Tesi Dottorato Ravaioli Definitiva

Total Page:16

File Type:pdf, Size:1020Kb

Tesi Dottorato Ravaioli Definitiva FACOLTÀ DI AGRARIA DIPARTIMENTO DI PROTEZIONE DELLE PIANTE DOTTORATO DI RICERCA IN PROTEZIONE DELLE PIANTE -XXI CICLO- Settore disciplinare AGR/012 Curriculum : Malattie ad eziologia complessa TESI DI DOTTORATO “INDAGINI SULL ’EZIOLOGIA DEL CANCRO CORTICALE DEL NOCE DA LEGNO , SUI FATTORI CONDIZIONANTI E SULLA RESISTENZA GENETICA DI JUGLANS .” Dottorando Tutore Dott. Fulvio Ravaioli Prof. Naldo Anselmi Co-Tutore Coordinatore Dott. Alfredo Fabi Prof. Leonardo Varvaro A.A. 2008-2009 INDICE 1. INTRODUZIONE pag.5 1.1. L’ ARBORICOLTURA DA LEGNO pag.5 1.2. IMPORTANZA DELLE LATIFOGLIE DI PREGIO pag.7 1.3. NORMATIVE COMUNITARIE E AGEVOLAZIONI ECONOMICHE pag.9 1.4. IL GENERE JUGLANS pag.12 1.5. IBRIDIZZAZIONE TRA SPECIE DI JUGLANS pag.13 1.6. PRINCIPALI SPECIE DI JUGLANS E GENERI AFFINI pag.15 1.6.1. NOCI DEL CENTRO AMERICA pag.15 1.6.2. NOCI DEL NORD AMERICA pag.17 1.6.3. NOCI INDOEUROPEI pag.20 1.7. JUGLANS REGIA : NOCE NOSTRANO DA LEGNO pag.22 1.7.1. ASPETTI BOTANICI pag.22 1.7.2. ESIGENZE AMBIENTALI pag.23 1.7.3. UTILIZZAZIONE DEL LEGNO pag.26 1.7.4. POTENZIALITÀ PRODUTTIVE pag.27 1.8. JUGLANDETI pag.31 1.9. PROBLEMATICHE FITOPATOLOGICHE DEL NOCE DA LEGNO pag.32 1.9.1. DANNI DA INSETTI pag.32 1.9.2. MALATTIE DI ORIGINE ABIOTICA pag.33 1.9.3. MALATTIE DI ORIGINE BIOTICA pag.34 1.9.3.1. Marciumi radicali pag.35 1.9.3.2. Antracnosi del noce pag.37 1.9.3.3. Macchie bianche delle foglie pag.38 1.9.3.4. Maculatura batterica pag.39 1.9.3.5. Cancri rameali pag.41 l.9.3.6. Cancro corticale del fusto pag.43 1.10. CENNI SULL ’ENDOFITISMO DEI FITOPATOGENI pag.45 2. OBIETTIVI DELLA TESI pag.47 3. MATERIALI E METODI pag.49 3.1. INDAGINI SULL ’EZIOLOGIA DEL CANCRO CORTICALE DEL FUSTO pag.49 2 3.1.1. MICRORGANISMI PATOGENI PRESENTI NEI CANCRI pag.49 3.1.1.1. Cancri da zone geografiche diverse pag.49 3.1.1.2. Isolamenti in epoche diverse pag.52 3.1.1.3. Cancri da fenotipi diversi pag.52 3.1.1.4. Cancri da cultivars o cloni di Juglans regia diversi pag.52 3.1.1.5. Cancri in diverso stadio evolutivo pag.52 3.1.1.6. Isolamento, identificazione e quantificazione dei microrganismi pag.55 3.1.2. INDAGINI SULLA PATOGENICITÀ DEI MICRORGANISMI RISCONTRATI pag.58 3.1.3. ANALOGIA CON I PATOGENI ASSOCIATI AI CANCRI RAMEALI pag.61 3.1.4. HABITUS ENDOFITICO DEI PRESUNTI AGENTI DEL CANCRO DEL FUSTO pag.63 3.1.5. ANTAGONISMO TRA I MICRORGANISMI RISCONTRATI NEI CANCRI pag.65 3.1.5.1. Saggi con colture duali pag.65 3.1.5.2. Saggi con filtrati Colturali pag.66 3.2. INDAGINI SUI FATTORI PREDISPONENTI LA MALATTIA pag.67 3.2.1. DENSITÀ DELLE PIANTE pag.67 3.2.2. CONCIMAZIONI ED IRRIGAZIONI pag.69 3.2.3. ALTRI FATTORI pag.71 3.3. INDAGINI SULLA RESISTENZA GENETICA ALLA MALATTIA pag.72 3.3.1. RILIEVI IN CAMPO pag.72 a) Impianto sperimentale di San Matteo delle Chiaviche di Mantova pag.72 b) Impianto pluriclonale di Rieti pag.72 c) Confronti tra Juglans regia e Juglans nigra pag.73 3.3.2. VALUTAZIONI ATTRAVERSO INOCULAZIONI ARTIFICIALI IN SERRA pag.74 a) Resistenza di cultivars diverse di Juglans regia pag.74 b) Resistenza di Juglans nigra in confronto con Juglans regia e relativi ibridi pag.74 c) Resistenze di specie diverse di Juglans in confronto con due generi similari, Carya e Prerocarya pag.74 3.3.2.1. Patogeni considerati e metodologie per le inoculazioni e per i Controlli pag.75 4. RISULTATI pag.77 4.1. QUADRO SINTOMATOLOGICO DELLA MALATTIA pag.77 3 4.2. INDAGINI SULL ’EZIOLOGIA DELLA MALATTIA pag.83 4.2.1. MICRORGANISMI RISCONTRATI NEI CANCRI pag.83 4.2.1.1. Zone geografiche diverse pag.83 4.2.1.2. Epoche differenti pag.92 4.2.1.3. Fenotipi diversi pag.93 4.2.1.4. Cultivars e cloni di Juglans regia diversi pag.96 4.2.1.5. Cancri in diverso stadio evolutivo pag.98 4.2.2. INDAGINI SULLA PATOGENICITÀ DEI MICRORGANISMI RISCONTRATI NEI CANCRI pag.102 4.2.3. ANALOGIA CON I PATOGENI ASSOCIATI AI CANCRI RAMEALI pag.105 4.2.4. HABITUS ENDOFITICO DEI PRESUNTI PATOGENI pag.108 4.2.5. PROVE DI ANTAGONISMO pag.114 4.2.6. PROBABILE QUADRO EZIOLOGICO DELLA MALATTIA pag.122 4.3. INDAGINI SUI FATTORI PREDISPONENTI LA MALATTIA pag.123 4.3.1. DENSITÀ DELLE PIANTE pag.123 4.3.2. CONCIMAZIONI ED IRRIGAZIONI pag.126 4.3.3. FATTORI VARI pag.129 4.4. RESISTENZA GENETICA ALLA MALATTIA pag.131 4.4.1. ANALISI DELLA RESISTENZA IN CAMPO pag.131 4.4.2. INDAGINI SULLA RESISTENZA ATTRAVERSO INOCULAZIONI ARTIFICIALI IN SERRA pag.134 4.4.2.1. Resistenza di cultivars diverse di Juglans regia pag.135 4.4.2.2. Resistenza di Juglans nigra , Juglans regia e relativi ibridi pag.139 4.4.2.3. Resistenze di specie diverse di Juglans in confronto con due generi similari, Carya e Prerocarya pag.141 5. SINTESI E CONSIDERAZIONI CONCLUSIVE pag.144 6. BIBLIOGRAFIA pag.147 ALLEGATO A pag.153 RINGRAZIAMENTI pag.158 4 1. INTRODUZIONE 1.1. L’ ARBORICOLTURA DA LEGNO Con il termine “arboricoltura da legno” si definisce l’occupazione temporanea e reversibile di terre a vocazione agricola, con l’impianto di specie arboree, destinate alla produzione di masse legnose finalizzate al prevalente utilizzo industriale o da lavoro. Con tale termine possono essere compresi impianti di conifere e di latifoglie a rapido accrescimento, piantagioni di latifoglie con legno di pregio, impianti a turno breve per la produzione di biomassa e l’agroselvicoltura. Tutti questi modelli colturali sono comunque caratterizzati da specifiche tecniche, finalità produttive e ricadute ambientali (MINOTTA , 2003). L’arboricoltura da legno è un settore della selvicoltura la cui rapida evoluzione degli ultimi anni ha rappresentato la risposta ai cambiamenti socio- economici che a loro volta hanno mutato i rapporti fra l’uomo e l’ambiente (B AGNARESI E GIANNINI , 1997). La crisi dell’agricoltura, l’abbandono delle colture e delle aziende agricole, il prevalere delle attività turistiche, industriali, artigianali o comunque di altre attività più remunerative, hanno reso disponibili nuovi spazi per le colture forestali; l’arboricoltura da legno, pertanto, è diventata uno strumento utile di “riconversione colturale”, in quanto sistema artificiale temporaneo o transitorio che, in taluni casi ed in determinate condizioni, può rappresentare la capacità di evoluzione verso un ecosistema forestale. L’arboricoltura da legno ha numerose finalità, fra le più significative ricordiamo: la valorizzazione dei fattori naturali di produzione; il riflesso sull’aumento della produzione legnosa, che consente di attenuare la pressione di utilizzazione nei boschi esistenti; la costituzione di una copertura arborea che rivaluta l’ambiente ed il paesaggio, la rete ecologica e la tutela dell’assetto del territorio, con la contemporanea eliminazione, nel caso degli impianti sostitutivi delle colture agrarie, dei danni ecologici conseguenti all’uso-abuso di concimi e di presidi fitoiatrici; ancora, l’arboricoltura da legno contribuisce alla riduzione delle produzioni agricole in eccesso, alla creazione di redditi alternativi per le aziende e ad una minore dipendenza dall’estero per le forniture di legname. L’arboricoltura da legno può certamente portare un contributo significativo all’economia interna del nostro Paese, attraverso diverse forme applicative mirate a 5 sfruttare e soddisfare l’ampia varietà delle situazioni ambientali ed infrastrutturali tipiche del nostro territorio, realizzabili con tecniche a basso impatto ambientale e che conducono alla produzione di una materia prima “ ancora lungi dall’essere eccedentaria sia in Italia che in Europa ” (MINOTTA , 2003). Non bisogna tuttavia sottovalutare che, per ottenere assortimenti di qualità soprattutto per gli impianti con latifoglie, è necessario adottare cicli piuttosto lunghi, con costi sensibili e conseguente “immobilizzazione” del fattore terra per lunghi periodi, con rischi alquanto elevati. In Italia, come in altri Paesi europei, negli ultimi anni si è assistita ad una generale rivalutazione dell’arboricoltura da legno, delle cosiddette “produzioni legnose fuori foresta”, nel quadro delle attività produttive del settore primario. I principali fattori che hanno portato a ciò sono: le sempre maggiori importazioni italiane ed europee di materia prima legno per soddisfare le crescenti esigenze dell’industria del settore; l’opportunità di alleviare la pressione antropica sulle foreste allo scopo di favorire un graduale miglioramento degli ecosistemi forestali; le opportunità legate alla possibilità di contribuire al riequilibrio ecologico e paesaggistico di tante aree agricole intensamente coltivate: l’opportunità di destinazioni alternative per molti terreni agricoli in fase di abbandono colturale, soprattutto di quelle collinari e montane; l’occasione di creare una copertura arborea che rivaluta l’ambiente e il paesaggio; l’opportunità di creare occasioni di lavoro. Questa situazione ha determinato, quindi, lo sviluppo di un’arboricoltura da legno basata su criteri diversi dal passato, dando importanza, oltre all’aspetto produttivo, anche all’aspetto ambientale e paesaggistico (MINOTTA , 2003). Il ruolo positivo che la moderna arboricoltura da legno può svolgere a sostegno dello sviluppo sostenibile del territorio rurale è stato ben recepito a livello legislativo nazionale ed internazionale, così come si evince dai sussidi previsti dai regolamenti comunitari per il rimboschimento dei terreni agricoli (vedi poi). 6 1.2. IMPORTANZA DELLE LATIFOGLIE DI PREGIO L’arboricoltura da legno con latifoglie di pregio è una coltura di alberi con legname di alto valore tecnologico e viene pertanto destinato a lavorazioni altamente remunerative, in particolare tranciatura, sfogliatura, segagione. E’ un tipo di coltura che presenta esigenze edafiche piuttosto elevate, con vegetazione, allo stato più o meno sporadico, nell’ambito di foreste mesofile più evolute, e le è universalmente riconosciuta una significativa importanza non solo dal punto di vista naturalistico, ma anche sotto il profilo estetico (MERCURIO E MINOTTA , 2000).
Recommended publications
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • Heterodichogamy.Pdf
    Research Update TRENDS in Ecology & Evolution Vol.16 No.11 November 2001 595 How common is heterodichogamy? Susanne S. Renner The sexual systems of plants usually Heterodichogamy differs from normal (Zingiberales). These figures probably depend on the exact spatial distribution of dichogamy, the temporal separation of underestimate the frequency of the gamete-producing structures. Less well male and female function in flowers, in heterodichogamy. First, the phenomenon known is how the exact timing of male and that it involves two genetic morphs that is discovered only if flower behavior is female function might influence plant occur at a 1:1 ratio. The phenomenon was studied in several individuals and in mating. New papers by Li et al. on a group discovered in walnuts and hazelnuts5,6 natural populations. Differential of tropical gingers describe differential (the latter ending a series of Letters to movements and maturation of petals, maturing of male and female structures, the Editor about hazel flowering that styles, stigmas and stamens become such that half the individuals of a began in Nature in 1870), but has gone invisible in dried herbarium material, population are in the female stage when almost unnoticed7. Indeed, its recent and planted populations deriving from the other half is in the male stage. This discovery in Alpinia was greeted as a vegetatively propagated material no new case of heterodichogamy is unique new mechanism, differing ‘from other longer reflect natural morph ratios. The in involving reciprocal movement of the passive outbreeding devices, such as discovery of heterodichogamy thus styles in the two temporal morphs. dichogamy…and heterostyly in that it depends on field observations.
    [Show full text]
  • 10. Scientific Programme 10.1
    10. SCIENTIFIC PROGRAMME 10.1. OVERVIEW (a) Invited Discourses Plenary Hall B 18:00-19:30 ID1 “The Zoo of Galaxies” Karen Masters, University of Portsmouth, UK Monday, 20 August ID2 “Supernovae, the Accelerating Cosmos, and Dark Energy” Brian Schmidt, ANU, Australia Wednesday, 22 August ID3 “The Herschel View of Star Formation” Philippe André, CEA Saclay, France Wednesday, 29 August ID4 “Past, Present and Future of Chinese Astronomy” Cheng Fang, Nanjing University, China Nanjing Thursday, 30 August (b) Plenary Symposium Review Talks Plenary Hall B (B) 8:30-10:00 Or Rooms 309A+B (3) IAUS 288 Astrophysics from Antarctica John Storey (3) Mon. 20 IAUS 289 The Cosmic Distance Scale: Past, Present and Future Wendy Freedman (3) Mon. 27 IAUS 290 Probing General Relativity using Accreting Black Holes Andy Fabian (B) Wed. 22 IAUS 291 Pulsars are Cool – seriously Scott Ransom (3) Thu. 23 Magnetars: neutron stars with magnetic storms Nanda Rea (3) Thu. 23 Probing Gravitation with Pulsars Michael Kremer (3) Thu. 23 IAUS 292 From Gas to Stars over Cosmic Time Mordacai-Mark Mac Low (B) Tue. 21 IAUS 293 The Kepler Mission: NASA’s ExoEarth Census Natalie Batalha (3) Tue. 28 IAUS 294 The Origin and Evolution of Cosmic Magnetism Bryan Gaensler (B) Wed. 29 IAUS 295 Black Holes in Galaxies John Kormendy (B) Thu. 30 (c) Symposia - Week 1 IAUS 288 Astrophysics from Antartica IAUS 290 Accretion on all scales IAUS 291 Neutron Stars and Pulsars IAUS 292 Molecular gas, Dust, and Star Formation in Galaxies (d) Symposia –Week 2 IAUS 289 Advancing the Physics of Cosmic
    [Show full text]
  • Analysis of Phylogenetic Relationships in the Walnut Family Based on Internal Transcribed Spacer Sequences and Secondary Structures(ITS2)
    Analysis of Phylogenetic Relationships in The Walnut Family Based on Internal Transcribed Spacer Sequences and Secondary Structures(ITS2) Zhongzhong Guo Tarim University Qiang Jin Tarim University Zhenkun Zhao Tarim University Wenjun Yu Tarim University Gen Li Tarim University Yunjiang Cheng Tarim University Cuiyun Wu Tarim University rui Zhang ( [email protected] ) Tarim University https://orcid.org/0000-0002-4360-5179 Research Article Keywords: Base sequence, Evolution, Juglandaceae, Ribosomal spacer, Secondary structure Posted Date: May 13th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-501634/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract This study aims to investigate the phylogenetic relationships within the Juglandaceae family based on the Internal Transcribed Spacer's primary sequence and secondary structures (ITS2). Comparative analysis of 51 Juglandaceae species was performed across most of the dened seven genera. The results showed that the ITS2 secondary structure's folding pattern was highly conserved and congruent with the eukaryote model. Firstly, Neighbor-joining (N.J.) analysis recognized two subfamilies: Platycaryoideae and Engelhardioideae. The Platycaryoideae included the Platycaryeae (Platycarya+ (Carya+ Annamocarya)) and Juglandeae (Juglans-(Cyclocarya + Pterocarya)). The Engelhardioideae composed the (Engelhardia+Oreomunnea+Alfaroa)). The Rhoiptelea genus was generally regarded as an outgroup when inferring the phylogeny of Juglandaceae. However, it is clustered into the Juglandaceae family and showed a close relationship with the Platycaryoideae subfamily. Secondly, the folded 3-helices and 4-helices secondary structure of ITS2 were founded in the Juglandaceae family. Therefore, these ITS2 structures could be used as formal evidence to analyze Juglandaceae's phylogeny relationship.
    [Show full text]
  • Reproduction and Potential Range Expansion of Walnut Twig Beetle Across the Juglandaceae
    Biol Invasions (2018) 20:2141–2155 https://doi.org/10.1007/s10530-018-1692-5 ORIGINAL PAPER Reproduction and potential range expansion of walnut twig beetle across the Juglandaceae Andrea R. Hefty . Brian H. Aukema . Robert C. Venette . Mark V. Coggeshall . James R. McKenna . Steven J. Seybold Received: 10 June 2017 / Accepted: 19 February 2018 / Published online: 1 March 2018 Ó This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018 Abstract Biological invasions by insects that vector this insect has expanded its geographic range by plant pathogens have altered the composition of colonizing naı¨ve hosts. The objective of this study was natural and urban forests. Thousand cankers disease to characterize limits to, and variation within, the host is a new, recent example and is caused by the complex range of P. juglandis and infer the extent to which of walnut twig beetle, Pityophthorus juglandis, and hosts might constrain the geographic distribution of the fungus, Geosmithia morbida, on susceptible hosts, the insect. We examined colonization and reproduc- notably some Juglans spp. and Pterocarya spp. Host tion by P. juglandis in no-choice laboratory experi- colonization by P. juglandis may be particularly ments with 11 Juglans spp., one Pterocarya sp., and important for disease development, but the beetle’s two Carya spp. over 2 years and found that all but the host range is not known. In the United States and Italy, Carya spp. were hosts. Reproduction was generally greater on Juglans californica, J. hindsii, and J. nigra, than on J.
    [Show full text]
  • Genomics: Cracking the Mysteries of Walnuts
    Review Article Genomics: cracking the mysteries of walnuts Fei Chen1*#, Junhao Chen2*, Zhengjia Wang2, Jiawei Zhang1, Meigui Lin1, Liangsheng Zhang1# 1State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps (Fujian Agriculture and Forestry University), Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China 2State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China *Co-first author #Co-corresponding authors: Fei Chen, E-mail: [email protected]; Liangsheng Zhang, E-mail: [email protected] Abstract The Juglans plants are economically important by providing nuts, wood, and garden trees. They also play an important ecological role by supplying food for wild insects and animals. The decoding of genome sequences has fundamental values for understanding the evolution of Juglans plants and molecules, and is also a prerequisite for molecular breeding. During the last three years, the rapid development of sequencing technology has made walnut research into the genome era. Here, we reviewed the progress of genome sequencing of six Juglans species, the resequencing of four Juglans populations, as well as the genome sequencing of the closely related species Pterocarpa stenoptera. The analysis of the J. regia genome uncovers a whole genome duplication event. Based on the molecular dating of the divergence time of six Juglans species, we proposed this whole genome duplication event was associated with the cretaceous-Palaeogene (K-Pg) boundary happened ~65 million-year ago. Genomic sequences also provide clear details for understanding the evolution and development of GGT and PPO genes involved in fruit development.
    [Show full text]
  • EPPO Datasheet: Pityophthorus Juglandis
    EPPO Datasheet: Pityophthorus juglandis Last updated: 2020-07-03 Pityophthorus juglandis and its associated fungus Geosmithia morbida are responsible for the thousand cankers disease of walnut. IDENTITY Preferred name: Pityophthorus juglandis Authority: Blackman Taxonomic position: Animalia: Arthropoda: Hexapoda: Insecta: Coleoptera: Curculionidae: Scolytinae Common names: walnut twig beetle view more common names online... EPPO Categorization: A2 list, Alert list (formerly) view more categorizations online... EU Categorization: A2 Quarantine pest (Annex II B) EPPO Code: PITOJU more photos... Notes on taxonomy and nomenclature The family Scolytidae was recently moved as a subfamily (Scolytinae) within the family Curculionidae. HOSTS Pityophthorus juglandis infests only walnut (Juglans spp.) and wingnut species (Pterocarya spp.), with a strong preference for black walnut (J. nigra). Historically, P. juglandis was mainly reported on J. major in Arizona and New Mexico, the native areas of the beetle, where it was considered as a minor pest. Observations carried out in these States suggest that damage from P. juglandis is restricted primarily to shaded or weakened branches and twigs in the upper crown. The expansion of the beetle’s host range to J. regia and J. nigra growing in plantations or in urban landscapes in the Western USA appears to have taken place during the last 20 years (EPPO, 2015). On these new host species, the beetle activity is more aggressive than on native Western American walnuts (e.g. J. major). Host list: Juglans ailanthifolia, Juglans californica, Juglans cathayensis, Juglans cinerea, Juglans hindsii, Juglans major, Juglans mandshurica, Juglans microcarpa, Juglans mollis, Juglans nigra, Juglans regia, Juglans, Pterocarya fraxinifolia, Pterocarya rhoifolia, Pterocarya stenoptera, Pterocarya GEOGRAPHICAL DISTRIBUTION Species native to Northern Mexico and the South-Western United States (California, Arizona, New Mexico).
    [Show full text]
  • Walnut Jardin Botanique´ – Montreal, Quebec
    Juglans nigra – Black Walnut Jardin Botanique´ – Montreal, Quebec THE JUGLANDACEAE – WALNUTS AND HICKORIES By Susan McDougall 1 Daddy’s work was physically demanding. He was a builder of houses – “spec” houses, as they were known – meaning he bought land, acquired a bank loan, and built houses one at a time, selling them to repay the loan and provide his family with a modest living. After selling one or sometimes before a sale, he would move on to the next project. It was an uncertain life, for then as now, quality homes had to compete with mass production. And, to keep costs down, Daddy performed nearly all the work himself. Occasionally I would visit the construction site, but the most meaningful memories are of daddy arriving home, parking the car out front (no garage or truck in the early years), and coming into a warm house in winter and a shaded one in summer. He worked the year round in the Pacific Northwest - winter rains and summer heat were no deterrent. After greetings and dinner, I would return to my room and daddy would head for his rocking chair in the corner of the living room, happy to read the newspaper or a book. But as I played or studied, occasionally I would hear another sound besides the occasional slow breathing of a tired man nodding off, or the turning of the newspaper pages. It was a cracking/crunching and comforting, reassuring sound. Daddy was eating walnuts, fresh from the shell. Old nutcracker used by my Dad The walnut shells did not give up the kernel within easily, but they could be broken open along a suture line with the simplest of tools.
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • Status and Impact of Walnut Twig Beetle in Urban Forest, Orchard, and Native Forest Ecosystems
    J. For. 117(2):152–163 BARK BEETLE SPECIAL SECTION doi: 10.1093/jofore/fvy081 Published by Oxford University Press on behalf of the Society of American Foresters 2019. Tis work is written by (a) US Government employee(s) and is in the public domain in the US. entomology Status and Impact of Walnut Twig Beetle in Urban Forest, Orchard, and Native Forest Ecosystems Steven J. Seybold, William E. Klingeman III, Stacy M. Hishinuma, Tom W. Coleman, and Andrew D. Graves The walnut twig beetle, a native phloem-boring bark beetle originating on Arizona walnut, has invaded urban, is fatal to walnut trees (Figure 2) and was frst orchard, and native forest habitats throughout the USA as well as in Italy. Although the beetle has been associated noted in the late 2000s for its involvement with dead and dying walnut trees indigenous to riparian forests of the Southwest, the primary impact appears to in the gradual deterioration and mortality of have been on the health of landscape black walnut trees in urban and peri-urban sites in western US states, and several species of black walnut in the west- in Pennsylvania, Tennessee, and Virginia. This has been refected in numbers of trees removed and tree removal ern United States (Graves et al. 2009, Flint costs. In addition, trees have been killed in the primary US Juglans germplasm repository in northern California, et al. 2010, Tisserat et al. 2011, Seybold and low, but measureable, tree mortality has occurred in some English walnut orchards in California’s Central Valley. et al. 2013b).
    [Show full text]
  • Index to JRASC Volumes 61-90 (PDF)
    THE ROYAL ASTRONOMICAL SOCIETY OF CANADA GENERAL INDEX to the JOURNAL 1967–1996 Volumes 61 to 90 inclusive (including the NATIONAL NEWSLETTER, NATIONAL NEWSLETTER/BULLETIN, and BULLETIN) Compiled by Beverly Miskolczi and David Turner* * Editor of the Journal 1994–2000 Layout and Production by David Lane Published by and Copyright 2002 by The Royal Astronomical Society of Canada 136 Dupont Street Toronto, Ontario, M5R 1V2 Canada www.rasc.ca — [email protected] Table of Contents Preface ....................................................................................2 Volume Number Reference ...................................................3 Subject Index Reference ........................................................4 Subject Index ..........................................................................7 Author Index ..................................................................... 121 Abstracts of Papers Presented at Annual Meetings of the National Committee for Canada of the I.A.U. (1967–1970) and Canadian Astronomical Society (1971–1996) .......................................................................168 Abstracts of Papers Presented at the Annual General Assembly of the Royal Astronomical Society of Canada (1969–1996) ...........................................................207 JRASC Index (1967-1996) Page 1 PREFACE The last cumulative Index to the Journal, published in 1971, was compiled by Ruth J. Northcott and assembled for publication by Helen Sawyer Hogg. It included all articles published in the Journal during the interval 1932–1966, Volumes 26–60. In the intervening years the Journal has undergone a variety of changes. In 1970 the National Newsletter was published along with the Journal, being bound with the regular pages of the Journal. In 1978 the National Newsletter was physically separated but still included with the Journal, and in 1989 it became simply the Newsletter/Bulletin and in 1991 the Bulletin. That continued until the eventual merger of the two publications into the new Journal in 1997.
    [Show full text]
  • Whole Genome Based Insights Into the Phylogeny and Evolution of the Juglandaceae
    Whole Genome based Insights into the Phylogeny and Evolution of the Juglandaceae Huijuan Zhou Northwest A&F University: Northwest Agriculture and Forestry University Yiheng Hu Northwestern University Aziz Ebrahimi Purdue University Peiliang Liu Northwestern University Keith Woeste Purdue University Shuoxin Zhang Northwest A&F University: Northwest Agriculture and Forestry University Peng Zhao ( [email protected] ) Northwest University https://orcid.org/0000-0003-3033-6982 Research article Keywords: Diversication, Divergence time, Genome, Juglandaceae, Phylogenomics, Plastome Posted Date: May 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-495294/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract Background: The walnut family (Juglandaceae) contains commercially important woody trees commonly called walnut, wingnut, pecan and hickory. Phylogenetic relationships in the Juglandaceae are problematic, and their historical diversication has not been claried, in part because of low phylogenetic resolution and/or insucient marker variability. Results: We reconstructed the backbone phylogenetic relationships of Juglandaceae using organelle and nuclear genome data from 27 species. The divergence time of Juglandaceae was estimated to be 78.7 Mya. The major lineages diversied in warm and dry habitats during the mid-Paleocene and early Eocene. The plastid, mitochondrial, and nuclear phylogenetic analyses all revealed three subfamilies, i.e., Juglandoideae, Engelhardioideae, Rhoipteleoideae. Five genera of Juglandoideae were strongly supported. Juglandaceae were estimated to have originated during the late Cretaceous, while Juglandoideae were estimated to have originated during the Paleocene, with evidence for rapid diversication events during several glacial and geological periods. The phylogenetic analyses of organelle sequences and nuclear genome yielded highly supported incongruence positions for J.
    [Show full text]