, Antón-Pacheco JL, et al. ERS statement on tracheomalacia and bronchomalacia in children. Eur Respir J 2019; 54: 1900382 [https://doi.org/10.1183/13993003.00382- 2019]. ABSTRACT Tracheomalacia and tracheobronchomalacia may be primary abnormalities of the large airways or associated with a wide variety of congenital and acquired conditions. The evidence on diagnosis, classification and management is scant. There is no universally accepted classification of severity. Clinical presentation includes early-onset stridor or fixed wheeze, recurrent infections, brassy cough and even near-death attacks, depending on the site and severity of the lesion. Diagnosis is usually made by flexible bronchoscopy in a free-breathing child but may also be shown by other dynamic imaging techniques such as low-contrast volume bronchography, computed tomography or magnetic resonance imaging. Lung function testing can provide supportive evidence but is not diagnostic. Management may be medical or surgical, depending on the nature and severity of the lesions, but the evidence base for any therapy is limited. While medical options that include bronchodilators, anti-muscarinic agents, mucolytics and antibiotics (as well as treatment of comorbidities and associated conditions) are used, there is currently little evidence for benefit.
    [Show full text]
  • Respiratory Complications and Goldenhar Syndrome
    breathe case presentations.qxd 06/03/2007 17:56 Page 15 CASE PRESENTATION Respiratory complications and Goldenhar syndrome Case report W. Jacobs1 A 29-year-old female was referred to hospital A. Vonk Noordegraaf1 with progressive asthmatic complaints. On pre- R.P. Golding2 sentation, the patient had been experiencing J.G. van den Aardweg3 orthopnoea, an audible wheeze during daily P.E. Postmus1 activities, and sporadic coughing without spu- tum production. The patient had a history of recurrent airway infections and a 5-kg weight Depts of 1Pulmonary Medicine loss during the previous year, and had stopped and 2Radiology, Vrije Universiteit smoking several years before. She was known to Medisch Centrum, Amsterdam, have oculo-auriculo-vertebral (OAV) syndrome, and 3Dept of Pulmonary i.e. Goldenhar syndrome, which is a develop- Medicine, Medisch Centrum mental disorder involving mainly first and sec- Alkmaar, The Netherlands. ond branchial arch anomalies. On physical examination, she was not dys- pnoeic at rest, and had a respiratory rate of Correspondence: -1 -1 14 breaths·min , pulse 80 beats·min , blood W. Jacobs pressure 110/70 mmHg and temperature Dept of Pulmonary Medicine Figure 1 37.9°C. The left hemifacial structures and the Vrije Universiteit Medisch Centrum Postero-anterior chest radiograph. left hemithorax were underdeveloped. A chest Postbus 7057 examination revealed a systolic heart murmur 1007 MB Amsterdam grade 2/6 over the apex, and inspiratory and The Netherlands expiratory wheezing over both lungs. There was Task 1 Fax: 31 204444328 E-mail: [email protected] no oedema or clubbing. Arterial blood gas analy- Interpret the chest radiograph.
    [Show full text]
  • Tracheobronchomegaly
    Thorax: first published as 10.1136/thx.23.3.320 on 1 May 1968. Downloaded from Thorax (1968), 23, 320. Tracheobronchomegaly ZAKI AL-MALLAH1 AND 0. P. QUANTOCK From the University of Mosul, Iraq, and Sully Hospital, Wales Two cases of the rare condition of tracheobronchomegaly are reported. They occurred in people of completely different racial origin and residence. They showed the characteristic features of this condition-loud, rasping, prolonged, remarkably ineffective cough, abnormally wide trachea and major bronchi, laxity of the cartilaginous rings and membranous part of these airways demonstrable on straight chest radiographs and bronchoscopy and confirmed at bronchography. Evidence is submitted of congenital aetiology. Tracheobronchomegaly is a rare congenital apparently healthy young man with no finger club- abnormality with marked widening of the trachea bing. There were scattered wheezes and bilateral basal and major bronchi, in most cases associated with crepitations, mainly anteriorly. No abnormality was chronic recurrent respiratory tract infection. This detected in any other system. The tuberculin test (100 T.U.) was negative and a chest radiograph rare syndrome was first described by Mounier- showed small nodular opacities in the right lung: Kuhn in 1932, but was then given different names these subsequently cleared. Bronchoscopy showed until Katz, LeVine, and Herman (1962), in an reddening and oedema of the mucosa which was excellent review, clearly defined this entity and covered with thick, mucopurulent secretions. No suggested the name tracheobronchomegaly. We intrinsic lesion was seen in the tracheobronchial have been unable to find a report of this syndrome passages, but an abnormal mobility of the posterior http://thorax.bmj.com/ in the British literature and are therefore present- tracheal wall was noted.
    [Show full text]
  • Series of Laryngomalacia, Tracheomalacia, and Bronchomalacia Disorders and Their Associations with Other Conditions in Children
    Pediatric Pulmonology 34:189-195 (2002) Series of Laryngomalacia, Tracheomalacia, and Bronchomalacia Disorders and Their Associations With Other Conditions in Children I.B. Masters, MBBS, FRACP,1* A.B. Chang, PhD, FRACP,2 L. Patterson, MBBS, FANZCAC,1 С Wainwright, MD, FRACP,1 H. Buntain, MBBS,1 B.W. Dean, MSC,1 and P.W. Francis, MD, FRACP1 Summary. Laryngomalacia, bronchomalacia, and tracheomalacia are commonly seen in pediatric respiratory medicine, yet their patterns and associations with other conditions are not well-understood. We prospectively video-recorded bronchoscopic data and clinical information from referred patients over a 10-year period and defined aspects of interrelationships and associations. Two hundred and ninety-nine cases of malacia disorders (34%) were observed in 885 bronchoscopic procedures. Cough, wheeze, stridor, and radiological changes were the most common symptoms and signs. The lesions were most often found in males (2:1) and on the left side (1.6:1). Concomitant malacia lesions ranged from 24%forlaryngotracheobronchomalaciato 47% for tracheobronchomalacia. The lesions were found in association with other disorders such as congenital heart disorders (13.7%), tracheo-esophageal fistula (9.6%), and various syndromes (8%). Even though the understanding of these disorders is in its infancy, pediatricians should maintain a level of awareness for malacia lesions and consider the possibility of multiple lesions being present, even when one symptom predominates or occurs alone. Pediatr Pulmonol Pediatr Pulmonol. 2002; 34:189-195. © 2002 wiiey-Liss. inc. Key words: laryngomalacia; tracheomalacia; bronchomalacia; malacia disorders; syndromes. INTRODUCTION The aim of this report is to describe an extensive experience of various forms of laryngomalacia, tracheo­ Tracheomalacia, bronchomalacia, and laryngomalacia malacia, and bronchomalacia and explore some of the disorders are commonly seen in tertiary pediatric respira­ interrelationships that exist between these conditions with tory practice.
    [Show full text]