Adult Outcome of Congenital Lower Respiratory Tract Malformations M S Zach, E Eber

Total Page:16

File Type:pdf, Size:1020Kb

Adult Outcome of Congenital Lower Respiratory Tract Malformations M S Zach, E Eber 500 Arch Dis Child: first published as 10.1136/adc.87.6.500 on 1 December 2002. Downloaded from PAEDIATRIC ORIGINS OF ADULT LUNG DISEASES Series editors: P Sly, S Stick Adult outcome of congenital lower respiratory tract malformations M S Zach, E Eber ............................................................................................................................. Arch Dis Child 2002;87:500–505 ongenital malformations of the lower respiratory tract relevant studies have shown absence of the normal peristaltic are usually diagnosed and managed in the newborn wave, atonia, and pooling of oesophageal contents.89 Cperiod, in infancy, or in childhood. To what extent The clinical course in the first years after repair of TOF is should the adult pulmonologist be experienced in this often characterised by a high incidence of chronic respiratory predominantly paediatric field? symptoms.910 The most typical of these is a brassy, seal-like There are three ways in which an adult physician may be cough that stems from the residual tracheomalacia. While this confronted with this spectrum of disorders. The most frequent “TOF cough” is both impressive and harmless per se, recurrent type of encounter will be a former paediatric patient, now bronchitis and pneumonitis are also frequently observed.711In reaching adulthood, with the history of a surgically treated rare cases, however, tracheomalacia can be severe enough to respiratory malformation; in some of these patients the early cause life threatening apnoeic spells.712 These respiratory loss of lung tissue raises questions of residual damage and symptoms tend to decrease in both frequency and severity compensatory growth. Secondly, there is an increasing with age, and most patients have few or no respiratory number of children in whom paediatric pulmonologists treat complaints by the time they reach adulthood.13 14 respiratory malformations expectantly; these patients eventu- The entire spectrum of residual respiratory morbidity after ally become adults with their malformation still in place. repair of TOF is not sufficiently explained by tracheomalacia Thirdly, there is a small group of patients in whom the malfor- alone. In many patients the remaining abnormalities of mation goes unrecognised throughout childhood; in these a oesophageal motility cause dysphagia, oesophagitis, and late complication or the coincidental discovery of a radio- gastro-oesophageal reflux, and these problems tend to persist graphic anomaly may demand a late diagnosis and manage- well into adulthood.371314 There seems to be a correlation ment in adulthood. between the frequency of bronchitis and pneumonia, on the All three of these adult presentations will require some one hand, and the severity of dysphagia on the other.13 expertise on the part of the managing physician. The Furthermore, lung function testing in TOF survivors tends to subsequent text reviews the most common “classical” reveal a mildly restrictive respiratory impairment indicating congenital malformations of the lower respiratory tract from additional pathology in the lower respiratory tract.13 14 All this the above three perspectives. suggests that some patients tend to aspirate recurrently after http://adc.bmj.com/ the repair of TOF, and this extends the scope of respiratory 91015 TRACHEO-OESOPHAGEAL FISTULA (TOF) pathology beyond the malformed trachea. Residual Paediatric presentation oesophageal dysfunction offers itself as the most likely cause TOF usually occurs in association with oesophageal atresia; for such recurrent aspiration. Scoliosis, which occasionally occurs in patients who have had a TOF repair, is a non-specific thus, the outcome is invariably fatal unless the anomaly is 16 surgically repaired in the first days of life. The rare “H type” long term consequence of thoracotomy. TOF without oesophageal atresia is an exception to this rule Late presentation on September 23, 2021 by guest. Protected copyright. and may persist into later childhood or even adulthood before 1 TOF without oesophageal atresia is compatible with life and the diagnosis is established. The malformation is explained may go unnoticed for years or even decades. Patients may suf- by the defective progression of a complex system of folds that 2 fer from bouts of coughing after drinking, haemoptysis, retro- separate the foregut into trachea and oesophagus. Approxi- sternal pain and recurrent pneumonitis.1 mately 50% of infants with TOF have associated anomalies, most often involving the urinary, gastrointestinal, and cardiac CYSTIC MALFORMATIONS 34 systems. Paediatric presentation The first successful repair of oesophageal atresia with TOF A spectrum of different, more or less clearly defined, congeni- 5 was reported in 1943 ; since then the surgical and peri- tal malformations can be listed under this heading. They all operative management has improved progressively, achieving have cysts that often (but not necessarily) form a prominent a 100% survival in infants without severe associated part of the lesion. Surgical resection of the malformation is the 3 anomalies. most frequently used therapeutic option. Long term outcome Lung cysts To understand any long term respiratory morbidity after the Also termed “congenital parenchymal cysts”, these lesions are successful repair of TOF and oesophageal atresia, one must a localised malformation of the terminal bronchopulmonary realise that the tracheal structure is more or less abnormal in airway. Depending on their origin, their wall may contain most patients, showing disruption of cartilage rings and a bronchial elements such as cartilage, glands, and smooth concomitant increase in the membranous portion.6 This muscle, or they may be of a more bullous alveolar type.17 results in tracheomalacia of varying severity which persists far beyond the surgical closure of the TOF and occurs in the ............................................................. majority of patients.7 In addition, oesophageal function tends to remain disturbed after the repair of oesophageal atresia; Reproduced in full with permission from Thorax 2001;56:65–72 www.archdischild.com Adult outcome of congenital lower respiratory tract malformations 501 Arch Dis Child: first published as 10.1136/adc.87.6.500 on 1 December 2002. Downloaded from Lung cysts may occur as a single or a multicystic lesion, can lesions tend to develop these infective complications at school contain fluid, air, or both, and may or may not communicate age and adolescence; however, symptoms may also occur in with the bronchial tree.18 The most frequently occurring com- infants and preschool children, as well as in previously plication is infection that may enter via rudimentary commu- asymptomatic adults.27 29 32 In addition, it may be discovered nications from the airways or via collateral channels, and may coincidentally on a chest radiograph taken for another lead to protracted pneumonitis and abscess formation. In reason.19 addition, enlarging cysts may cause compression of the All symptomatic cases of pulmonary sequestration require surrounding tissue resulting in atelectasis and/or recurrent surgery which is usually curative.24 25 29 To avoid vascular com- pneumonia. Rupture of a cyst may lead to pneumothorax.19 plications, accurate preoperative assessment by ultrasonogra- Large lesions may cause symptoms postnatally or in infancy phy, CT scanning with contrast, and/or conventional angio- but others may remain asymptomatic for years or decades and graphy are essential. Some authors have advocated are only diagnosed by chance or when causing late complica- embolisation of the aberrant systemic artery at the time of tions. Diagnostic examination relies on CT scanning; aortogra- catheterisation which, in a few cases, may result in complete phy can be used to rule out an aberrant systemic arterial sup- resolution of symptoms and chest radiographic changes.19 It ply to the lesion, thus distinguishing lung cysts from cystic thus allows the option of expectant management for a while variants of the sequestration spectrum. Surgical resection is and, if surgical resection is subsequently considered necessary, usually recommended, especially if the cysts have already the risk of vascular complications is reduced.33 34 caused some complications.19 Some paediatric pulmonologists will advocate non-surgical management for smaller asympto- Congenital lobar emphysema (CLE) matic lesions diagnosed by chance. CLE is a massive postnatal overinflation of one or more lobes of the lung.19 35 36 Approximately half the cases of CLE involve Cystic adenomatoid malformation (CAM) the left upper lobe and the lesion is less frequently located in CAM is a rare malformation of the non-cartilage-containing the right upper or middle lobe.36 Congenital heart disease is a terminal respiratory structures.19 It consists of cysts and solid common accompaniment of CLE.35 37 The development of CLE airless tissue that, on histological examination, shows is still poorly understood. Strictly speaking, the term “emphy- predominantly bronchiolar elements.20 In the macrocystic type sema” should be based on clearly defined morphological char- one or more large cysts predominate, the more frequently acteristics that are not present in CLE. This has motivated occurring microcystic type consists mostly of small cysts, while some authors to suggest the alternative term “congenital lobar the solid type is a CAM in which a solid airless tissue mass pre- overinflation”25 but this more accurate nomenclature has vails. The
Recommended publications
  • Lung Pathology: Embryologic Abnormalities
    Chapter2C Lung Pathology: Embryologic Abnormalities Content and Objectives Pulmonary Sequestration 2C-3 Chest X-ray Findings in Arteriovenous Malformation of the Great Vein of Galen 2C-7 Situs Inversus Totalis 2C-10 Congenital Cystic Adenomatoid Malformation of the Lung 2C-14 VATER Association 2C-20 Extralobar Sequestration with Congenital Diaphragmatic Hernia: A Complicated Case Study 2C-24 Congenital Chylothorax: A Case Study 2C-37 Continuing Nursing Education Test CNE-1 Objectives: 1. Explain how the diagnosis of pulmonary sequestration is made. 2. Discuss the types of imaging studies used to diagnose AVM of the great vein of Galen. 3. Describe how imaging studies are used to treat AVM. 4. Explain how situs inversus totalis is diagnosed. 5. Discuss the differential diagnosis of congenital cystic adenomatoid malformation. (continued) Neonatal Radiology Basics Lung Pathology: Embryologic Abnormalities 2C-1 6. Describe the diagnosis work-up for VATER association. 7. Explain the three classifications of pulmonary sequestration. 8. Discuss the diagnostic procedures for congenital chylothorax. 2C-2 Lung Pathology: Embryologic Abnormalities Neonatal Radiology Basics Chapter2C Lung Pathology: Embryologic Abnormalities EDITOR Carol Trotter, PhD, RN, NNP-BC Pulmonary Sequestration pulmonary sequestrations is cited as the 1902 theory of Eppinger and Schauenstein.4 The two postulated an accessory he clinician frequently cares for infants who present foregut tracheobronchia budding distal to the normal buds, Twith respiratory distress and/or abnormal chest x-ray with caudal migration giving rise to the sequestered tissue. The findings of undetermined etiology. One of the essential com- type of sequestration, intralobar or extralobar, would depend ponents in the process of patient evaluation is consideration on the timing of the accessory foregut budding (Figure 2C-1).
    [Show full text]
  • Current Management and Outcome of Tracheobronchial Malacia and Stenosis Presenting to the Paediatric Intensive Care Unit
    Intensive Care Med 52001) 27: 722±729 DOI 10.1007/s001340000822 NEONATAL AND PEDIATRIC INTENSIVE CARE David P.Inwald Current management and outcome Derek Roebuck Martin J.Elliott of tracheobronchial malacia and stenosis Quen Mok presenting to the paediatric intensive care unit Abstract Objective: To identify fac- but was not related to any other fac- Received: 10 July 2000 Final Revision received: 14 Oktober 2000 tors associated with mortality and tor. Patients with stenosis required a Accepted: 24 October 2000 prolonged ventilatory requirements significantly longer period of venti- Published online: 16 February 2001 in patients admitted to our paediat- latory support 5median length of Springer-Verlag 2001 ric intensive care unit 5PICU) with ventilation 59 days) than patients tracheobronchial malacia and with malacia 539 days). stenosis diagnosed by dynamic con- Conclusions: Length of ventilation Dr Inwald was supported by the Medical Research Council. This work was jointly trast bronchograms. and bronchographic diagnosis did undertaken in Great Ormond Street Hos- Design: Retrospective review. not predict survival. The only factor pital for Children NHSTrust, which re- Setting: Tertiary paediatric intensive found to contribute significantly to ceived a proportion of its funding from the care unit. mortality was the presence of com- NHSExecutive; the views expressed in this Patients: Forty-eight cases admitted plex cardiac and/or syndromic pa- publication are those of the authors and not to our PICU over a 5-year period in thology. However, patients with necessarily those of the NHSexecutive. whom a diagnosis of tracheobron- stenosis required longer ventilatory chial malacia or stenosis was made support than patients with malacia.
    [Show full text]
  • 427 © Springer Nature Switzerland AG 2020 R. H. Cleveland, E. Y. Lee
    Index A Arterial hypertensive vasculopathy ABCA3 deficiency, 158 imaging features, 194 pathological features, 194 Aberrant coronary artery, 22 Aspergillosis, 413 Acinar dysplasia, 147–150 Aspergillus, 190, 369, 414 Acquired bronchobiliary fistula (aBBF), 79, 80 Aspergillus fumigatus, 110, 358, 359 Acquired immunodeficiency, 191, 192 Aspergillus-related lung disease, 413 Aspiration pneumonia, 136 Acrocyanosis, 1 Aspiration syndromes, 248 Actinomycosis, 109, 110 causes, 172 Acute cellular rejection (ACR), 192, 368 imaging features, 172 Acute eosinophilic pneumonia, 172 pathological features, 172 Acute infectious disease Associated with pulmonary arterial hypertension (APAH), 257 imaging features, 167 Asthma pathological features, 167 ABPA, 343 Acute interstitial pneumonia (AIP), 146, 173, 176 airway biopsy, 339 imaging features, 176 airway edema, 337 pathological features, 176 airway hyperresponsiveness, 337 symptoms, 176 airway inflammation, 337 Acute Langerhans cell histiocytosis (LCH), 185 allergy testing, 339 Acute pulmonary embolism, 386, 387 anxiety and depression, 344 complications, 388 API, 339 mortality rates, 388 biodiversity hypothesis, 337 pre-operative management, 387 bronchial challenge tests, 338 technique, 387, 388 bronchoconstriction, 337 treatment, 387 bronchoscopy, 339 Acute rejection, 192 clinical manifestations, 337 Adenoid cystic carcinoma, 306, 307 clinical presentation, 338 Adenotonsillar hypertrophy, 211 comorbid conditions, 342, 343 Air bronchograms, 104 definition, 337 Air leak syndromes, 53, 55 diagnosis, 338–340,
    [Show full text]
  • Extralobar Pulmonary Sequestration Infected with Mycobacterium Gordonae
    Brief Communications Extralobar pulmonary sequestration infected with Mycobacterium gordonae Yukio Umeda, MD, PhD,a Yukihiro Matsuno, MD, PhD,a Matsuhisa Imaizumi, MD, PhD,a Yoshio Mori, MD, PhD,a Hitoshi Iwata, MD, PhD,b and Hiroshi Takiya, MD, PhD,a Gifu, Japan Pulmonary sequestration is a malformation composed of lung was found except around the left lower pulmonary dysplastic lung tissue without normal communication with vein. We diagnosed it as extralobar sequestration and the tracheobronchial tree and with an anomalous systemic planned a simple excision of the sequestrated lung. We di- arterial supply.1 Few cases of pulmonary sequestration in- vided the aberrant artery and drainage vein and excised the fected with tuberculous or nontuberculous mycobacterium sequestrated lung using a linear stapler. The postoperative have been reported.2-4 However, all of those reports were course was uneventful. of intralobar pulmonary sequestrations. In the present article, Histopathologic study revealed destruction of alveolar we describe the first case of extralobar sequestration infected and reconstruction of respiratory epithelium within its own with Mycobacterium gordonae. pleura. The alveolar spaces were filled by mucoid or mono- nuclear cells. Caseating epithelioid granulomas and Lan- ghans’ giant cells were also observed (Figure 2). The CLINICAL SUMMARY diagnosis was of an extralobar pulmonary sequestration in- In August of 2005, a 72-year-old woman was referred to fected with Mycobacterium. M. gordonae was identified the Gifu Prefectural General Medical Center for abnormal from the culture of preoperatively collected sputum and sur- shadow on chest x-ray. Contrast media-enhanced com- gical specimen by the DNA–DNA hybridization method.
    [Show full text]
  • Recurrent Pneumonia (Recurrent Lower Respiratory Tract Infections)
    Recurrent Pneumonia (Recurrent lower respiratory tract infections) Guideline developed by Gulnur Com, MD, and Jeanne Velasco, MD in collaboration with the ANGELS team. Last reviewed by Jeanne Velasco, MD, on May 15, 2017. Key Points A single episode of uncomplicated pneumonia in an otherwise healthy child does not require investigation. Recurrent pneumonia is not an uncommon presenting symptom in general pediatric practice and one of the most common reasons for referral to pediatric pulmonologists. Recurrent pneumonia is usually defined as ≥2 episodes of pneumonia in a year or ≥3 in life.1 Many children with recurrent pneumonia do not need a full diagnostic work up, either because pneumonia episodes are not frequent or severe enough or because eventually children become asymptomatic. Evaluation of children with recurrent pneumonias begins by taking a careful history, an examination while the child is sick, and confirmation that the child is truly experiencing recurrent pneumonia. The majority of recurrent pneumonia causes in children have predictable risk factors (e.g., psychomotor retardation with feeding problems). Extensive investigations may not identify an underlying cause in up to 30% of children with recurrent pneumonia.1 The initial step in evaluating a child with recurrent respiratory symptoms includes distinguishing between recurrent wheezing versus recurrent infections. Studies show that asthma is being over diagnosed in children with recurrent respiratory symptoms. Patients with atypical asthma that does not respond to therapy should be investigated further. The evaluation of children with recurrent pneumonia should not be focused only on the respiratory tract. 1 Investigation for other organ system involvement may help for ultimate diagnosis (e.g., cystic fibrosis).
    [Show full text]
  • ERS Statement on Tracheomalacia and Bronchomalacia in Children
    ERS OFFICIAL DOCUMENT ERS STATEMENT ERS statement on tracheomalacia and bronchomalacia in children Colin Wallis1,EfthymiaAlexopoulou2,JuanL.Antón-Pacheco3,JayeshM.Bhatt 4, Andrew Bush5,AnneB.Chang6,7,8,Anne-MarieCharatsi9, Courtney Coleman10, Julie Depiazzi11, Konstantinos Douros12,ErnstEber13,MarkEverard14, Ahmed Kantar15,IanB.Masters6,7,FabioMidulla16, Raffaella Nenna 16,17, Derek Roebuck18, Deborah Snijders19 and Kostas Priftis12 @ERSpublications This statement provides a comprehensive review of the causes, presentation, recognition and management of children with tracheobronchomalacia written by a multidisciplinary Task Force in keeping with ERS methodology http://bit.ly/2LPTQCk Cite this article as: Wallis C, Alexopoulou E, Antón-Pacheco JL, et al. ERS statement on tracheomalacia and bronchomalacia in children. Eur Respir J 2019; 54: 1900382 [https://doi.org/10.1183/13993003.00382- 2019]. ABSTRACT Tracheomalacia and tracheobronchomalacia may be primary abnormalities of the large airways or associated with a wide variety of congenital and acquired conditions. The evidence on diagnosis, classification and management is scant. There is no universally accepted classification of severity. Clinical presentation includes early-onset stridor or fixed wheeze, recurrent infections, brassy cough and even near-death attacks, depending on the site and severity of the lesion. Diagnosis is usually made by flexible bronchoscopy in a free-breathing child but may also be shown by other dynamic imaging techniques such as low-contrast volume bronchography, computed tomography or magnetic resonance imaging. Lung function testing can provide supportive evidence but is not diagnostic. Management may be medical or surgical, depending on the nature and severity of the lesions, but the evidence base for any therapy is limited. While medical options that include bronchodilators, anti-muscarinic agents, mucolytics and antibiotics (as well as treatment of comorbidities and associated conditions) are used, there is currently little evidence for benefit.
    [Show full text]
  • Respiratory Complications and Goldenhar Syndrome
    breathe case presentations.qxd 06/03/2007 17:56 Page 15 CASE PRESENTATION Respiratory complications and Goldenhar syndrome Case report W. Jacobs1 A 29-year-old female was referred to hospital A. Vonk Noordegraaf1 with progressive asthmatic complaints. On pre- R.P. Golding2 sentation, the patient had been experiencing J.G. van den Aardweg3 orthopnoea, an audible wheeze during daily P.E. Postmus1 activities, and sporadic coughing without spu- tum production. The patient had a history of recurrent airway infections and a 5-kg weight Depts of 1Pulmonary Medicine loss during the previous year, and had stopped and 2Radiology, Vrije Universiteit smoking several years before. She was known to Medisch Centrum, Amsterdam, have oculo-auriculo-vertebral (OAV) syndrome, and 3Dept of Pulmonary i.e. Goldenhar syndrome, which is a develop- Medicine, Medisch Centrum mental disorder involving mainly first and sec- Alkmaar, The Netherlands. ond branchial arch anomalies. On physical examination, she was not dys- pnoeic at rest, and had a respiratory rate of Correspondence: -1 -1 14 breaths·min , pulse 80 beats·min , blood W. Jacobs pressure 110/70 mmHg and temperature Dept of Pulmonary Medicine Figure 1 37.9°C. The left hemifacial structures and the Vrije Universiteit Medisch Centrum Postero-anterior chest radiograph. left hemithorax were underdeveloped. A chest Postbus 7057 examination revealed a systolic heart murmur 1007 MB Amsterdam grade 2/6 over the apex, and inspiratory and The Netherlands expiratory wheezing over both lungs. There was Task 1 Fax: 31 204444328 E-mail: [email protected] no oedema or clubbing. Arterial blood gas analy- Interpret the chest radiograph.
    [Show full text]
  • Surfactant Abnormalities in ALTE and SIDS Arch Dis Child: First Published As 10.1136/Adc.71.6.501 on 1 December 1994
    Archives ofDisease in Childhood 1994; 71: 501-505 501 Surfactant abnormalities in ALTE and SIDS Arch Dis Child: first published as 10.1136/adc.71.6.501 on 1 December 1994. Downloaded from I B Masters, J Vance, B A Hills Abstract mechanical stability of the distal airspaces.2 Abnormalities in the relative concentra- Reduced concentrations of surfactant, in tions ofthe components ofsurfactant have particular disaturated phosphatidylcholine been implicated in prolonged expiratory (DPPC) have been described in infants apnoea (PEA) and sudden infant death with PEA and SIDS.3-9 Southall et al have syndrome (SIDS). Controversy has, implicated low concentrations of DPPC and however, surrounded these findings, as postulated lung mechanic, neurosensory, and they may be secondary to terminal pulmonary vascular mechanisms for these life events. In this study the physical events.5 6 properties of surfactant were measured in Previously we have shown that both an children with recurrent apparent life infant and young child with prolonged threatening events (ALTEs), PEA, and expiratory apnoea had significant quantitative SIDS. Bronchial lavage samples were and qualitative abnormalities in their obtained from 21 children with recurrent surfactant.'I These findings were similar to the ALTEs, two SIDS victims, and 26 control low concentrations of DPPC found in other patients. Lipid components were immedi- studies.2-5 The reliability of such findings, ately elutriated from these samples however, is questionable in both those and with liquid chloroform. The physical our own observations, as the ability to extract properties of the extracted surfactant surfactant with lung washings in a standardised were studied on a Langmuir trough in fashion from the living subject's lung is which the area (A) of the monolayer was difficult.
    [Show full text]
  • Tracheobronchomalacia and Excessive Dynamic Airway Collapse
    Blackwell Publishing AsiaMelbourne, AustraliaRESRespirology1323-77992006 Blackwell Publishing Asia Pty Ltd? 2006114388406Review ArticleTBM and EDACSD Murgu and HG Colt Respirology (2006) 11, 388–406 doi: 10.1111/j.1400-1843.2006.00862.x REVIEW ARTICLE Tracheobronchomalacia and excessive dynamic airway collapse Septimiu D. MURGU AND Henri G. COLT Pulmonary and Critical Care Medicine, Department of Medicine, University of California School of Medicine, Irvine, CA, USA Tracheobronchomalacia and excessive dynamic airway collapse MURGU SD, COLT HG. Respirology 2006; 11: 388–406 Abstract: Tracheobronchomalacia and excessive dynamic airway collapse are two separate forms of dynamic central airway obstruction that may or may not coexist. These entities are increasingly recognized as asthma and COPD imitators. The understanding of these disease processes, however, has been compromised over the years because of uncertainties regarding their definitions, patho- genesis and aetiology. To date, there is no standardized classification, diagnosis or management algorithm. In this article we comprehensively review the aetiology, morphopathology, physiology, diagnosis and treatment of these entities. Key words: airflow dynamics, bronchomalacia, excessive dynamic airway collapse, tracheobron- chomalacia, tracheomalacia. INTRODUCTION first is that most published studies are case series and retrospective descriptions, many of which report a The purpose of this systematic review is to clarify con- single investigator’s experience with diagnosis and founding issues pertaining to the definition, patho- management. In fact, it is puzzling that despite the physiology, histopathology, aetiology, diagnosis, relative frequency with which TBM and EDAC are pre- classification and treatment of acquired and idio- sumably encountered, multi-institutional or prospec- pathic forms of adult tracheobronchomalacia (TBM) tive studies have not been published.
    [Show full text]
  • Series of Laryngomalacia, Tracheomalacia, and Bronchomalacia Disorders and Their Associations with Other Conditions in Children
    Pediatric Pulmonology 34:189-195 (2002) Series of Laryngomalacia, Tracheomalacia, and Bronchomalacia Disorders and Their Associations With Other Conditions in Children I.B. Masters, MBBS, FRACP,1* A.B. Chang, PhD, FRACP,2 L. Patterson, MBBS, FANZCAC,1 С Wainwright, MD, FRACP,1 H. Buntain, MBBS,1 B.W. Dean, MSC,1 and P.W. Francis, MD, FRACP1 Summary. Laryngomalacia, bronchomalacia, and tracheomalacia are commonly seen in pediatric respiratory medicine, yet their patterns and associations with other conditions are not well-understood. We prospectively video-recorded bronchoscopic data and clinical information from referred patients over a 10-year period and defined aspects of interrelationships and associations. Two hundred and ninety-nine cases of malacia disorders (34%) were observed in 885 bronchoscopic procedures. Cough, wheeze, stridor, and radiological changes were the most common symptoms and signs. The lesions were most often found in males (2:1) and on the left side (1.6:1). Concomitant malacia lesions ranged from 24%forlaryngotracheobronchomalaciato 47% for tracheobronchomalacia. The lesions were found in association with other disorders such as congenital heart disorders (13.7%), tracheo-esophageal fistula (9.6%), and various syndromes (8%). Even though the understanding of these disorders is in its infancy, pediatricians should maintain a level of awareness for malacia lesions and consider the possibility of multiple lesions being present, even when one symptom predominates or occurs alone. Pediatr Pulmonol Pediatr Pulmonol. 2002; 34:189-195. © 2002 wiiey-Liss. inc. Key words: laryngomalacia; tracheomalacia; bronchomalacia; malacia disorders; syndromes. INTRODUCTION The aim of this report is to describe an extensive experience of various forms of laryngomalacia, tracheo­ Tracheomalacia, bronchomalacia, and laryngomalacia malacia, and bronchomalacia and explore some of the disorders are commonly seen in tertiary pediatric respira­ interrelationships that exist between these conditions with tory practice.
    [Show full text]
  • Idiopathic Subglottic Stenosis: a Review
    1111 Editorial Section of Interventional Pulmonology Idiopathic subglottic stenosis: a review Carlos Aravena1,2, Francisco A. Almeida1, Sanjay Mukhopadhyay3, Subha Ghosh4, Robert R. Lorenz5, Sudish C. Murthy6, Atul C. Mehta1 1Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA; 2Department of Respiratory Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; 3Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, 4Department of Diagnostic Radiology, 5Head and Neck Institute, 6Department of Thoracic and Cardiovascular Surgery, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA Contributions: (I) Conception and design: C Aravena, AC Mehta; (II) Administrative support: All authors; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: C Aravena, AC Mehta; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Atul C. Mehta, MD, FCCP. Lerner College of Medicine, Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, 9500 Euclid Ave, A-90, Cleveland, OH 44195, USA. Email: [email protected]. Abstract: Idiopathic subglottic stenosis (iSGS) is a fibrotic disease of unclear etiology that produces obstruction of the central airway in the anatomic region under the glottis. The diagnosis of this entity is difficult, usually delayed and confounded with other common respiratory diseases. No apparent etiology is identified even after a comprehensive workup that includes a complete history, physical examination, pulmonary function testing, auto-antibodies, imaging studies, and endoscopic procedures. This approach, however, helps to exclude other conditions such as granulomatosis with polyangiitis (GPA). It is also helpful to characterize the lesion and outline management strategies.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub
    US 2010O2.10567A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub. Date: Aug. 19, 2010 (54) USE OF ATUFTSINASATHERAPEUTIC Publication Classification AGENT (51) Int. Cl. A638/07 (2006.01) (76) Inventor: Dorian Bevec, Germering (DE) C07K 5/103 (2006.01) A6IP35/00 (2006.01) Correspondence Address: A6IPL/I6 (2006.01) WINSTEAD PC A6IP3L/20 (2006.01) i. 2O1 US (52) U.S. Cl. ........................................... 514/18: 530/330 9 (US) (57) ABSTRACT (21) Appl. No.: 12/677,311 The present invention is directed to the use of the peptide compound Thr-Lys-Pro-Arg-OH as a therapeutic agent for (22) PCT Filed: Sep. 9, 2008 the prophylaxis and/or treatment of cancer, autoimmune dis eases, fibrotic diseases, inflammatory diseases, neurodegen (86). PCT No.: PCT/EP2008/007470 erative diseases, infectious diseases, lung diseases, heart and vascular diseases and metabolic diseases. Moreover the S371 (c)(1), present invention relates to pharmaceutical compositions (2), (4) Date: Mar. 10, 2010 preferably inform of a lyophilisate or liquid buffersolution or artificial mother milk formulation or mother milk substitute (30) Foreign Application Priority Data containing the peptide Thr-Lys-Pro-Arg-OH optionally together with at least one pharmaceutically acceptable car Sep. 11, 2007 (EP) .................................. O7017754.8 rier, cryoprotectant, lyoprotectant, excipient and/or diluent. US 2010/0210567 A1 Aug. 19, 2010 USE OF ATUFTSNASATHERAPEUTIC ment of Hepatitis BVirus infection, diseases caused by Hepa AGENT titis B Virus infection, acute hepatitis, chronic hepatitis, full minant liver failure, liver cirrhosis, cancer associated with Hepatitis B Virus infection. 0001. The present invention is directed to the use of the Cancer, Tumors, Proliferative Diseases, Malignancies and peptide compound Thr-Lys-Pro-Arg-OH (Tuftsin) as a thera their Metastases peutic agent for the prophylaxis and/or treatment of cancer, 0008.
    [Show full text]