Imaging of the Trachea
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quick Review: Surgical Anatomy of Trachea Tracheal Ligament
Quick Review: Surgical Anatomy of Trachea tracheal ligament. This attachment makes the larynx move up and down along with the larynx during respiration and swallowing. The length of trachea can be correctly gauzed by measuring the exact distance between lower border of cricoid cartilage and apex of the bifurcation angle (Perelman 1972). It varies with age (Allen, M S 2003). Langova (1946) measured the length of the trachea in 390 cadavers ranging in age from six months of intra-uterine life to twenty years and found that it was 3.1 cm on an average in the newborn, 6 cm in a five year old child, 7 cm at the age of ten and 8.5 cm at the age of 15 years. In adults the length of trachea varies widely from 8.5 to 15 cm. Tehmina Begum et al (2009) measured the length of trachea in adult males in the age range of 20 to 58 years. The mean lengths of the "Larynx, Trachea, and the Bronchi. (Front view.) A, epiglottis; B, thyroid cartilage; C, cricothyroid membrane, trachea were 8.73 ± 0.21 cm in 20-29 years age connecting with the cricoid cartilage below, all forming the Group, 9.53 ±0.46 cm in 30-39 years age larynx; D, rings of the trachea." — Blaisedell, 1904. Source: Group, 9.63 ± 0.23 cm in 40 - 49 years age http://etc.usf.edu/clipart/15400/15499/trachea_15499_lg.gif group & 9.79 ± 0.39 cm in 50-59 years age group. On an average the length of trachea in an The trachea connects the larynx with main adult male is 11 cm and 10 cm in female. -
Posterior Glottic Stenosis in Adults
Original Articles Posterior Glottic Stenosis in Adults Michael Wolf MD, Adi Primov-Fever MD, Yoav P. Talmi MD FACS and Jona Kronenberg MD Department of Otorhinolaryngology & Head Neck Surgery, Sheba Medical Center, Tel Hashomer, Israel Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel Key words: larynx, vocal cords, stenosis, fixation, laryngoplasty Abstract entiation between vocal cord paralysis and fixation [3,4], although Background: Posterior glottic stenosis is a complication of some patients survived complex central nervous system and prolonged intubation, manifesting as airway stenosis that may mimic peripheral organ injuries, long courses of mechanical ventilation, bilateral vocal cord paralysis. It presents a variety of features that oral or nasal intubation, and nasogastric tubing. These may result mandate specific surgical interventions. in combined pathologies of both paralysis and fixation, or they Objectives: To summarize our experience with PSG and its working diagnosis. may mask the alleged simplicity of making a diagnosis based Methods: We conducted a retrospective review of a cohort of solely on clinical grounds. The extent of scarring dictates the adult patients with PGS operated at the Sheba Medical Center extent of surgical intervention. While endoscopic lysis of the scar between 1994 and 2006. is appropriate for grade 1, complex laryngoplasty procedures are Results: Ten patients were diagnosed with PGS, 6 of whom mandated for grades 2 to 4 [3]. also had stenosis at other sites of -
Diagnostic Issues in Systemic Lupus Erythematosis
266 Postgrad Med J 2001;77:266–285 Postgrad Med J: first published as 10.1136/pmj.77.906.268 on 1 April 2001. Downloaded from SELF ASSESSMENT QUESTIONS Diagnostic issues in systemic lupus erythematosis N Sofat, C Higgens Answers on p 274. A 24 year old woman was diagnosed with sys- (4) What other tests (apart from 24 hour urine temic lupus erythematosis (SLE) based on a creatinine clearance) are available to measure few months’ history of a photosensitive skin the glomerular filtration rate? rash, predominantly on her face, arthralgia The patient had a 24 hour urinary protein col- involving both hands and wrists, a positive lection, which showed a 24 hour protein measure- antinuclear antibody (ANA) test and a raised ment of 1.8 g. There was no evidence of cellular antinative double stranded DNA antibody casts on urine microscopy. Her blood results were binding level. She was treated with oral as below (normal values are in parentheses): hydroxychloroquine 400 mg daily and short x Sodium 134 mmol/l (135–145) courses of prednisolone during flare-ups. x Potassium 4.5 mmol/l (3.5–5.0) She was reviewed in clinic for her regular x Urea 7.0 mmol/l (2.5–6.7) follow up appointment when she was found to x Creatinine 173 µmol/l (70–115) be hypertensive on repeated measurements of x Haemoglobin 108 g/l (115–160) her blood pressure, an average value being x White cell count 4.5 × 109/l (4.0–11.0) 150/90 mm Hg. She was also urine dipstick x Platelets 130 × 109/l (150–400) positive for blood and protein. -
TB: Recognizing It on a Chest X-Ray
TB: Recognizing it on a Chest X‐Ray Disclosures • Grant support from Michigan Department of Community Health – Despite conflict of interest I still want to: – There’s enough TB for job security. Objectives • You will – Be able to identify major structures on a normal chest x‐ray – Identify and correctly name CXR abnormalities seen commonly in TB – Recognize chest x‐ray patterns that suggest TB & when you find them you will Basics of Diagnostic X‐ray Physics • X‐rays are directed at the . patient and variably absorbed – When not absorbed • Pass through patient & strike the x‐ray film or – When completely absorbed • Don’t strike x‐ray film or – When scattered • Some strike the x‐ray film Absorption Shade / Density • Absorption depends • Whitest = Most Dense on the – Metal – Energy of the x‐ray beam – Contrast material (dye) – Density of the tissue – Calcium – Bone – Water – Soft Tissue – Fat – Air / Gas • Blackest = Least Dense Normal Frontal Chest X‐ray: Posterior Anterior Note silhouette formed by • lung adjacent to heart • lung adjacent to diaphragm Silhouette Sign Lifeinthefastlane.com Normal Lateral Chest X‐ray Normal PA & Lateral X‐ray: Hilum Hilum –Major bronchi, Pulmonary veins & arteries, Lymph nodes at the root of the lung. Normal PA & Lateral X‐ray: Mediastinum Mediastinum –Central chest organs (not lungs) – Heart, Aorta, Trachea, Thymus, Esophagus, Lymph nodes, Nerves (Between 2 pleuras or linings of the lungs) Normal PA & Lateral X‐ray: Apex • Apex of lung – Area of lung above the level of the anterior end of the 1st rib Wink -
The Diseases of Airway-Tracheal Diverticulum: a Review of the Literature
Review Article The diseases of airway-tracheal diverticulum: a review of the literature Asli Tanrivermis Sayit, Muzaffer Elmali, Dilek Saglam, Cetin Celenk Department of Radiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey Contributions: (I) Conception and design: A Tanrivermis Sayit; (II) Administrative support: M Elmali, C Celenk; (III) Provision of study materials or patients: A Tanrivermis Sayit; (IV) Collection and assembly of data: A Tanrivermis Sayit, D Saglam; (V) Data analysis and interpretation: A Tanrivermis Sayit, M Elmali, C Celenk; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Asli Tanrivermis Sayit. Department of Radiology, Faculty of Medicine, Ondokuz Mayis University, 55139, Atakum/Samsun, Turkey. Email: [email protected]. Abstract: Tracheal diverticulum (DV) is a type of paratracheal air cyst (PTAC) that is often asymptomatic and usually detected incidentally by imaging methods. Tracheal DV are divided into two subgroups: congenital and acquired. Dysphagia, odynophagia, neck pain, hoarseness, hemoptysis, choking, and recurrent episodes of hiccups and burping can also be seen in symptomatic patients. Thin-section multidetector computed tomography (MDCT) is useful for diagnosis of tracheal diverticulum. The relationship between DV and tracheal lumen can be demonstrated by axial, coronal, and sagittal reformat multiplanar images. Bronchoscopy can also be used in diagnosis for tracheal DV. However, the connection between DV and tracheal lumen can not be shown easily with bronchoscopy. Conservative treatment is the preferred treatment in asymptomatic patients. Surgical or conservative treatment can be performed for symptomatic patients, depending on patient age and physical condition. Keywords: Trachea; diverticulum (DV); thorax; multidetector computed tomography; tracheal diseases; chronic obstructive pulmonary disease (CODP) Submitted Sep 17, 2016. -
Medical Term for Throat
Medical Term For Throat Quintin splined aerially. Tobias griddles unfashionably. Unfuelled and ordinate Thorvald undervalues her spurges disroots or sneck acrobatically. Contact Us WebsiteEmail Terms any Use Medical Advice Disclaimer Privacy. The medical term for this disguise is called formication and it been quite common. How Much sun an Uvulectomy in office Cost on Me MDsave. The medical term for eardrum is tympanic membrane The direct ear is. Your throat includes your esophagus windpipe trachea voice box larynx tonsils and epiglottis. Burning mouth syndrome is the medical term for a sequence-lastingand sometimes very severeburning sensation in throat tongue lips gums palate or source over the. Globus sensation can sometimes called globus pharyngeus pharyngeus refers to the sock in medical terms It used to be called globus. Other medical afflictions associated with the pharynx include tonsillitis cancer. Neil Van Leeuwen Layton ENT Doctor Tanner Clinic. When we offer a throat medical conditions that this inflammation and cutlery, alcohol consumption for air that? Medical Terminology Anatomy and Physiology. Empiric treatment of the lining of the larynx and ask and throat cancer that can cause nasal cavity cancer risk of the term throat muscles. MEDICAL TERMINOLOGY. Throat then Head wrap neck cancers Cancer Research UK. Long term monitoring this exercise include regular examinations and. Long-term a frequent exposure to smoke damage cause persistent pharyngitis. Pharynx Greek throat cone-shaped passageway leading from another oral and. WHAT people EXPECT ON anything LONG-TERM BASIS AFTER A LARYNGECTOMY. Sensation and in one of causes to write the term for throat medical knowledge. The throat pharynx and larynx is white ring-like muscular tube that acts as the passageway for special food and prohibit It is located behind my nose close mouth and connects the form oral tongue and silk to the breathing passages trachea windpipe and lungs and the esophagus eating tube. -
Cholinergic Chemosensory Cells in the Trachea Regulate Breathing
Cholinergic chemosensory cells in the trachea regulate breathing Gabriela Krastevaa,1, Brendan J. Canningb, Petra Hartmanna, Tibor Z. Veresc, Tamara Papadakisa, Christian Mühlfelda, Kirstin Schlieckera, Yvonne N. Tallinid, Armin Braunc, Holger Hacksteine, Nelli Baale, Eberhard Weihef, Burkhard Schützf, Michael Kotlikoffd, Ines Ibanez-Tallong, and Wolfgang Kummera aInstitute of Anatomy and Cell Biology and eInstitute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University, Giessen D-35385, Germany; bJohns Hopkins Asthma and Allergy Center, Baltimore, MD 21224; cFraunhofer Institute for Toxicology and Experimental Medicine, Hannover D-30625, Germany; dDepartment of Biomedical Sciences, College of Veterinary Medicine, Ithaca, NY 14853; fInstitute for Anatomy and Cell Biology, Philipps-University Marburg, D-35037 Marburg, Germany; and gMax-Delbrück-Centre for Molecular Medicine, Berlin D-13092, Germany Edited* by Ewald R. Weibel, University of Bern, Bern, Switzerland, and approved May 2, 2011 (received for review December 23, 2010) In the epithelium of the lower airways, a cell type of unknown two independently generated mouse strains with knockin of eGFP function has been termed “brush cell” because of a distinctive ul- within a BAC spanning the ChAT locus (10, 11). The average trastructural feature, an apical tuft of microvilli. Morphologically number of these cells in a mouse trachea was 6242 ± 989 with similar cells in the nose have been identified as solitary chemosen- approximately twice as many cells located above noncartilagenous sory cells responding to taste stimuli and triggering trigeminal regions (4,065 ± 640 cells) than in epithelial stretches overlaying reflexes. Here we show that brush cells of the mouse trachea ex- cartilage rings (2,177 ± 550 cells) (Fig. -
Rupture of the Trachea and Bronchi by Closed Injury
Thorax: first published as 10.1136/thx.21.1.21 on 1 January 1966. Downloaded from Thorax (1966), 21, 21. Rupture of the trachea and bronchi by closed injury J. T. CHESTERMAN AND P. N. SATSANGI From the Thoracic Surgical Unit, City General Hospital, Sheffield This paper has three objects: (1) A brief clinical TABLE Il review of the subject; (2) an attempt to assess ASSOCIATED INJURIES (PATIENTS REACHING HOSPITAL the functional results of conservative surgery; ALIVE) and (3) a discussion on the mechanism of rupture. None .. .. .. .. .. .. 50% It is based on some 200 cases which have been Fractures Chest wall .... 33% reported in Western European languages, but so Pelvis and long bones 12% Head injury. 5% many records are incomplete that precise statistics Spinal, oesophageal, abdominal Rare Pulmonary vascular injury...Doubtful if it occurs are difficult to obtain. Bronchial vascular injury.25% (probable cause ofhaemoptysis and haemo- thorax) BRIEF CLINICAL REVIEW Rupture of lung Rare Tables I to V give an overall picture of the present position. patients and possibly to the poor quality of many copyright. radiographs. Fracture of one or more of the first COMMENTS ON TABLE I three ribs in a patient over 30 is very suggestive 1. There is a preponderance of males under 40 of the possibility of rupture of the air passages, affected. and if rupture is present with fracture of the ribs 2. The injury practically always involves diffuse then one or more of the first five ribs are involved. http://thorax.bmj.com/ antero-posterior compression of the chest. 3. Rupture of the lung is rare since it is pro- 3. -
Tracheobronchomegaly
Thorax: first published as 10.1136/thx.23.3.320 on 1 May 1968. Downloaded from Thorax (1968), 23, 320. Tracheobronchomegaly ZAKI AL-MALLAH1 AND 0. P. QUANTOCK From the University of Mosul, Iraq, and Sully Hospital, Wales Two cases of the rare condition of tracheobronchomegaly are reported. They occurred in people of completely different racial origin and residence. They showed the characteristic features of this condition-loud, rasping, prolonged, remarkably ineffective cough, abnormally wide trachea and major bronchi, laxity of the cartilaginous rings and membranous part of these airways demonstrable on straight chest radiographs and bronchoscopy and confirmed at bronchography. Evidence is submitted of congenital aetiology. Tracheobronchomegaly is a rare congenital apparently healthy young man with no finger club- abnormality with marked widening of the trachea bing. There were scattered wheezes and bilateral basal and major bronchi, in most cases associated with crepitations, mainly anteriorly. No abnormality was chronic recurrent respiratory tract infection. This detected in any other system. The tuberculin test (100 T.U.) was negative and a chest radiograph rare syndrome was first described by Mounier- showed small nodular opacities in the right lung: Kuhn in 1932, but was then given different names these subsequently cleared. Bronchoscopy showed until Katz, LeVine, and Herman (1962), in an reddening and oedema of the mucosa which was excellent review, clearly defined this entity and covered with thick, mucopurulent secretions. No suggested the name tracheobronchomegaly. We intrinsic lesion was seen in the tracheobronchial have been unable to find a report of this syndrome passages, but an abnormal mobility of the posterior http://thorax.bmj.com/ in the British literature and are therefore present- tracheal wall was noted. -
THE 6 MAJOR BODY SYSTEMS and How They Interact with Each Other to Keep the “Body Machine” Alive and Working Well
THE 6 MAJOR BODY SYSTEMS And how they interact with each other to keep the “body machine” alive and working well. CIRCULATORY SYSTEM / CARDIOVASCULAR SYSTEM PRIMARY PURPOSE: transport blood throughout the body by circulating PRIMARY ORGANS/PARTS: Heart, blood vessels (arteries, veins, capillaries) (1) Transports/carries nutrients and oxygen through the blood to most parts of the body (2) Transports/carries waste in cells and carbon-dioxide (CO2) away from the parts: (a) Cell waste goes to the kidneys for filter and disposal (b) Carbon-dioxide (CO2) goes to the lungs to exhale (breathe out) Kidneys and Lungs have a close relationship with Cardiovascular system Kidneys: filter through blood to take out the waste and get it eventually out of the body Lungs: breathes in oxygen and gives it to the blood for Circulatory system to carry throughout the body; and takes unneeded carbon-dioxide (CO2) from the blood and breathes that out. Circulatory/Cardiovascular System through the blood to most parts of the body provides nutrients and oxygen which is needed for our bodies to have ENERGY! RESPIRATORY SYSTEM PRIMARY PURPOSE: Breathing - taking in Oxygen, pushing out Carbon-Dioxide (CO2) PRIMARY ORGANS: Lungs, trachea (tube going from lungs to nose/mouth) (1) Inhales (breathes in) Oxygen - good for the body - gives it to the Circulatory System to be transported throughout the body through the blood. (2) Exhales (breathes out) Carbon-Dioxide (CO2) - lungs get this gas from the blood (Circ. Sys.) and pushes it out of the body DIGESTIVE SYSTEM PRIMARY PURPOSE: take in food; break down food into nutrients (good) and waste (unneeded) PRIMARY ORGANS: Stomach, large and small intestines, esophagus (tube from stomach to mouth) (1) Digestive System gets nutrients (good) from food and hands it over to the blood and Circulatory System then carries those nutrients where they need to go. -
Tracheobronchomalacia and Excessive Dynamic Airway Collapse
Blackwell Publishing AsiaMelbourne, AustraliaRESRespirology1323-77992006 Blackwell Publishing Asia Pty Ltd? 2006114388406Review ArticleTBM and EDACSD Murgu and HG Colt Respirology (2006) 11, 388–406 doi: 10.1111/j.1400-1843.2006.00862.x REVIEW ARTICLE Tracheobronchomalacia and excessive dynamic airway collapse Septimiu D. MURGU AND Henri G. COLT Pulmonary and Critical Care Medicine, Department of Medicine, University of California School of Medicine, Irvine, CA, USA Tracheobronchomalacia and excessive dynamic airway collapse MURGU SD, COLT HG. Respirology 2006; 11: 388–406 Abstract: Tracheobronchomalacia and excessive dynamic airway collapse are two separate forms of dynamic central airway obstruction that may or may not coexist. These entities are increasingly recognized as asthma and COPD imitators. The understanding of these disease processes, however, has been compromised over the years because of uncertainties regarding their definitions, patho- genesis and aetiology. To date, there is no standardized classification, diagnosis or management algorithm. In this article we comprehensively review the aetiology, morphopathology, physiology, diagnosis and treatment of these entities. Key words: airflow dynamics, bronchomalacia, excessive dynamic airway collapse, tracheobron- chomalacia, tracheomalacia. INTRODUCTION first is that most published studies are case series and retrospective descriptions, many of which report a The purpose of this systematic review is to clarify con- single investigator’s experience with diagnosis and founding issues pertaining to the definition, patho- management. In fact, it is puzzling that despite the physiology, histopathology, aetiology, diagnosis, relative frequency with which TBM and EDAC are pre- classification and treatment of acquired and idio- sumably encountered, multi-institutional or prospec- pathic forms of adult tracheobronchomalacia (TBM) tive studies have not been published. -
Idiopathic Subglottic Stenosis: a Review
1111 Editorial Section of Interventional Pulmonology Idiopathic subglottic stenosis: a review Carlos Aravena1,2, Francisco A. Almeida1, Sanjay Mukhopadhyay3, Subha Ghosh4, Robert R. Lorenz5, Sudish C. Murthy6, Atul C. Mehta1 1Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA; 2Department of Respiratory Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; 3Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, 4Department of Diagnostic Radiology, 5Head and Neck Institute, 6Department of Thoracic and Cardiovascular Surgery, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA Contributions: (I) Conception and design: C Aravena, AC Mehta; (II) Administrative support: All authors; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: C Aravena, AC Mehta; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Atul C. Mehta, MD, FCCP. Lerner College of Medicine, Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, 9500 Euclid Ave, A-90, Cleveland, OH 44195, USA. Email: [email protected]. Abstract: Idiopathic subglottic stenosis (iSGS) is a fibrotic disease of unclear etiology that produces obstruction of the central airway in the anatomic region under the glottis. The diagnosis of this entity is difficult, usually delayed and confounded with other common respiratory diseases. No apparent etiology is identified even after a comprehensive workup that includes a complete history, physical examination, pulmonary function testing, auto-antibodies, imaging studies, and endoscopic procedures. This approach, however, helps to exclude other conditions such as granulomatosis with polyangiitis (GPA). It is also helpful to characterize the lesion and outline management strategies.