Medieval Warm Period in Upper North America

Total Page:16

File Type:pdf, Size:1020Kb

Medieval Warm Period in Upper North America M EDIEVAL WARM PERIOD IN UPPER NORTH AMERICA CO2SCIENCE & SPPI ORIGINAL PAPER ♦ April 16, 2014 MEDIEVAL WARM PERIOD IN UPPER NORTH AMERICA Citation: Center for the Study of Carbon Dioxide and Global Change. "Medieval Warm Period in Upper North America.” Last modified April 16, 2014. http://www.co2science.org/subject/n/summaries/northamericamwp.php. Climate alarmists claim that rising atmospheric CO2 concentrations due to the burning of fossil fuels, such as coal, gas and oil, have raised global air temperatures to their highest level in the past one to two millennia. And, therefore, investigating the possibility of a period of equal global warmth within the past one to two thousand years has become a high-priority enterprise; for if such a period could be shown to have existed, when the atmosphere's CO2 concentration was far less than it is today, there would be no compelling reason to attribute the warmth of our day Climate alarmists claim to the CO2 released to the air by mankind since the that rising atmospheric beginning of the Industrial Revolution. Thus, in this review of the pertinent scientific literature, results of CO2 concentrations the search for such knowledge are presented for have raised global air studies conducted within the borders of Canada and other regions north of the lower 48 states of the temperatures to their United States of America. highest level in the past Arseneault and Payette (1997)1 analyzed tree-ring and one to two millennia. growth-form sequences obtained from more than 300 spruce remains buried in a presently treeless peatland located near the tree line in northern Québec in order to produce a proxy record of climate for this region Therefore, investigating between AD 690 and 1591. This effort revealed that the possibility of a over the course of this 900-year time period, the trees period of equal global of the region experienced several episodes of both suppressed and rapid growth, indicative of both warmth within the colder and warmer conditions, respectively, than past one to two those of the present. Cooler (suppressed growth) conditions prevailed between AD 760-860 and 1025- thousand years has 1400, while warmer (rapid growth) conditions were become a high-priority prevalent between AD 700-750, 860-1000, 1400-1450 and 1500-1570. enterprise. Further analysis of the warm period between AD 860 and 1000 led the two researchers to conclude that the warmth experienced in northern Quebec during this time period coincided with the Medieval Warm Period that was experienced across the North Atlantic and Northern Europe, which "exceeded in duration and magnitude both the 16th and 20th century warm periods identified previously [by other scientists] using the same methods." Furthermore, on the basis of current 1 http://www.co2science.org/articles/V4/N25/C3.php. 2 annual temperatures at their study site and the northernmost 20th century location of the forest, which at that time was 130 km south of their site, they concluded that the "Medieval Warm Period was approximately 1°C warmer than the 20th century." Three years later, Campbell and Campbell (2000)2 analyzed pollen and charcoal records obtained from sediment cores retrieved from three small ponds - South Pond (AD 1655-1993), Birch Island Pond (AD 1499-1993) and Pen 5 Pond (400 BC-AD 1993) - located within Canada's Elk Island National Park, which covers close to 200 km2 of the Beaver Hills region of east-central Alberta. And in so doing, and counter to the intuitive assumption that there would be an "increase in fire activity with warmer and drier climate," the Canadian researchers found that "declining groundwater levels during the Medieval Warm Period [MWP] allowed the replacement of substantial areas of shrub birch with the less fire-prone aspen, causing a decline in fire frequency and/or severity, while increasing carbon storage on the landscape." And they thus concluded that this scenario "is likely playing out again today," as all three of the sites they studied "show historic increases in Populus pollen and declines in charcoal." In further discussing their results, the two researchers noted that the earth's present climate "is warmer and drier than that of either the Little Ice Age (which followed the MWP) or the early Neoglacial (preceding the MWP)," and they say we must therefore "consider the present pond levels to be more representative of the MWP than of the time before or after." But since their Pen 5 Pond data indicate that sediment charcoal concentrations have not yet dropped to the level characteristic of the MWP - even with what they describe as the help of "active fire suppression in the park combined with what may be thought of as unintentional fire suppression due to agricultural activity around the park" - it would appear that their study sites and their surroundings have not yet risen to the level of warmth and dryness that they experienced during the MWP, which they describe as having occurred over the period AD 800- 1200. Focusing on Alaska, Calkin et al. (2001)3 reviewed what they called "the most current and comprehensive research of Holocene glaciation" along the northernmost Gulf of Alaska between the Kenai Peninsula and Yakutat Bay; and in doing so, they noted several periods of glacial advance and retreat during the past 7000 years. Most recently, they described a general retreat during the Medieval Warm Period that lasted for "at least a few centuries prior to AD 1200." Then, following this Medieval Climatic Optimum, there were three major intervals of Little Ice Age glacial advance: the early 15th century, the middle 17th century, and the last half of the 19th century. And during these latter time periods, glacier equilibrium line altitudes were depressed from 150 to 200 m below present values as Alaskan glaciers "reached their Holocene maximum extensions." Clearly, the existence of a Medieval Warm Period and Little Ice Age in Alaska is an obvious reality. But what is especially interesting to note is that glaciers there reached their maximum Holocene extensions during the Little Ice Age. Hence, it can logically be inferred that Alaskan temperatures reached their Holocene minimum during this time as well, leading a person to 2 http://www.co2science.org/articles/V11/N48/C2.php. 3 http://www.co2science.org/articles/V4/N36/C2.php. 3 ask: should it come as any surprise if temperatures in Alaska rise significantly above the chill of the Little Ice Age in the region's natural recovery from Should it come as any the coldest period of the entire Holocene? surprise if temperatures Also working in Alaska, and concurrently, were Hu et in Alaska rise al. (2001)4, who "conducted multi-proxy geochemical analyses of a sediment core from significantly above the Farewell Lake in the northwestern foothills of the chill of the Little Ice Age Alaska Range," obtaining what they described as "the first high-resolution quantitative record of in the region's natural Alaskan climate variations that spans the last two recovery from the millennia." And what did they find? coldest period of the The team of five scientists said their results "suggest entire Holocene? that at Farewell Lake SWT [surface water temperature] was as warm as the present at AD 0- 300 [during the Roman Warm Period], after which it decreased steadily by ~3.5°C to reach a minimum at AD 600 [during the depths of the Dark Ages Cold Period]." And from that point in time, they stated that "SWT increased by ~3.0°C during the period AD 600-850 and then [during the Medieval Warm Period] exhibited fluctuations of 0.5-1.0°C until AD 1200." Completing their narrative, they indicated that "between AD 1200- 1700, SWT decreased gradually by 1.25°C [as the world descended into the depths of the Little Ice Age], and from AD 1700 to the present, SWT increased by 1.75C," the latter portion of which warming initiated the Current Warm Period. In commenting on these findings, Hu et al. remarked that "the warmth before AD 300 at Farewell Lake coincides with a warm episode extensively documented in northern Europe … whereas the AD 600 cooling is coeval with the European 'Dark Ages'." They also reported that "the relatively warm climate AD 850-1200 at Farewell Lake corresponds to the Medieval Climatic Anomaly, a time of marked climatic departure over much of the planet." And they noted that "these concurrent changes suggest large-scale teleconnections in natural climatic variability during the last two millennia, likely driven by atmospheric controls." Noting that "20th-century climate is a major societal concern in the context of greenhouse warming," Hu et al. concluded by reiterating that their record "reveals three time intervals of comparable warmth: AD 0-300, 850-1200, and post-1800," and they added that "these data agree with tree-ring evidence from Fennoscandia, indicating that the recent warmth is not atypical of the past 1000 years," in unmistakable contradiction of those who claim that it is. The great importance of these observations resides in the fact that they testify to the reality of the non-CO2-induced millennial-scale oscillation of climate that brought the world, including Alaska, significant periods of warmth comparable to, or in some cases actually greater than, that of the present some 1000 years ago, during the Medieval Warm Period, and some 1000 4 http://www.co2science.org/articles/V7/N49/EDIT.php. 4 years before that, during the Roman Warm Period. And, most importantly, these earlier periods of warmth were unquestionably not caused by elevated atmospheric CO2 concentrations (which were far less during those periods than they are today).
Recommended publications
  • Medieval Warm Period in South America
    M EDIEVAL WARM PERIOD IN OUTH MERICA S A SPPI & CO2SCIENCE ORIGINAL PAPER ♦ September 4, 2013 MEDIEVAL WARM PERIOD IN SOUTH AMERICA Citation: Center for the Study of Carbon Dioxide and Global Change. "Medieval Warm Period in South America.” Last modified September 4, 2013. http://www.co2science.org/subject/m/summaries/mwpsoutham.php. Was there a Medieval Warm Period anywhere in addition to the area surrounding the North Atlantic Ocean, where its occurrence is uncontested? This question is of utmost importance to the ongoing global warming debate, since if there was, and if the locations where it occurred were as warm then as they are currently, there is no need to consider the temperature increase of the past century as anything other than the natural progression of the persistent millennial- scale oscillation of climate that regularly brings the earth several-hundred-year periods of modestly higher and lower temperatures that are totally independent of variations in atmospheric CO2 concentration. Hence, this question is here considered as it applies to South America, a region far removed from where the existence of the Medieval Warm Period was first recognized. Cioccale (1999) assembled what was known at the time about the climatic history of the central region of the country over the past 1400 years, highlighting a climatic "improvement" that began some 400 years before the start of the last millennium, which ultimately came to be characterized by "a marked increase of environmental suitability, under a relatively homogeneous climate." And as a result of this climatic amelioration that marked the transition of the region from the Dark Ages Cold Period to the Medieval Warm Period, Cioccale reported that "the population located in the lower valleys ascended to higher areas in the Andes," where they remained until around AD 1320, when the transition to the stressful and extreme climate of the Little Ice Age began.
    [Show full text]
  • Using Patterns of Recurring Climate Cycles to Predict Future Climate Changes D.J
    CHAPTER 21 Using Patterns of Recurring Climate Cycles to Predict Future Climate Changes D.J. Easterbrook Western Washington University, Bellingham, WA, United States OUTLINE 1. Introduction 395 4. Correlation of Temperature Cycles and the Pacific Decadal Oscillation 405 2. The Past is the Key to the Future: Lessons From Past Global Climate Changes 396 5. The Atlantic Multidecadal Oscillation 407 2.1 Past Climate Changes 396 6. Where Is Climate Headed During the Coming 2.2 Magnitude and Rate of Abrupt Climate Changes 396 Century? 407 2.3 Holocene Climate Changes (10,000 Years Ago 6.1 IPCC Predictions 407 to Present) 398 6.2 Predictions Based on Past Cyclic Climate 2.3.1 The Roman Warm Period 398 Patterns 407 2.3.2 Dark Ages Cool Period 398 2.3.3 Medieval Warm Period (900e1300 AD) 400 References 410 2.3.4 The Little Ice Age 401 2.3.5 Climate Changes During the Past Century 403 3. Significance of Past Global Climate Changes 404 1. INTRODUCTION Global warming that occurred from 1978 to about 1998 pushed climate change into the forefront of potential concern. Every day the news media is filled with dire predictions of impending disastersdcatastrophic melting of the Antarctic and Greenland ice sheets, drowning of major cities from sea level rise, drowning of major portions of countries, droughts, severe water shortages, no more snow, more extreme weather events (hurricanes, tor- nadoes), etc. With no unequivocal, cause-and-effect, tangible, physical evidence that increasing CO2 caused this most recent global warming, adherents of this ideology have had to rely on computer models that have proven to be unreliable.
    [Show full text]
  • 1 I Vestigati G Late Holoce E Orth Atla Tic Climate
    S. Gaurin – dissertation prospectus UMass Geosciences IVESTIGATIG LATE HOLOCEE ORTH ATLATIC CLIMATE VARIABILITY THROUGH SPELEOTHEM PALEOPROXY AD HISTORICAL WEATHER DATA FROM BERMUDA INTRODUCTION Recent trends in hurricane frequency and intensity, a continually growing coastal population, and the presence of wide-reaching climatic patterns all underscore the importance of understanding changes in North Atlantic climate. Numerous paleoclimate studies have identified the North Atlantic as a region of importance in regulating global climate through meridional overturning circulation and other processes. The study proposed herein is focused on using stable isotope data from Bermuda speleothem calcium carbonate to help reconstruct dominant low-frequency modes of North Atlantic climate variability through the mid-Holocene (the last several thousand years). This period is replete with climate changes, from the warm hypsithermal peak of ~6000 years ago, followed by the slow overall cooling of the neoglacial, punctuated by rapid change “events” and century-scale periods like the Medieval Warm Period and Little Ice Age. Recent warming from the start of the 20 th century to the present has been attributed largely to the build-up of atmospheric greenhouse gases (Mann et al., 1998, 1999) and may herald the beginning of a possibly rapid transition to a new, warmer climate regime. The more we learn about the natural workings of the climate system on time scales of decades to centuries, which are of particular relevance as they are on the scale of a human lifetime, the better prepared we can be for warming-induced changes, some of which may already be afoot, such as the possibility that warmer ocean temperatures are increasing hurricane frequency (Goldenberg et al., 2001; Knight et al., 2006) or intensity (Knutson and Tuleya, 2004).
    [Show full text]
  • The Science of Roman History Biology, Climate, and the Future of the Past
    The Science of Roman History Biology, climaTe, and The fuTuRe of The PaST Edited by Walter Scheidel PRinceTon univeRSiTy PReSS PRinceTon & oxfoRd Copyright © 2018 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TR press.princeton.edu All Rights Reserved ISBN 978- 0- 691- 16256- 0 Library of Congress Control Number 2017963022 British Library Cataloging- in- Publication Data is available This book has been composed in Miller Printed on acid- free paper. ∞ Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 conTenTS List of Illustrations and Tables · vii Notes on Contributors · ix Acknowledgments · xiii Maps · xiv Introduction 1 Walter Scheidel chaPTeR 1. Reconstructing the Roman Climate 11 Kyle Harper & Michael McCormick chaPTeR 2. Archaeobotany: The Archaeology of Human- Plant Interactions 53 Marijke van der Veen chaPTeR 3. Zooarchaeology: Reconstructing the Natural and Cultural Worlds from Archaeological Faunal Remains 95 Michael MacKinnon chaPTeR 4. Bones, Teeth, and History 123 Alessandra Sperduti, Luca Bondioli, Oliver E. Craig, Tracy Prowse, & Peter Garnsey chaPTeR 5. Human Growth and Stature 174 Rebecca Gowland & Lauren Walther chaPTeR 6. Ancient DNA 205 Noreen Tuross & Michael G. Campana chaPTeR 7. Modern DNA and the Ancient Mediterranean 224 Roy J. King & Peter A. Underhill Index · 249 [ v ] illuSTRaTionS and TaBleS Maps 1. Western Mediterranean. xiv 2. Eastern Mediterranean. xv 3. Northwestern Europe. xvi Figures 1.1. TSI (Total Solar Irradiance) from 14C. 19 1.2. TSI from 10Be. 19 1.3.
    [Show full text]
  • Oxygen Isotope Evidence for Paleoclimate Change During The
    PALEOCLIMATE RECONSTRUCTION IN NORTHWEST SCOTLAND AND SOUTHWEST FLORIDA DURING THE LATE HOLOCENE Ting Wang A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Geological Sciences. Chapel Hill 2011 Approved by: Dr. Donna M. Surge Dr. Joseph G. Carter Dr. Jose A. Rial Dr. Justin B. Ries Dr. Karen J. Walker © 2011 Ting Wang ALL RIGHTS RESERVED ii ABSTRACT TING WANG: Paleoclimate Reconstruction in Northwest Scotland and Southwest Florida during the Late Holocene (Under the direction of Dr. Donna M. Surge) The study reconstructed seasonal climate change in mid-latitude northwest Scotland during the climate episodes Neoglacial (~3300-2500 BP) and Roman Warm Period (RWP; ~2500-1600 BP) and in subtropical southwest Florida during the latter part of RWP (1-550 AD) based on archaeological shell accumulations in two study areas. In northwest Scotland, seasonal sea surface temperature (SST) during the Neoglacial and RWP was estimated from high-resolution oxygen isotope ratios (δ18O) of radiocarbon-dated limpet (Patella vulgata) shells accumulated in a cave dwelling on the Isle of Mull. The SST results revealed a cooling transition from the Neoglacial to RWP, which is supported by earlier studies of pine pollen in Scotland and European glacial events and also coincident with the abrupt climate deterioration at 2800-2700 BP. The cooling transition might have been driven by decreased solar radiation and weakened North Atlantic Oscillation (NAO) conditions. In southwest Florida, seasonal-scale climate conditions for the latter part of RWP were reconstructed by using high-resolution δ18O of archaeological shells (Mercenaria campechiensis) and otoliths (Ariopsis felis).
    [Show full text]
  • On the Climate History of Chaco Canyon
    UC San Diego Scripps Institution of Oceanography Technical Report Title On the Climate History of Chaco Canyon Permalink https://escholarship.org/uc/item/1qv786mc Author Berger, Wolfgang H. Publication Date 2009-04-01 eScholarship.org Powered by the California Digital Library University of California ON THE CLIMATE HISTORY OF CHACO CANYON W.H. Berger, Ph.D. Scripps Institution of Oceanography University of California, San Diego Notes on Chaco Canyon history in connection with the presentation “Drought Cycles in Anasazi Land – Sun, Moon, and ocean oscillations,” at the PACLIM Conference in Asilomar, California, in April 2009. On the Involvement of the Sun in Chaco Canyon Climate History Tree-ring research since A.E. Douglass and E. Schulman has brought great benefits to the archaeology of the Southwest. It has become possible to reconstruct the climate narrative in some detail. The appropriate field of study is termed “dendroclimatology,” which is focused on the information contained in the growth of a given set of trees. The term harks back to the intent of the pioneer, the solar astronomer Douglass, who worked early in the 20th century. Since that time the study of tree rings has become a respected branch of Earth Sciences, with well-defined objects and methods (Hughes et al., 1982; Fritts, 1991). Douglass spent great efforts on documenting a role for the sun in climate change. Studies relating climate to solar variation have multiplied since. As yet, a focus on solar activity encounters much skepticism among climate scientists (see, e.g., Hoyt and Schatten, 1997). The expert’s skepticism has several causes.
    [Show full text]
  • The Influence of Climatic Change on the Late Bronze Age Collapse and the Greek Dark Ages Journal of Archaeological Science
    Journal of Archaeological Science 39 (2012) 1862e1870 Contents lists available at SciVerse ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas The influence of climatic change on the Late Bronze Age Collapse and the Greek Dark Ages Brandon L. Drake* Department of Anthropology, University of New Mexico, Albuquerque, NM 87131, United States article info abstract Article history: Between the 13th and 11th centuries BCE, most Greek Bronze Age Palatial centers were destroyed and/or Received 28 July 2011 abandoned. The following centuries were typified by low population levels. Data from oxygen-isotope Received in revised form speleothems, stable carbon isotopes, alkenone-derived sea surface temperatures, and changes in 19 January 2012 warm-species dinocysts and formanifera in the Mediterranean indicate that the Early Iron Age was more Accepted 26 January 2012 arid than the preceding Bronze Age. A sharp increase in Northern Hemisphere temperatures preceded the collapse of Palatial centers, a sharp decrease occurred during their abandonment. Mediterranean Sea Keywords: surface temperatures cooled rapidly during the Late Bronze Age, limiting freshwater flux into the Bronze Age Collapse Carbon isotopes atmosphere and thus reducing precipitation over land. These climatic changes could have affected Speleothems Palatial centers that were dependent upon high levels of agricultural productivity. Declines in agricul- SST tural production would have made higher-density populations in Palatial centers unsustainable. The Sea surface temperature ‘Greek Dark Ages’ that followed occurred during prolonged arid conditions that lasted until the Roman Climate change Warm Period. Paleoclimate Ó 2012 Elsevier Ltd. All rights reserved. 1. Introduction suggested that a centuries-long megadrought caused the wide- spread systems collapse of Bronze Age Palatial civilization.
    [Show full text]
  • A Companion to Ancient History Edited by Andrew Erskine © 2009 Blackwell Publishing Ltd
    A COMPANION TO ANCIENT HISTORY A Companion to Ancient History Edited by Andrew Erskine © 2009 Blackwell Publishing Ltd. ISBN: 978-1-405-13150-6 BLACKWELL COMPANIONS TO THE ANCIENT WORLD This series provides sophisticated and authoritative overviews of periods of ancient history, genres of classical literature, and the most important themes in ancient culture. Each volume comprises between twenty-fi ve and forty concise essays written by individual scholars within their area of specialization. The essays are written in a clear, provocative, and lively manner, designed for an international audience of scholars, students, and general readers. ANCIENT HISTORY LITERATURE AND CULTURE A Companion to the Roman Army A Companion to Classical Receptions Edited by Paul Erdkamp Edited by Lorna Hardwick and Christopher Stray A Companion to the Roman Republic Edited by Nathan Rosenstein and Robert A Companion to Greek and Roman Morstein-Marx Historiography Edited by John Marincola A Companion to the Roman Empire Edited by David S. Potter A Companion to Catullus Edited by Marilyn B. Skinner A Companion to the Classical Greek World Edited by Konrad H. Kinzl A Companion to Roman Religion Edited by Jörg Rüpke A Companion to the Ancient Near East Edited by Daniel C. Snell A Companion to Greek Religion Edited by Daniel Ogden A Companion to the Hellenistic World Edited by Andrew Erskine A Companion to the Classical Tradition Edited by Craig W. Kallendorf A Companion to Late Antiquity Edited by Philip Rousseau A Companion to Roman Rhetoric Edited by William Dominik and Jon Hall A Companion to Archaic Greece Edited by Kurt A.
    [Show full text]
  • The Ancient Mediterranean Environment Between Science and History Columbia Studies in the Classical Tradition
    The Ancient Mediterranean Environment between Science and History Columbia Studies in the Classical Tradition Editorial Board William V. Harris (editor) Alan Cameron, Suzanne Said, Kathy H. Eden, Gareth D. Williams, Holger A. Klein VOLUME 39 The titles published in this series are listed at brill.com/csct The Ancient Mediterranean Environment between Science and History Edited by W.V. Harris LEIDEN • BOSTON 2013 Cover illustration: Fresco from the Casa del Bracciale d’Oro, Insula Occidentalis 42, Pompeii. Photograph © Stefano Bolognini. Courtesy of the Soprintendenza Archeologica di Pompei. Library of Congress Cataloging-in-Publication Data The ancient Mediterranean environment between science and history / edited by W.V. Harris. pages cm. – (Columbia studies in the classical tradition, ISSN 0166-1302 ; volume 39) Includes bibliographical references and index. ISBN 978-90-04-25343-8 (hardback : alk. paper) – ISBN 978-90-04-25405-3 (e-book) 1. Human ecology–Mediterranean Region–History. 2. Mediterranean Region–Environmental conditions–History. 3. Nature–Effect of human beings on–Mediterranean Region–History. I. Harris, William V. (William Vernon) author, editor of compilation. GF541.A64 2013 550.937–dc23 2013021551 This publication has been typeset in the multilingual “Brill” typeface. With over 5,100 characters covering Latin, IPA, Greek, and Cyrillic, this typeface is especially suitable for use in the humanities. For more information, please see www.brill.com/brill-typeface. ISSN 0166-1302 ISBN 978-90-04-25343-8 (hardback) ISBN 978-90-04-25405-3 (e-book) Copyright 2013 by The Trustees of Columbia University in the City of New York. Koninklijke Brill NV incorporates the imprints Brill, Global Oriental, Hotei Publishing, IDC Publishers and Martinus Nijhoff Publishers.
    [Show full text]
  • Medieval Warm Period’
    WAS THERE A 'MEDIEVAL WARM PERIOD', AND IF SO, WHERE AND WHEN? MALCOLM K. HUGHES Laboratory of Tree Ring Research, University of Arizona, Tucson, AZ 85721 (addressfor correspondence), and Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, CO 80309, U.S.A. and HENRY F. DIAZ NOAA/ERL/CDC, 325 Broadway, Boulder, CO 80303, U.S.A. Abstract. It has frequently been suggested that the period encompassing the ninth to the fourteenth centuries A.D. experienced a climate warmer than that prevailing around the turn of the twentieth century. This epoch has become known as the Medieval Warm Period, since it coincides with the Middle Ages in Europe. In this review a number of lines of evidence are considered, (including climate- sensitive tree rings, documentary sources, and montane glaciers) in order to evaluate whether it is reasonable to conclude that climate in medieval times was, indeed, warmer than the climate of more recent times. Our review indicates that for some areas of the globe (for example, Scandinavia, China, the Sierra Nevada in California, the Canadian Rockies and Tasmania), temperatures, particularly in summer, appear to have been higher during some parts of this period than those that were to prevail until the most recent decades of the twentieth century. These warmer regional episodes were not strongly synchronous. Evidence from other regions (for example, the Southeast United States, southern Europe along the Mediterranean, and parts of South America) indicates that the climate during that time was little different to that of later times, or that warming, if it occurred, was recorded at a later time than has been assumed.
    [Show full text]
  • Solar Cycles: Another Prediction
    Solar Cycles another prediction by Miles Mathis March 6, 2020 On February 2, I posted charts of the upcoming Solar Cycles, including in-depth predictions for Cycle 25 and Cycle 26. I showed Cycle 26—which will peak in about 2037—would be similar in strength to Cycle 19, which peaked in 1957 and is the largest on record. That's the good news. The bad news is that the strength of the upcoming Cycles will tend to be fodder for the Global Warming frauds, and I predict they will use the trend to claim victory and continue the scare tactics, using them to sell various treasury dips and new taxes. Because what few have told you is that there is a correlation between global temperatures and longterm Solar Cycles. For instance, the Little Ice Age corresponds to the Maunder Minimum. Mid-20th century warming corresponds to strong Cycles in those decades, and cooling from the late 1950s to the 1990s also follows diminishing Solar Cycles. So a stronger Sun in the upcoming decades will likely lead to a real bump in global temperatures. Remember, the big scare in the 1970s was Global Cooling, when they were sucking from the treasury to respond to that conjob. When that failed to pan out and temperatures flattened, they decided to switch gears and sell the Global Warming scare instead. These people are salesmen and they always have to be selling something. This is not to say we don't have major environmental problems that require immediate action. We do. We have huge problems of pollution and environmental degradation caused by industry, military, government, corporate farming, and general modern lifestyles.
    [Show full text]
  • A Companion to Mediterranean History
    A Companion to Mediterranean History 0002063973.INDD 1 2/18/2014 2:59:17 PM WILEY BLACKWELL COMPANIONS TO HISTORY This series provides sophisticated and authoritative overviews of the scholarship that has shaped our current understanding of the past. Defined by theme, period and/or region, each volume comprises between twenty-five and forty concise essays written by individual scholars within their area of specialization. The aim of each contribution is to synthesize the current state of scholarship from a variety of historical perspectives and to provide a statement on where the field is heading. The essays are written in a clear, provocative, and lively manner, designed for an international audience of scholars, students, and general readers. WILEY BLACKWELL COMPANIONS A Companion to the Medieval World TO BRITISH HISTORY Edited by Carol Lansing and Edward D. English A Companion to Roman Britain A Companion to the French Revolution Edited by Malcolm Todd Edited by Peter McPhee A Companion to Britain in the Later Middle Ages A Companion to Mediterranean History Edited by S. H. Rigby Edited by Peregrine Horden and Sharon Kinoshita A Companion to Tudor Britain WILEY BLACKWELL COMPANIONS Edited by Robert Tittler and Norman Jones TO WORLD HISTORY A Companion to Stuart Britain A Companion to Western Historical Thought Edited by Barry Coward Edited by Lloyd Kramer and Sarah Maza A Companion to Eighteenth-Century Britain A Companion to Gender History Edited by H. T. Dickinson Edited by Teresa A. Meade and Merry E. Wiesner-Hanks A Companion to Nineteenth-Century Britain A Companion to the History of the Middle East Edited by Chris Williams Edited by Youssef M.
    [Show full text]