Hockey Stick’ Global Warming’S Latest Brawl
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sam White the Real Little Ice Age Between C.1300 and C.1850 A.D
Journal of Interdisciplinary History, xliv:3 (Winter, 2014), 327–352. THE REAL LITTLE ICE AGE Sam White The Real Little Ice Age Between c.1300 and c.1850 a.d. the world became, on average, slightly but signiªcantly colder. The change varied over time and space, and its causes remain un- certain. Nevertheless, this cooling constitutes a meaningful climate event, with signiªcant historical consequences. Both the cooling trend and its effects on humans appear to have been particularly Downloaded from http://direct.mit.edu/jinh/article-pdf/44/3/327/1706251/jinh_a_00574.pdf by guest on 28 September 2021 acute from the late sixteenth to the late seventeenth century in much of the Northern Hemisphere. This article explains why climatologists and historians are conªdent that these changes occurred. On close examination, the objections raised in this issue of the journal by Kelly and Ó Gráda turn out to be entirely unfounded. The proxy data for early mod- ern global cooling (such as tree rings and ice cores) are robust, and written weather descriptions and observations of physical phenom- ena (such as glacial movements and river freezings) by and large of- fer independent conªrmation. Kelly and Ó Gráda’s proposed alter- native measures of climate and climate change suffer from serious ºaws. As we review the evidence and refute their criticisms, it will become clear just how solid the case for the Little Ice Age (lia) has become. the case for the little ice age The evidence for early modern global cooling comes, ªrst and foremost, from extensive research into physical proxies, including ice cores, tree rings, corals, and speleothems (stalagmites and stalactites). -
Sea Level and Climate Introduction
Sea Level and Climate Introduction Global sea level and the Earth’s climate are closely linked. The Earth’s climate has warmed about 1°C (1.8°F) during the last 100 years. As the climate has warmed following the end of a recent cold period known as the “Little Ice Age” in the 19th century, sea level has been rising about 1 to 2 millimeters per year due to the reduction in volume of ice caps, ice fields, and mountain glaciers in addition to the thermal expansion of ocean water. If present trends continue, including an increase in global temperatures caused by increased greenhouse-gas emissions, many of the world’s mountain glaciers will disap- pear. For example, at the current rate of melting, most glaciers will be gone from Glacier National Park, Montana, by the middle of the next century (fig. 1). In Iceland, about 11 percent of the island is covered by glaciers (mostly ice caps). If warm- ing continues, Iceland’s glaciers will decrease by 40 percent by 2100 and virtually disappear by 2200. Most of the current global land ice mass is located in the Antarctic and Greenland ice sheets (table 1). Complete melt- ing of these ice sheets could lead to a sea-level rise of about 80 meters, whereas melting of all other glaciers could lead to a Figure 1. Grinnell Glacier in Glacier National Park, Montana; sea-level rise of only one-half meter. photograph by Carl H. Key, USGS, in 1981. The glacier has been retreating rapidly since the early 1900’s. -
1 I Vestigati G Late Holoce E Orth Atla Tic Climate
S. Gaurin – dissertation prospectus UMass Geosciences IVESTIGATIG LATE HOLOCEE ORTH ATLATIC CLIMATE VARIABILITY THROUGH SPELEOTHEM PALEOPROXY AD HISTORICAL WEATHER DATA FROM BERMUDA INTRODUCTION Recent trends in hurricane frequency and intensity, a continually growing coastal population, and the presence of wide-reaching climatic patterns all underscore the importance of understanding changes in North Atlantic climate. Numerous paleoclimate studies have identified the North Atlantic as a region of importance in regulating global climate through meridional overturning circulation and other processes. The study proposed herein is focused on using stable isotope data from Bermuda speleothem calcium carbonate to help reconstruct dominant low-frequency modes of North Atlantic climate variability through the mid-Holocene (the last several thousand years). This period is replete with climate changes, from the warm hypsithermal peak of ~6000 years ago, followed by the slow overall cooling of the neoglacial, punctuated by rapid change “events” and century-scale periods like the Medieval Warm Period and Little Ice Age. Recent warming from the start of the 20 th century to the present has been attributed largely to the build-up of atmospheric greenhouse gases (Mann et al., 1998, 1999) and may herald the beginning of a possibly rapid transition to a new, warmer climate regime. The more we learn about the natural workings of the climate system on time scales of decades to centuries, which are of particular relevance as they are on the scale of a human lifetime, the better prepared we can be for warming-induced changes, some of which may already be afoot, such as the possibility that warmer ocean temperatures are increasing hurricane frequency (Goldenberg et al., 2001; Knight et al., 2006) or intensity (Knutson and Tuleya, 2004). -
Abstracts Connecting to the Boston University Network
20th Cambridge Workshop: Cool Stars, Stellar Systems, and the Sun July 29 - Aug 3, 2018 Boston / Cambridge, USA Abstracts Connecting to the Boston University Network 1. Select network ”BU Guest (unencrypted)” 2. Once connected, open a web browser and try to navigate to a website. You should be redirected to https://safeconnect.bu.edu:9443 for registration. If the page does not automatically redirect, go to bu.edu to be brought to the login page. 3. Enter the login information: Guest Username: CoolStars20 Password: CoolStars20 Click to accept the conditions then log in. ii Foreword Our story starts on January 31, 1980 when a small group of about 50 astronomers came to- gether, organized by Andrea Dupree, to discuss the results from the new high-energy satel- lites IUE and Einstein. Called “Cool Stars, Stellar Systems, and the Sun,” the meeting empha- sized the solar stellar connection and focused discussion on “several topics … in which the similarity is manifest: the structures of chromospheres and coronae, stellar activity, and the phenomena of mass loss,” according to the preface of the resulting, “Special Report of the Smithsonian Astrophysical Observatory.” We could easily have chosen the same topics for this meeting. Over the summer of 1980, the group met again in Bonas, France and then back in Cambridge in 1981. Nearly 40 years on, I am comfortable saying these workshops have evolved to be the premier conference series for cool star research. Cool Stars has been held largely biennially, alternating between North America and Europe. Over that time, the field of stellar astro- physics has been upended several times, first by results from Hubble, then ROSAT, then Keck and other large aperture ground-based adaptive optics telescopes. -
$1.2 Million Conflict of Interest Plagues Climate Change Denial Research
$1.2 Million Conflict of Interest Plagues Climate Change Denial Research... http://natmonitor.com/2015/02/22/1-2-million-conflict-of-interest-plague... $1.2 Million Conflict of Interest Plagues Climate Change Denial Research By James Paladino, National Monitor | February 22, 2015 A recently uncovered document shows that Wei-Hok Soon, a well-known aerospace engineer, was granted over $1.2 million from fossil-fuel companies for climate research and failed to disclose a conflict of interest in his peer-reviewed publications. In Washington, climate change deniers are fighting a fierce battle to stave off energy policy reform. The latest casualty of this war of ideas is Wei-Hock Soon, a part-time employee of the Harvard-Smithsonian Center for Astrophysics. Resilient to the scientific consensus that human carbon emissions are fueling gradual warming, the aerospace engineer has served as a beacon for conservative legislators. A recently uncovered document shows that Soon was granted over $1.2 million from fossil-fuel companies and failed to disclose a conflict of interest in his peer-reviewed publications. Since the Smithsonian is part of the federal government, former Greenpeace member Kert Davies legally obtained the Soon’s grant agreements through the Freedom of Information Act. Contributors include the American Petroleum Institute, the Koch brothers, Exxon Mobil and Southern Company. Several scientific papers and a congressional testimonial were termed as “deliverables,” reports The New York Times. “These proposals and contracts show debatable interventions in science literally on behalf of the Southern Company and the Kochs,” said Davies. “What it shows is the continuation of a long-term campaign by specific fossil-fuel companies and interests to undermine the scientific consensus on climate change.” These recent revelations have drawn fire from members of the Harvard-Smithsonian Center and NASA, among others. -
A Cultural Analysis of a Physicist ''Trio'' Supporting the Backlash Against
ARTICLE IN PRESS Global Environmental Change 18 (2008) 204–219 www.elsevier.com/locate/gloenvcha Experiences of modernity in the greenhouse: A cultural analysis of a physicist ‘‘trio’’ supporting the backlash against global warming Myanna Lahsenà Center for Science and Technology Policy Research, University of Colorado and Instituto Nacional de Pesquisas Epaciais (INPE), Av. dos Astronautas, 1758, Sa˜o Jose´ dos Campos, SP 12227-010 Brazil Received 18 March 2007; received in revised form 5 October 2007; accepted 29 October 2007 Abstract This paper identifies cultural and historical dimensions that structure US climate science politics. It explores why a key subset of scientists—the physicist founders and leaders of the influential George C. Marshall Institute—chose to lend their scientific authority to this movement which continues to powerfully shape US climate policy. The paper suggests that these physicists joined the environmental backlash to stem changing tides in science and society, and to defend their preferred understandings of science, modernity, and of themselves as a physicist elite—understandings challenged by on-going transformations encapsulated by the widespread concern about human-induced climate change. r 2007 Elsevier Ltd. All rights reserved. Keywords: Anti-environmental movement; Human dimensions research; Climate change; Controversy; United States; George C. Marshall Institute 1. Introduction change itself, what he termed a ‘‘strong theory of culture.’’ Arguing that the essential role of science in our present age Human Dimensions Research in the area of global only can be fully understood through examination of environmental change tends to integrate a limited con- individuals’ relationships with each other and with ‘‘mean- ceptualization of culture. -
Open PDF File, 8.71 MB, for February 01, 2017 Appendix In
Case 4:16-cv-00469-K Document 175 Filed 02/01/17 Page 1 of 10 PageID 5923 IN THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF TEXAS FORT WORTH DIVISION EXXON MOBIL CORPORATION, § § Plaintiff, § v. § No. 4:16-CV-469-K § ERIC TRADD SCHNEIDERMAN, § Attorney General of New York, in his § official capacity, and MAURA TRACY § HEALEY, Attorney General of § Massachusetts, in her official capacity, § § Defendants. § APPENDIX IN SUPPORT OF EXXON MOBIL CORPORATION’S BRIEF IN SUPPORT OF THIS COURT’S PERSONAL JURISDICTION OVER THE DEFENDANTS Exhibit Description Page(s) N/A Declaration of Justin Anderson (Feb. 1, 2017) v – ix A Transcript of the AGs United for Clean Power App. 1 –App. 21 Press Conference, held on March 29, 2016, which was prepared by counsel based on a video recording of the event. The video recording is available at http://www.ag.ny.gov/press- release/ag-schneiderman-former-vice-president- al-gore-and-coalition-attorneys-general-across B E-mail from Wendy Morgan, Chief of Public App. 22 – App. 32 Protection, Office of the Vermont Attorney General to Michael Meade, Director, Intergovernmental Affairs Bureau, Office of the New York Attorney General (Mar. 18, 2016, 6:06 PM) C Union of Concerned Scientists, Peter Frumhoff, App. 33 – App. 37 http://www.ucsusa.org/about/staff/staff/peter- frumhoff.html#.WI-OaVMrLcs (last visited Jan. 20, 2017, 2:05 PM) Case 4:16-cv-00469-K Document 175 Filed 02/01/17 Page 2 of 10 PageID 5924 Exhibit Description Page(s) D Union of Concerned Scientists, Smoke, Mirrors & App. -
Volcanism and the Little Ice Age
Volcanism and the Little Ice Age THOM A S J. CRO wl E Y 1*, G. ZIELINSK I 2, B. VINTHER 3, R. UD ISTI 4, K. KREUT Z 5, J. CO L E -DA I 6 A N D E. CA STE lla NO 4 1School of Geosciences, University of Edinburgh, UK; [email protected] 2Center for Marine and Wetland Studies, Coastal Carolina University, Conway, USA 3Niels Bohr Institute, University of Copenhagen, Denmark 4Department of Chemistry, University of Florence, Italy 5Department of Earth Sciences, University of Maine, Orono, USA 6Department of Chemistry and Biochemistry, South Dakota State University, Brookings, USA *Collaborating authors listed in reverse alphabetical order. The Little Ice Age (LIA; ca. 1250-1850) has long been considered the coldest interval of the Holocene. Because of its proximity to the present, there are many types of valuable resources for reconstructing tem- peratures from this time interval. Although reconstructions differ in the amplitude Special Section: Comparison Data-Model of cooling during the LIA, they almost all agree that maximum cooling occurred in the mid-15th, 17th and early 19th centuries. The LIA period also provides climate scientists with an opportunity to test their models against a time interval that experienced both significant volcanism and (perhaps) solar insolation variations. Such studies provide information on the ability of models to simulate climates and also provide a valuable backdrop to the subsequent 20th century warming that was driven primarily from anthropogenic greenhouse gas increases. Although solar variability has often been considered the primary agent for LIA cooling, the most comprehensive test of this explanation (Hegerl et al., 2003) points instead to volcanism being substantially more important, explaining as much as 40% of the decadal-scale variance during the LIA. -
On the Climate History of Chaco Canyon
UC San Diego Scripps Institution of Oceanography Technical Report Title On the Climate History of Chaco Canyon Permalink https://escholarship.org/uc/item/1qv786mc Author Berger, Wolfgang H. Publication Date 2009-04-01 eScholarship.org Powered by the California Digital Library University of California ON THE CLIMATE HISTORY OF CHACO CANYON W.H. Berger, Ph.D. Scripps Institution of Oceanography University of California, San Diego Notes on Chaco Canyon history in connection with the presentation “Drought Cycles in Anasazi Land – Sun, Moon, and ocean oscillations,” at the PACLIM Conference in Asilomar, California, in April 2009. On the Involvement of the Sun in Chaco Canyon Climate History Tree-ring research since A.E. Douglass and E. Schulman has brought great benefits to the archaeology of the Southwest. It has become possible to reconstruct the climate narrative in some detail. The appropriate field of study is termed “dendroclimatology,” which is focused on the information contained in the growth of a given set of trees. The term harks back to the intent of the pioneer, the solar astronomer Douglass, who worked early in the 20th century. Since that time the study of tree rings has become a respected branch of Earth Sciences, with well-defined objects and methods (Hughes et al., 1982; Fritts, 1991). Douglass spent great efforts on documenting a role for the sun in climate change. Studies relating climate to solar variation have multiplied since. As yet, a focus on solar activity encounters much skepticism among climate scientists (see, e.g., Hoyt and Schatten, 1997). The expert’s skepticism has several causes. -
Observed Climate Variations and Change
7 Observed Climate Variations and Change C.K. FOLLAND, T.R. KARL, K.YA. VINNIKOV Contributors: J.K. Angell; P. Arkin; R.G. Barry; R. Bradley; D.L. Cadet; M. Chelliah; M. Coughlan; B. Dahlstrom; H.F. Diaz; H Flohn; C. Fu; P. Groisman; A. Gruber; S. Hastenrath; A. Henderson-Sellers; K. Higuchi; P.D. Jones; J. Knox; G. Kukla; S. Levitus; X. Lin; N. Nicholls; B.S. Nyenzi; J.S. Oguntoyinbo; G.B. Pant; D.E. Parker; B. Pittock; R. Reynolds; C.F. Ropelewski; CD. Schonwiese; B. Sevruk; A. Solow; K.E. Trenberth; P. Wadhams; W.C Wang; S. Woodruff; T. Yasunari; Z. Zeng; andX. Zhou. CONTENTS Executive Summary 199 7.6 Tropospheric Variations and Change 220 7.6.1 Temperature 220 7.1 Introduction 201 7.6.2 Comparisons of Recent Tropospheric and Surface Temperature Data 222 7.2 Palaeo-Climatic Variations and Change 201 7.6.3 Moisture 222 7.2.1 Climate of the Past 5,000,000 Years 201 7.2.2 Palaeo-climate Analogues for Three Warm 7.7 Sub-Surface Ocean Temperature and Salinity Epochs 203 Variations 222 7.2.2.1 Pliocene climatic optimum (3,000,000 to 4,300,000 BP) 203 7.8 Variations and Changes in the Cryosphere 223 7.2.2.2 Eemian interglacial optimum (125,000 to 7.8.1 Snow Cover 223 130,000 years BP) 204 7.8.2 Sea Ice Extent and Thickness 224 7.2.2.3 Climate of the Holocene optimum (5000 to 7.8.3 Land Ice (Mountain Glaciers) 225 6000 years BP) 204 7.8.4 Permafrost 225 7.9 Variations and Changes in Atmospheric 7.3 The Modern Instrumental Record 206 Circulation 225 7.9.1 El Nino-Southern Oscillation (ENSO) Influences 226 7.4 Surface Temperature Variations and -
Sea-Level Changes Over the Past 1,000 Years in the Pacific Author(S): Patrick D
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of the South Pacific Electronic Research Repository Coastal Education & Research Foundation, Inc. Sea-Level Changes over the past 1,000 Years in the Pacific Author(s): Patrick D. Nunn Source: Journal of Coastal Research, Vol. 14, No. 1 (Winter, 1998), pp. 23-30 Published by: Coastal Education & Research Foundation, Inc. Stable URL: http://www.jstor.org/stable/4298758 . Accessed: 11/09/2013 18:35 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Coastal Education & Research Foundation, Inc. is collaborating with JSTOR to digitize, preserve and extend access to Journal of Coastal Research. http://www.jstor.org This content downloaded from 144.120.8.19 on Wed, 11 Sep 2013 18:35:10 PM All use subject to JSTOR Terms and Conditions JournalofCoastal Research 14 J 1 23-30 RoyalPalmBeach, Florida Winter1998 Sea-Level Changes over the Past 1,000 Years in the Pacific1 Patrick D. Nunn Department of Geography The University of the South Pacific P.O. Box 1168 Suva, FIJI ABSTRACTI Nunn, P.D., 1998. Sea-level changes over the past 1,000 years in the Pacific.Journal of CoastalResearch, 14(1), 23- ,S $00 ?00O av 30. -
The Little Ice Age and the Coming of the Anthropocene
Asian Review of World Histories 2:1 (January 2014), 1-16 © 2014 The Asian Association of World Historians doi: http://dx.doi.org/10.12773/arwh.2014.2.1.001 The Little Ice Age and the Coming of the Anthropocene Ji-Hyung CHO Ewha Womans University Seoul, Korea (Republic of) [email protected] Abstract This paper examines the historical relationship between the Little Ice Age and the Anthropocene, which has not yet been studied. The Little Ice Age is the coldest multi-century period in the Holocene. The reforestation of huge farmlands, abandoned due to pandemics in the Americas, aggravated the cooling weather of the Little Ice Age. It was in the long and severe cold of the Little Ice Age that the transition from renewable energy to non-renewable energy was completed in Britain in the latter part of the eighteenth century, and when the pattern of linear growth in greenhouse gas concentrations was forged in the ecosystems of the Earth. The Little Ice Age forced humans to depend on fossil fuels while the advent of warmer and more stable climate in the Holocene enabled them to start agriculture in an energy revolution 11,000 years ago, thus making the coming of the Anthropocene possible. Keywords Anthropocene, Little Ice Age, greenhouse gas, wood, coal, fossil fuel, climate change In the last 11,000 years of human history, the Little Ice Age (LIA) is the coldest multi-century period and one of several global mil- Downloaded from Brill.com09/29/2021 01:24:16AM via free access 2 | ASIAN REVIEW OF WORLD HISTORIES 2:1 (JANUARY 2014) lennial-scale climate anomalies.1 The cooling climate and alpine glacial advances were recognized in many areas around the globe.